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Regulation problem

Given a system one wants to ensure that an output follows a prescribed
reference despite uncertainties and disturbances.

Static error

Disturbances in real model : error of the modelisation, linearisation, sensors, · · ·
⇒ Static error between the measurement output and the reference.
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Output regulation problem

An old problem with an old solution...

In 1788 James Watt : regulation of the admission of steam into an engine.

It takes time for the ball to go up ⇒ There is a kind of ”integral action”.
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Example of regulation by integral action

Example : A very trivial system:

ẋ = u + d

y = x

State x ∈ R, control u ∈ R, unknown constant disturbance d ∈ R, measure
y ∈ R.

⇒ Given a reference yr in R, design u such that y → yr .

I If u = yr − y ⇒ equilibrium is stable but y 9 yr .

I If u = yr − y−z , where ż = y − yr ⇒ equilibrium is stable and y → yr .

Conclusion : The integral term added can reject the constant disturbance.
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Abstract Input/Output Cauchy problem

By Fattorini’s transformation =⇒ Kalman form :

ϕ̇ = Aϕ+ Bu + w , ϕ ∈ X, u ∈ U

y = Cϕ

where X = Hilbert space with norm ‖ · ‖X and w ∈ X = unknown constant
vector .

A : D(A) 7→ X
U ⊂ Rm, B : U 7→ D(A)

y ∈ Rm, C : X 7→ Rm

D(A) = the definition domain of A.
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C0-semigroups of contraction

With u = kiKiξ, ξ̇ = y the closed-loop systems is :

ϕ̇e =

(
0 C

BkiKi A

)
ϕe +

(
−yr
w

)
where ϕe =

(
ξ
ϕ

)
∈ Xe = Rm × X = extended state space

⇒ ?Ki? such that ϕe(t) exp. stable

Open-loop stability Assumption

Let the operator A generates a C0-semigroup exp. stable. Then there exist
k, ν > 0 such that, if w = 0, then ∀ϕ ∈ X, ∀t ∈ [0,+∞) :

‖T (t)ϕ‖X 6 kexp(−νt)‖ϕ0‖X

This assumption can be obtain using a proportional feedback.
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A brief review of existing results

Using abstract input/output Cauchy problem

I Perturbation theory for linear operator, Kato in 66’

I Pohjolainen in 82’ for parabolic system.

I C.-Z. Xu and Jerby 95’ for general abstract Cauchy problem.
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About the assumption needed in semigroup theory

C.-Z. Xu and Jerby 95’, Pohjolainen 82’

Assume assumption on Open-loop stability and :

1. Operator B is bounded;

2. Operator C is A-bounded, i.e :

|Cϕ| ≤ c(‖x‖X + ‖Aϕ‖X ) , ∀ ϕ ∈ D(A).

3. Rank condition : rank{CA−1B} = m

then there exists a positive real number k∗i and a m ×m matrix Ki such that
for all 0 < ki ≤ k∗i the operator

Ae =

[
0 C

BkiKi A

]
(1)

is the generator of an exponentially stable C0-semigroup in the extended state
space Xe .
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Remarks

I Require B bounded

I Based on a spectral approach → difficult to extend to nonlinear systems.

I k∗i is small and difficult to compute. For Ki = (CA−1B)−1, previous
theorem impose

k∗i = minλ∈Γ0{‖BeKi‖−1‖R(λ;Ae)‖−1}

Be =

(
0 0

BkiKi 0

)
Ae =

(
0 C

kiBKi A

)
R(λ;Ae) = resolvent of Ae .
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Regulation of abstract Cauchy problem

Under assumption on the open-loop stability, ∃ P bounded and self-adjoint,
c1, c2,w positive constants s.t. :

V (ϕ) = 〈ϕ,Pϕ〉, c1‖ϕ‖X 6 V 6 c2‖ϕ‖X, V̇ 6 −w‖ϕ‖X

Theorem : Forwarding Lyapunov for ACP
(CDC18: ATJ-VA-VDSM-CZX)

