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Context

Enzymatic reactions tailor processes necessary for cell proliferation and survival [13]. For instance,
proteins from the Ras family regulate the transmission of external cell growth signals to the inner of
the cell through the binding and subsequent hydrolysis of guanosine triphosphate (GTP) [4, 27, 5].
Indeed, when GTP-bound, these proteins activate numerous pathways leading to cell replication.
The hydrolysis reaction of this nucleotide into guanosine diphosphate (GDP), leads to a GDP-
bound state that, due to conformation changes undergone by the protein, is unable to engage
in the interactions necessary for activating these same pathways. As such, the transmission of
upstream cell growth signals is terminated.

The precise timing between Ras active/inactive states is crucial for the organism survival. Indeed,
mutations found within members of this family of small GTPases are associated with an amplifi-
cation of cell growth signals that contributes to the dissemination of cancerous tissues [3]. Indeed,
such mutations hinder the protein capability to catalyze the hydrolysis reaction, thereby leaving
it in a GTP-bound active state [12, 20]. As Ras catalyzing mechanisms of GTP hydrolysis and
the extent to which they are hindered by point mutations remain to be fully elucidated, several
non-mutated/mutated protein-ligand complexes were studied at the atomic level employing hybrid
QM/MM molecular dynamics.

Methodology

In order to access NRas dynamic properties, Molecular Dynamics (MD) simulations of NRas-GTP-
Gap arginine binding loop complexes were carried out employing a hybrid Quantum Mechanics/
Molecular Mechanics (QM/MM) [26] description of the interatomic interactions. Indeed, bond
formation/breakage expected during GTP hydrolysis, requires a quantum treatment. Yet, the size
of the entire system prevents the use of a full QM description. Hence, a hybrid approach appears
as the most appropriated. In this manner, the reactants (GTP + water molecules) together with
Ras residues (Gly 12, Gly 13, Tyr 32, Thr 35, Gly 60, Glu 61) and a Mg2+ ion identified as being
essential for catalyzing the reaction [10, 19] were treated at the quantum level, thereby allowing
charge redistribution, while the influence of the rest of the protein and the solvent were accounted
for employing a fixed charge classical approach.

Results

Crystallographic data of the holoprotein has been unable to determine unequivocally the number
of water molecules present in the active site i.e. those that would be placed within a reasonable
distance from the nucleotide terminal group to react [14, 17]. Hence, to begin the atomistic study of
NRas-GTP-GAP arginine binding loop complex, the positioning of the reactants was investigated
within both non-mutated (referred to as the wild-type) and Gln 61 mutated NRas proteins. In par-
ticular, water molecules positioning was determined from 2D water probability densities calculated
through a 2D RDF algorithm designed for this study [22].
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Figure 1: 2D RDF of water molecules
within the active site of WT p21N−ras.
The average coordinates of nitrogen back-
bone atoms from residues 12, 13, 35, 59,
60 and 61 have also been projected as well
as GTP phosphorus atoms and Mg2+ ion.
The corresponding standard deviation val-
ues are represented with error bars.

As depicted in figure 1, water molecules are precisely
positioned within the wild-type (WT) protein-ligand
complex. Indeed, an arch of water presence extends
from residue 12 to residue 35 such that two high ampli-
tude peaks clearly emerge. The first one, i.e. the high-
est amplitude density peak, is located between residues
12, 59 and 60. The second one, arises in the vicin-
ity of residue 35, a positioning analogous to that of
a crystallographic water molecule. Concerning Gln 61
mutated proteins (see figure 2), this precise water po-
sitioning is lost. On the one hand, water molecules
appear to be delocalized within four of the six stud-
ied mutants (i.e. Q61E, Q61P, Q61L and Q61R) while
they appear to be overlocalized within the two remain-
ing (Q61H and Q61K). These findings suggest that i)
the positioning of water molecules contributes more to
catalysis than their amount within the active site, ii)
two water molecules in two distinct regions of the ac-
tive site are necessary for an efficient GTP hydroly-
sis [17, 15, 21, 2, 9, 16]. The precise role an chemical
implication in the reaction of each water molecule re-
mains to be determined.
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Figure 2: 2D RDF of water molecules within the active site of (a) Q61E, (b) Q61P, (c) Q61H, (d)
Q61L, (e) Q61K and (f) Q61R mutants.

From this simulations [22], it appears that residues 12 and 60, highly conserved within GTPases,
play an important role in accelerating the reaction by positioning water molecules. Indeed, they
maintain the highest amplitude water density peak by hydrogen bonds formed through their ni-
trogen backbone atoms. In this scenario, Gln 61 would play an indirect role, ensuring an op-
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WTQM/MM WTMM Q61E Q61P Q61H Q61L Q61K Q61R

γ PO2−
4 -0.50 -0.81 -0.76 -0.77 -0.65 -0.74 -0.86 -0.77

β PO−
4 -0.57 -0.66 -0.64 -0.59 -0.61 -0.70 -0.63 -0.57

α PO−
4 -0.78 -0.82 -0.75 -0.74 -0.76 -0.69 -0.82 -0.70

Mg2+ -0.33 -0.18 -0.02 0.12 -0.04 -0.13 -0.04 -0.29

Table 1: Löwdin reduced charges (in a.u.) for WT NRas and six Gln 61 mutants.

timal conformation of the protein active site for catalyzing GTP hydrolysis, as previously pro-
posed [7, 11, 24, 18].

The characterization of the protein active site issued from QM/MM dynamics reveals that both
active site rearrangements and water distribution within mutant proteins hinder Ras major catalyz-
ing effect which consists in promoting charge transfers to stabilize a product-like state [6, 25, 8, 1].
Indeed, only within the active site conformation of the WT protein, GTP charge distribution is
GDP-like i.e. the β phosphate group holds more electronic charge than the γ phosphate (see ta-
ble 1). Within the six Gln 61 mutated proteins the opposite is observed i.e. PO2−

4 β < PO−
4 γ as in

solution [23].

Conclusion

A QM/MM atomistic study of the GTP bound form of NRas active site in complex with GAP
arginine binding loop appears to be crucial for unveiling the protein mechanisms that catalyze the
hydrolysis reaction of GTP. Indeed, qualitatively, only within the WT active site conformation
obtained from QM/MM molecular dynamics simulations, GTP charge distribution resembles that
inferred from infrared (IR) spectroscopy studies. Now, this conformation allows water molecules
to occupy very specific positions within the active site such that two water molecules appear to be
suitably located to participate in the reaction. Hence, the implication of a second water molecule is
supported. The precise role of this second water molecule, as well as wether its presence contributes
to catalysis, remain to be determined.

NRas Gln 61 mutations have a direct impact on the active site structure such that the precise
positioning of water molecules, observed within the WT, is destroyed. As a direct consequence
from this structural rearrangements, GTP charge distribution is not accommodated to a GDP-like
state as within the WT anymore. Because this electrostatic effect is considered to be Ras major
catalyzing effect, the reduced hydrolysis rate measured within oncogenic mutants could be due to
this major loss induced by both active site re-structuration and water distribution.
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