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Context
Simulation of phenomena that naturally occur in longer time scales, e.g. surface
oxidation, with an accuracy of atomic-scale methods, e.g. Density Functional
Theory (DFT), is much-desired goal in several scientific communities. The prob-
lem is that the atomic-scale methods work with time scales which are several
orders of magnitude lower than the time scales of the phenomena desired to study.
There are methods that have been designed to simulate phenomena at any de-
sired scale, but if one wants to precisely simulate higher-scale phenomena, then
all lower-scale phenomena that can happen must be taken into account. Mean-
ing that one should start simulations at the lowest possible scale, find all possible
phenomena that can reasonably occur, and then simulate them at an accordingly
higher scale.

Due to the several orders of magnitude of difference of scales, any phenomena
occurring at the higher-scale is a rare-event at a lower scale. Attempting to simu-
late higher scale phenomena with any lower scale method generally means a huge
computational load and human effort, with no guaranteed outcome. Therefore
one can think of a higher scale phenomenon as series of lower-scale ones. Then,
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one could generate the involved lower-scale phenomena using a low-scale com-
putational method, and use the results as inputs to a higher-scale computational
method.

A method employing this philosophy is kinetic Monte Carlo (kMC). It prop-
agates given phenomena (events) according to their statistical probability, which
results in some evolution of a higher-scale phenomenon.

A mechanism at the core of kMC philosophy is that of applying a known,
pre-described transformation of configuration (an event) to a site configuration
found in a system under study, that is recognized as equivalent to the initial state
of that event. If one can assume that the system under study can be imposed on a
grid (lattice), the way of solving this problem is greatly simplified. However this
assumption is quite limiting the choice of systems one could study. The goal is
then to find a way of solving this problem in a slightly more general way.

Methodology
The prescription of a kMC move is given as a transformation T from an initial
configuration Rref

ini to a final configuration Rref
fin, which together with a probability

associated to this transformation form an entry in a kMC event catalogue. For the
system under study, any local site configuration Rsys that is considered equivalent
to the initial configuration of some event Rref

ini is deemed as a possible site for
eventual execution of that event. But since the local site configuration Rsys will
in general be translated and rotated with respect to Rref

ini , some manipulation is
required to properly execute the transformation T . An event is written in some
basis set β as:

Rref
ini

βTβ−1

−−−−→ Rref
fin (1)

Or rewritten as:
β−1Rref

ini
T−→ β−1Rref

fin (2)

If this transformation T is to be applied on configuration Rsys that is recognized
as appropriate, then a basis γ for this site needs to be found such that:

β−1Rref
ini = γ−1Rsys (3)

So that the transformation T can be executed to obtain a final state configuration
in the system Rsys

fin as:

Rsys
fin = γTβ−1Rref

ini = γβ−1Rref
fin (4)

However, the Eq. (3) needs a proper interpretation. In general, the configura-
tions Rref

ini and Rsys even when written in basis which give equivalent descriptions
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can have permutations in vector indices. This should be taken into account when
evaluating the equivalence relation. Another thing is the "flexibility" of the equiv-
alence relation in Eq. (3), as the two configurations might not be exactly equal,
but can still be considered close enough to execute the transformation T .

The Eq. (3) is a central point of the algorithm, and is thus turned into a condi-
tion. If a configuration Rsys written in a basis set γ satisfies a properly interpreted
equivalence relation within some tolerance criterion to a configuration Rref

ini writ-
ten in a basis set β, then a known transformation can be executed on Rsys to obtain
Rsys
fin as given by Eq. (4).

The task is then to set up a way of evaluating the equivalence relation, satisfy-
ing given conditions. Evidently, it needs to be sensitive to descriptions of the same
configuration in different basis sets. That is, it needs to be variant under rotations.

The algorithm works in two stages. In the first stage a local configuration Rsys

is set up according to a criterion (spherical cutoff radius Rcut) around a central
atom. It is rewritten such that the central atom is at the origin of the configuration.
Then a simple colored graph is set up according to the connectivity of the local
configuration. The graph is then compared to a set of graphs generated for the
initial state configurations of all possible events {Rref

ini }, as graph isomorphism
problem. This is done using the canonical graph hashing in the dense form of
NAUTY package [2], which assigns to a graph an integer number based on the
connectivity of graph vertices and their colors, in a permutationally invariant way.
Since the connectivity itself is a rotationally invariant property, this description is
not sensitive to the specific basis choice. The equivalence of two integer num-
bers obtained in this way signifies isomorphism of underlying graphs, and thus
equivalent connectivity. However, as the topological space of graphs has more
symmetries than the Euclidean 3D space of coordinates, isomorphism of simple
colored graphs is not a sufficient condition to univocally declare geometric equiv-
alence of two configurations and directly launch execution of an event on that site.
Although, isomorphism of graphs of configurations Rsys and Rref

ini is a necessary
condition for two configurations that might satisfy an equivalence condition of
Eq. (3).

