A mass-flow MILP formulation for energy-efficient supplying in assembly lines

Maria Muguerza Cyril Briand Nicolas Jozefowiez
Sandra U. Ngueveu Victoria Rodríguez Matias Urenda Moris

LAAS-CNRS, ROC team (Operations Research, Combinatorial Optimization, Constraints), Toulouse

MISTA, Prague, August 25-27 2015
Outline

1. Introduction
2. Problem definition
3. Energy analysis
4. Mathematical modeling
5. Experimentation
6. Conclusion
Introduction

ECO-INNOVERA Project - EASY (Energy Aware Feeding Systems)

- Skövde University / Volvo VCE
- Universidad de Navarra / VW Polo
- LAAS-CNRS, Toulouse

Motivations

- Develop more sustainable internal logistic practices
- Improve the energy efficiency of production systems
- Focus on the supplying system of assembly lines
Introduction

EASY’s objectives

- Energy oriented analysis of supplying systems
- Determination of the most significant energy parameters
- Design new effective optimization and simulation methods
- Help decision-makers to find a good balance between energy and economical efficiency - Energy awareness
Outline

1. Introduction
2. Problem definition
3. Energy analysis
4. Mathematical modeling
5. Experimentation
6. Conclusion
Problem description

Assembly line supplying

- **Assumptions**
 - Periodic supplying
 - A single vehicle / A single route

- **Decision variables**
 - Determine which workstations to serve at each period
 - Determine the number of components to be delivered

- **Constraints**:
 - Avoid component shortage / satisfy component demands along periods
 - Respect each workstation capacity / vehicle capacity
Performance objectives

Comparison
Energy minimization (vehicle) vs. Distance (Tours) minimization

Energy minimization
• Pollution Routing problem - Betkas and Laporte, Transportation Res. Part B, 2011
• Pollution Inventory Routing problem - Shamsi et al., Logistic Operations, 2014
Outline

1. Introduction
2. Problem definition
3. Energy analysis
4. Mathematical modeling
5. Experimentation
6. Conclusion
Energy analysis

A bit of physics

\[E = \int P \times dt \]
\[P = F \times v \]

- More relevant forces:
 - Traction force \((F_t) \Rightarrow F_t = m_T a(t)\)
 - Rolling resistance \((F_r) \Rightarrow F_r = m_T gC_r\)

- Energy equation:

\[E = \int m_T \times (a(t) + gC_r) \times v(t)dt \]
Energy consumption profile

Assumption on the acceleration profile

Properties
- Any vehicle stop produces a pic of energy consumption.
- The consumed energy is proportional to the carried mass.
Outline

1. Introduction
2. Problem definition
3. Energy analysis
4. Mathematical modeling
5. Experimentation
6. Conclusion
Model basis

A transportation network

- A node \((i, t)\) in the network = a workstation \(i\) at period \(t\)
- A mass flow circulates from the depot along the network at each period \(t\) (plain arcs)
- A energy cost \(c_{i,j}\) is associated to each arc
- A component flow circulates from workstation \(i\) at period \(t\) to workstation \(i\) at period \(t + 1\) (dotted arcs)
Model basis

A 2-periods / 4-workstations network
A MILP formulation

Decision variables

- M_{ij}^t: mass going from i to j during period t
- Z_i^t: components delivered to workstation i at period t
- IL_i^t: inventory level of workstation i at period t
- $\phi_{ij}^t = 1$ whether the vehicle is going from i to j at period t

Constraints

- Mass, component, vehicle flows conservation
- Vehicle / stock capacity
- Demand satisfaction

Objective

- Energy minimization: $\sum_{i,j}^n \sum_{t}^{NT} c_{ij} M_{ij}^t$

NP-hard in the strong sense ...
Min \quad z = \sum_{i,j}^{NT} c_{ij} M_{ij}^t + \sum_{i,j}^{NT} c_{ij} m_v \phi_{ij}^t \quad (1)

\text{st:}

Z_i^t + IL_i^{t-1} - d_i^t = IL_i^t \quad \forall \quad (i, t) \quad (2)

Z_i^t - \frac{1}{m_i} (\sum_{j<i} M_{ji}^t - \sum_{j>i} M_{ij}^t) = 0 \quad \forall \quad (i, t) \quad (3)

Z_i^t + IL_i^{t-1} \leq c_i \quad \forall \quad (i, t) \quad (4)

\sum_{j<i} \phi_{ij}^t = \sum_{j>i} \phi_{ji}^t \quad \forall \quad (i, t) \quad (5)

M_{ij}^t \leq m_{max} \phi_{ij}^t \quad \forall \quad (i, j, t) \quad (6)

IL_i^t \geq 0 \quad \forall \quad (i, t) \quad (7)

M_{ij}^t \geq 0 \quad \forall \quad (i, j, t) \quad (8)

Z_i^t \in \mathbb{N} \quad \forall \quad (i, t) \quad (9)

\phi_{ij}^t \in \{0, 1\} \quad \forall \quad (i, t) \quad (10)
Outline

1. Introduction
2. Problem definition
3. Energy analysis
4. Mathematical modeling
5. Experimentation
6. Conclusion
Experimentation

Problem instances

- Instances adapted from those (IRP) of C. Archetti et al., Transportation Science (2007).
- Each workstation demand is periodic and assumed constant
- One single route among the customers is imposed
- New added parameters: energy cost, vehicle mass, component mass, maximum vehicle load
- 9 instances for each $NT = \{5, 10, 20\}$ and $N = \{5, 15, 30, 50\}$ values were created \Rightarrow 108 instances

Optimization strategy

- First, distance (tours) minimization (GUROBI)
- Then energy minimization (GUROBI, Time Limit = 300sec)
- Comparison of the energy consumed by both solutions
Results

Time performance (sec)

For $NT = 20$ and $N = 50$, 2 instances were not solved to optimality ($GAP < 1\%$)
Results

Energy savings (%)

For every instance, the optimal number of tours remains unchanged when energy is minimized.
Outline

1. Introduction
2. Problem definition
3. Energy analysis
4. Mathematical modeling
5. Experimentation
6. Conclusion
Conclusion and perspectives

Conclusion

- Significant energy parameters: distances, masses, number of stops.
- An “effective” MILP model for energy minimization
- Energy optimization does not cause the increase of the number of tours

Perspectives

- Improvement of the problem instances
- Need of more advanced optimization techniques
- Generalization to the Inventory Routing Problem