Assume that all assumptions of Theorem Xu-Jerbi 95’ are satisfied. There
exists a bounded operators M : X→ Rm and positive real numbers p and k∗i
such that for all 0 6 ki 6 k∗i , there exists ωe > 0 such that the functional :

W (xe) = 〈ϕ,Pϕ〉+ p (ξ −Mϕ)T (ξ −Mϕ)

satisfies :
Ẇ 6 −ωe‖ϕe‖Xe

Remark :
Lyapunov functional approach = same result of stability - spectral approach.
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Sketch of the proof

Ẇ = V̇ + 2p (ξ −Mϕ)T
(
ξ̇ −Mϕt

)
Select M and Ki as :

Mϕt = MAϕ = Cϕ, Ki =
(
CA−1B

)−1

then W (ϕe(t)) according to time yields

Ẇ ≤
(
−ω +

ki
a

+
pki
b

)
‖ϕ‖2

X + ki
(
p(−2 + b‖M‖2) + a‖BPKi‖2

X

)
|ξ|2

So, one obtains a ki max :

k∗i =
ν

‖CA−1‖k2‖B(CA−1B)−1‖

where ν, k are selected in assumption on Open-Loop stability.
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System of n × n hyperbolic PDE

Let a linear hyperbolic system (in Riemann coordinates):

φt = Λφx , where φ : [0,∞)× [0, 1]→ Rn

with

I Λ = diag{λ1, . . . , λn}, λi > 0,∀i ∈ {1, . . . `}, λi < 0, ∀i ∈ {`+ 1, . . . , n}
I Perturbated boundary control conditions[

φ+(t, 0)
φ−(t, 1)

]
=

[
K11 K12

K21 K22

] [
φ+(t, 1)
φ−(t, 0)

]
+

[
B1

B2

]
u(t) + Dwb

I Perturbated output to be regulated

y(t) = L1

[
φ+(t, 0)
φ−(t, 1)

]
+ L2

[
φ+(t, 1)
φ−(t, 0)

]
+ wy

Aim : Output regulation

lim
t→+∞

|y(t)− yref | = 0
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System of n × n hyperbolic PDE

Integral control law :

u(t) = −kiKiξ(t), ξ̇(t) = y(t)− yref

Assumptions :

1. Open-loop ISS properties: ∃V ∈
(
L2(0, 1)

)n
and µ, c > 0 verifying

V̇ (φ(t)) ≤ −2µV (φ(t)) + c|u(t)|2 . (2)

2. Regulator equation

Im

([
Idm 0
0 D

])
⊂ Im

([
L1 + L2 0
Idn−K B

])
. (3)

3. Rank condition
T = (L1 + L2)(Idn−K)−1B (4)

is full rank.
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Spaces of solution for n × n hyperbolic PDE

Let the Hilbert space:
Xh = (L2(0, 1))n × Rm

with the norm:
‖v‖Xh = ‖φ‖L2(0,1)n + |ξ|

and the smoother Hilbert space :

Xh1 = (H1(0, 1))n × Rm

From [Bastin,Coron 16’]:

I ∀v0 ∈ Xh satisfying the BC’s, it exists a unique solution

v ∈ C 0([0,+∞),Xh)

I If v0 ∈ Xh1 and satisfies the C 1−compatibility condition, solution is strong
and :

v ∈ C 0([0,+∞),Xh1) ∩ C 1([0,+∞),Xh)
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Output regulation for n × n hyperbolic PDE

Theorem : Forwarding Lyapunov for hyperbolic system
(CDC18: ATJ-VA-VDSM-CZX)

Assume assumptions 1, 2 and 3 and select Ki = T−1. Then, there exist k∗i > 0
such that for all 0 < ki < k∗i the output regulation is achieved. More precisely

I There exist an equilibrium state v∞ = (φ∞, ξ∞)T

I v∞ ∈ Xh is a globally exponentially stable equilibrium

‖v(t)− v∞‖Xh ≤ k exp(−νt)‖v0 − v∞‖Xh .

