Towards a distributed discovery of smart services in the Social Internet of Things

Karima KHADIR¹, Thierry MONTEIL¹, Nawal GUERMOUCHE¹ and Olivier GUERARD²
1- Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS-CNRS)
2- Continental Automotive Toulouse France

03 October 2019
Problematic & Objectives

1. Context
2. Proposal solution
3. Prototype
4. Future works

workplan
Context
IoT Applications for connected vehicles
Problematic & objectives

- Heterogeneity of IoT devices and their communication technologies.
- Enormous number of IoT objects are connected together → a search for the exact service from an object is difficult, and hence the issue of scalability arises.
- Connected vehicles applications are sensitive to the context of their environment and latency → propose adequate solutions.
Proposed solution
Avatars

Artifact of a physical or software entity on the Web.

Several features:
Autonomous reasoning, Device management, and Collaborative capabilities.

Global avatars based architecture
Avatars collaboration

Social network + Web of Things = Social Web of Things
- Navigability
- Scalable
- Trustworthiness

Clustering and repartition in groups
- Unsupervised learning
- Decrease the search space
System model and assumptions

- An avatars system is modeled as a graph $G = \langle A, E, SD \rangle$
Where A is the set of avatars, E is the set of edges modeling social links between them and SD represents the social distance associated with a given edge.

- Each avatar provide one or more IoT services.
- Each avatar can accept or refuse the request of another one.

Fig. 1. Representation of the network nodes.
SWoT relationships

Four types of relationships have been defined for this paradigm [Atzori & al. 2011]

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Co-work Object Relationship (C-WOR)</td>
</tr>
<tr>
<td>02</td>
<td>Co-Location Objects Relationship (C-LOR)</td>
</tr>
<tr>
<td>03</td>
<td>Parental Object Relationship (POR)</td>
</tr>
<tr>
<td>04</td>
<td>Ownership Object Relationship (OOR)</td>
</tr>
</tbody>
</table>
Fuzzy C-means Algorithm

Inputs: set of neighboring avatars $A = \{A1, A2, ..., Ak\}$, number of clusters C, data matrix $X = \begin{bmatrix} x11 & x1f & ... & x1k \\ & ... & ... & ... \\ xi1 & x1f & ... & xik \\ & ... & ... & ... \\ xc1 & xcf & ... & xck \end{bmatrix}$

Output: a partition of C clusters of avatars.

Step 1: Build a membership matrix in a random way.
$U = \begin{bmatrix} u11 & u1f & ... & u1k \\ & ... & ... & ... \\ ui1 & uif & ... & uik \\ & ... & ... & ... \\ uc1 & ucf & ... & uck \end{bmatrix}$

REPEAT

Step 2: Calculate the centroid of each cluster
$Cj = \frac{\sum_{i=1}^{k} [uij]^m x_i}{\sum_{i=1}^{k} [uij]^m}$

Step 3: Calculate the degree of membership of an avatar i to the cluster j.
$uij = \frac{1}{\sum_{k=1}^{C} (\frac{|x_i - cj|}{|x_i - ck|})^{m-1}}$

UNTIL Convergence (when the membership matrix U is no longer substantially modified.)

Step 6: Define final clusters
For each cluster: order the avatars according to their degree of membership and choose the first p avatars as cluster members.
Distributed discovery of IoT services

Classification of Neighbors in C clusters

For each abstract task composing the objective: send a request to the elected avatar of the cluster responsible on the requested functionality

Designation of an elected avatar for each cluster.

Check if the elected avatar or the members of its cluster can perform the task

Propagation of the query in the social network of the elected so on
Use case
Overtaking scenario

- Overtaking is one of the most dangerous scenarios due to lack of visibility.

- Use social relationships with vehicles and devices around to ensure better visibility
Overtaking process modeling
Future works

Avatars based system management
- Control the execution of the initial composition and adapt it to the context

Overtaking use case
- Finalize the realization of the overtaking scenario.

Solution implementation
- Finalize the implementation of our solution and prove its performances

QoS
- Integrate QoS into our solution
THANK YOU FOR YOUR ATTENTION

QUESTIONS ?