The second stage of the algorithm is done for configurations where graph iso-
morphism has been found. In this stage a search for basis sets is performed. To
reduce the search space of this action, a rule for generating vectors of the basis set
of any configuration R is imposed. The rule is that the first basis vector ê1 is the
normalised vector of any atom that is connected to the central atom, the second
basis vector ê2 is the normalised perpendicular part of a vector to another atom
that is connected to the central atom and not collinear with the first one, and the
third basis vector ê3 is a cross product of the first two basis vectors. The basis
set is then orthonormal, and a minimum number of non-collinear atoms needed in
a configuration to be able to form a basis is 3. Notice that with 3 non-collinear
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atoms there are 2 ways to form a basis depending on which atom is taken as first
or second. To make the choice of β and γ unambiguous, the set β is defined for
each configuration in the set {Rref

ini } in the initial phase of the algorithm, before
the graph isomorphism stage. In this way the search for a basis is effectively per-
formed only over the configuration Rsys in order to find the basis set γ. As there
are multiple possibilities to form a basis set depending on the number of connected
atoms, each candidate basis set is used to test the condition in Eq. (3). If a basis
set satisfies that condition, further action can be taken as desired. For example, all
basis sets that satisfy the condition of their related event, for all sites in the system,
can be written to memory. Such that when an event is chosen for execution it can
be traced back to specific site and basis set (direction of execution).

Since the condition given in Eq. (3) needs to be evaluated in a way that is
sensitive to basis change, and invariant to index permutation, we define the fol-
lowing. A configuration R is written in terms of a related basis set γ = {êα=1,2,3},
to obtain the term γ−1R. For each such term 3k functions are generated, where k
is the number of different colors (atomic types) present, along each axis α of the
basis set in the range of Rcut. Each atom in the configuration is projected to each
of the basis vectors, the projection value defines the center of a Gaussian peak on
the corresponding axis α, whose total area is related to the distance to that atom.
Written more precisely,

fkα(qα) =
N∑
i

1

σk
√

2π
exp

(
(∆qα − 〈Rk

i , êα〉)2

2σ2
k

)
exp

(
− |R

k
i |

µk

)
(5)

where qα is a dummy variable going along the axis α, 〈Rk
i , êα〉 is the projection

value of a vector of atom index i of type k on a basis vector êα, |Rk
i | is the distance

to atom index i, σk is the Gaussian width parameter for type k, and µk is a param-
eter modifying the "penetration depth" of type k. The functions are normalized
such that the total integral over all 3 axes and types is 1, the normalization factor
is the following.

∑
α,k

∫ Rcut

−Rcut

fkα dqα =
∑
k

N∑
i=1

exp

(
− |R

k
i |

µk

)
(6)

For the evaluation of condition in Eq. (3), the terms on both sides of the equiv-
alence relation to be tested get a set of descriptor functions as given by Eq. (5).
The term on the left gets a set call it f = {fkα}, and the term on the right gets a set
call it g = {gkα}. The sets f and g are then compared by means of computing the
overlap between the corresponding functions as Eq. (7), the final overlap value O
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being the sum of overlaps over all axes α and types k.

O =
∑
α,k

∫ Rcut

−Rcut

min
(
fkα(qα), gkα(qα)

)
dqα (7)

Since the functions f and g are normalized to 1, the maximum value the overlap
O in Eq. (7) can obtain is 1.0, which is the case when the two configurations
are exactly identical. The minimum value is 0.0, which is the case when the two
configurations are completely different. The parameters σk and µk can be used
to tune the "flexibility" of the equivalence relation, the width σk to account for
small-scale distortions in positions, and depth µk to tune relative importance of
atomic types. Then a threshold can be set for the overlap O value, for example
any configuration together with a basis that gives O ≥ 0.9 is considered close
enough for an event of which initial state it is compared to.

Another way that is currently being tested for evaluation of the condition in
Eq. (3), is a philosophy borrowed from methods of 3D shape registration [1].
Having in mind that at this point of the algorithm the configuration sets Rsys

and Rref
ini are written in bases that could potentially give the same description of

geometry, one can assume that the Euclidean distance between a point from the
set Rsys = S and the corresponding point in the set Rref

ini = M should be within
some very small threshold. The task is to find a pair (si,mj), such that each point
si in S = Rsys has a corresponding point mj in M = Rref

ini which gives the
smallest (zero) Euclidean distance r from si to mj .

min
mj∈M

r(si,mj), ∀i : si ∈ S ⇒ (si,mj) (8)

Effectively it means finding a matching for indices i and j in which the set ele-
ments correspond index-by-index. The result of the operation is a set of distances
corresponding to pairs (si,mj), which can be used to evaluate another threshold,
as follows. If any of these distances is larger than some highest allowed thresh-
old, the current basis is rejected as candidate. This corresponds to the situation
where one (or more) atoms are displaced from its proper position by more than a
threshold. An analogous definition is that of Hausdorff distance H(A,B), which
is defined as distance between sets A and B as follows

H(A,B) = max( h(A,B), h(B,A) ) (9)

where
h(A,B) = sup

α∈A
inf
β∈B

d(α, β) (10)

is the maximal shortest distance between points α and β.
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Once the condition of Eq. (3) is evaluated in a satisfactory manner, the algo-
rithm makes a decision based on this value wether a move can possibly be realised
on this site or not. The details regarding event and site are kept in memory until
all possible sites are checked for all possible events. Finally a decision for a move
is made by the kMC kernel. The move is executed following Eq. (4).
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