I if v0 satisfies the C 1-compatibility condition and is in Xh1, the regulation
is achieved, i.e.

lim
t→+∞

|y(t)− yref | = 0.
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Sketch of the proof 1/3

Assumptions 2 and 3 (regulator eq. + rank condition) ⇒ ∃v∞

Suppose that

I v0 ∈ Xh1 and satisfies the C 1 compatibility conditions

I there exist a Lyapunov functional for the closed-loop system verifying

‖v∞ − v‖2
Xh1

Lw
6 W (v) 6 Lw‖v∞ − v‖2

Xh1
.

Then, using Grönwall lemma

W (v(t)) ≤ e−ωtW (v0) .

And finally, using Sobolev embedding

lim
t→+∞

|y(t)− yref | = 0.

Thus, it only remains to build W (v(t)) to conclude !
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Sketch of the proof 2/3

The Lyapunov candidate is

W (ξ, φ) = V (φ) + p(ξ −Mφ)T (ξ −Mφ)

ISS and open-loop stability assumptions

V̇ (φ, t) ≤ −2µV (φ, t) + c|kiKiξ(t)|2

Key Idea

Find out Mφ such that

ξt(t)−Mφt(t, .) = −kiξ(t)

Solution

Mφ =

∫ 1

0

MΛ−1φ(s)ds, with M =

[
Id` 0
0 − Idn−`

]
(L1K + L2) (Idn−K)−1

it yields,
Mφt(t, .) = zt(t)− Tu(t)
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Sketch of the proof 3/3

Then

Wt(v(t)) ≤ −2µV (φ(t)) + c|u(t)|2 − 2p [ξ(t)−Mφ(·, t)]> Tu(t)

using Ki = T−1 and u(t) = −kiKiξ(t)

Wt(v(t)) ≤ −2µV (φ(t)) + pkia|Mφ(·, t)|2 + ki
(
cki |Ki |2 − 2p +

p

a

)
|ξ(t)|2

I Same form as for the abstract Cauchy problem

I Always possible to find w1, a, p ∈ R+ s.t

Wt(v(t)) ≤ −2w1W (v(t))
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Drilling system

Figure: Diagram of a drilling device

Mechanical vibrations :

I Stick-Slip

I Bit bounce

I Lateral vibrations

Figure: Oscillation of the radial
velocities due to Stick-Slip
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Drilling model

Using an equation of balance laws

Inside the pipe:

θtt(x , t) =
∂x (G(x)θx(x , t))

ρ
− β(x)θt(x , t)

Top boundary condition :

GJθx(0, t) = ca (θt(0, t)− Ω(t))

Bottom boundary condition:

IBθtt(L, t) = −GJθx(L, t)− Tfr (θt(L, t))
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Problem statement

Rotatory table control :
u(t) = Ω(t) + du

Topside velocity measurement :

y(t) = θt(0, t)

Friction term + a constant perturbation :

IBθtt(L, t) = −G(L)Jθx(L, t)− cbθt(L, t)− T0

Objective

to regulate the downside velocity despite of constant perturbations :

lim
t→∞

|θt(L, t)− yref | = 0
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Riemann coordinates

The system written into Riemann coordinates:

ϕt(x , t) = Λ(x)ϕx(x , t) + N(x)ϕ(x , t), ∀x ∈ (0, 1),

zt(t) = −(a + b)z(t) + aϕ−(1, t) + d0,

ξt(t) = ϕ−(0, t) + ϕ+(0, t)− ỹref

Boundary conditions :

ϕ−(0, t) = α0ϕ
+(0, t)+kiξ(t) + du

ϕ+(1, t) = −ϕ−(1, t) + 2z(t),

with ϕ(x , t) =

[
ϕ−(x , t)
ϕ+(x , t)

]
, c(x) = G(x)

ρ

Λ(x) =

[
−c(x) 0

0 c(x)

]
, N(x) =

[
−(λ(x) + Gx(x)) −(λ(x)− Gx(x))
−(λ(x) + Gx(x)) −(λ(x)− Gx(x))

]
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Result for drilling system

Theorem (IEEE TAC 18 : ATJ-VA-MTF-VDSM)

Considering that all physical parameters are positives, and provided that
∀x ∈ [0, 1], |Gx(x)| 6 Gx , there exist real numbers ki and positive real numbers
k and ν such that ∀(ỹref , d) ∈ R2 and ∀v(x , 0) ∈ X, the following holds

1. ∃ an equilibrium state denoted v∞ globally exponentially stable in X for
the previous system. More precisely, we have :

‖v(t)− v∞‖X ≤ k exp(−νt)‖v0 − v∞‖X;

2. If moreover v0 satisfies the C 1-compatibility condition and is in X1, the
regulation is achieved, i.e.

lim
t→+∞

|ỹ(t)− ỹref | = 0.

lim
t→+∞

|θt(L, t)− yref | = 0

=⇒ we regulate the downside velocity !
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Lyapunov design

1. One can find µ, p, q s.t for all parameters with Gx(x) = 0 the functional

V (z , ϕ) = qz2 +

∫ 1

0

(ϕ−(s, .))2e−µx + p(ϕ−(s, .))2e+µxds

Verifying
V̇ (z , ϕ) 6 −w1V (z , ϕ) + c|kiξ(t)|2

2. Using forwarding Lyapunov method, build W (z , ξ, ϕ) and find k∗i ,w2 s.t

Ẇ (z , ξ, ϕ) 6 −w2W (z , ξ, ϕ)

3. Let Gx(x) 6= 0. For all 0 < ki < k∗i , there exist kG s.t

Ẇ (z , ξ, ϕ) 6 −w2W (z , ξ, ϕ) + kG |Gx(x)|W (z , ξ, ϕ)

4. Select Gx = w2
2kG

s.t

Ẇ (z , ξ, ϕ) 6 −w2

2
W (z , ξ, ϕ)
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Problem statement

We want to know the possible values of k such that

ż(t) = −kz(t − 1)

converge to zero. The pole s verify

Re(s) < 0⇐⇒ 0 < k <
π

2

Equivalence Delay/Transport PDE

φt(x , t) = −φx(x , t)⇒ φ(1, t) = φ(0, t − 1)

Can be formulate

φt(x , t) = −φx(x , t)

φ(0, t) = −kz(t)

y(t) = φ(1, t), ż(t) = y(t)
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Lyapunov design

Lyapunov candidate

W =

∫ 1

0

φ(s, .)2e−µsds + p

(
z +

∫ 1

0

φ(s, .)ds

)2

Note that
d

dt

(
z +

∫ 1

0

φ(s, .)ds

)
= −kz(t)

Using Holder inequality:

Ẇ 6 −φ2(1, t)e−µ − wT (t)Mw(t)

with M =

(
µ2

eµ−1
−pk

−pk k(2p − k)

)
and w(t) =

(∫ 1

0
φ(s, t)ds
z(t)

)
Applying Sylvester criterion

k <
2pµ2

µ2 + p2(eµ − 1)
= ln(2) ≈ 0.69 avec µ = p = ln2

Using Lyapunov of [Ngoc Tu 16’] for hyperbolic PDE ⇒ kmax ≈ 0.39
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Results

Existing control methods based on 1D drilling model :

I Time-delay, backstepping, flatness, Smith predictor with λ = 0.

I Backstepping for a drilling model (λ = cst, c = cst) [Roman et al. 16’, ...]

Remarks on the Forwarding Lyapunov design :

I Can be less conservative than the Lyapunov functional initiated by [Coron,
Xu-Gauthier]

I Allow to deal with complex system (see drilling result)

I Give an explicit limit for the gain ki

I Improve the stability result obtains using the Lyapunov functional initiated
by [Coron, Xu-Gauthier] or [Ngoc Tu 16’]
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Perspectives

1. Lyapunov approach :

I Extension to nonlinear controller (local stability)
I Time varying perturbation d(t)
I Extension to the general case of system of balance laws
I Extension to coupled hyperbolic PDE with linear ODE

2. Drilling system :

I Take account of rotatory table inertia.
I Consider axial dynamics and coupled axial torsional friction function.
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Thanks for your attention
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