1/36

In collaboration with Vincent Andrieu and Valerie Dos Santos Martins

April 4, 2018

ot @0

v vy



2/36

Introduction: What is output regulation ?
Problem statement
Regulation of abstract Cauchy problem

Forwarding Lyapunov functional
For a general abstract Cauchy problem
For a n x n hyperbolic system

Application of this Lyapunov method
Drilling system
Study-case of a simple delayed ODE

Conclusion



Given a system one wants to ensure that an output follows a prescribed
reference despite uncertainties and disturbances.

Y(t)

Control disturbance We /\ Yr
Input u(t) Output y(t)
® J Model . ® Measurement

Output disturbance Wo ‘

Time (t)
Static error
Disturbances in real model : error of the modelisation, linearisation, sensors, ---
= Static error between the measurement output and the reference. «E
«=
Da
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Output regulation problem

An old problem with an old solution...

In 1788 James Watt : regulation of the admission of steam into an engine.

FIG. 4.—Governor and Throttle-Valve.

It takes time for the ball to go up = There is a kind of "integral action”.
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Example of regulation by integral action

Example : A very trivial system:
x=u+d
y=x
State x € R, control u € R, unknown constant disturbance d € R, measure
yeR.
= Given a reference y, in R, design u such that y — y,.

» If u =y, —y = equilibrium is stable but y = y;.
» If u=y, — y—2z, where Z =y — y, = equilibrium is stable and y — y,.

Conclusion : The integral term added can reject the constant disturbance.
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Introduction: What is output regulation ?

Regulation of abstract Cauchy problem
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By Fattorini’s transformation = Kalman form :

p=Ap+Bu+t+w, peX, vel

y=Cp
where X = Hilbert space with norm || - ||x and w € X = unknown constant
vector .
A:D(A) X

UCR™, B:Uws D(A)
yeR" C:X—R"

D(A) = the definition domain of A.

vvovey

ot @0

7/36



With v = k,-K,-!;“,f = y the closed-loop systems is :

. _( 0 C —Yr
‘p‘*—<Bk,-K,- A>¢e+<w)

where pe = (i) € Xe = R™ x X = extended state space
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With v = k,-K,-!;“,f = y the closed-loop systems is :

. _( 0 C —Yr
e = (Bk,-K,- A> pet ( w )
where pe = (i) € Xe = R™ x X = extended state space

= ?K;? such that ¢.(t) exp. stable
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With v = kK¢, € = y the closed-loop systems is :

. _( 0 C —Yr
‘pe_<Bk,-K,- A)“"‘f*(w)

where pe = (i) € Xe = R™ x X = extended state space

= ?K;? such that ¢.(t) exp. stable

Let the operator A generates a Co-semigroup exp. stable. Then there exist
k,v > 0 such that, if w = 0, then Vo € X, Vt € [0, +00) :

IT(D)ellx < kexp(—vt)|lwollx

3o

This assumption can be obtain using a proportional feedback.
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Using abstract input/output Cauchy problem
» Perturbation theory for linear operator, Kato in 66’
» Pohjolainen in 82’ for parabolic system.

» C.-Z. Xu and Jerby 95’ for general abstract Cauchy problem.
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About the assumption needed in semigroup theory

C.-Z. Xu and Jerby 95', Pohjolainen 82’

Assume assumption on Open-loop stability and :
1. Operator B is bounded;
2. Operator C is A-bounded, i.e :

|Copl < c(llxllx + 1 A¢llx) , ¥ ¢ € D(A).

3. Rank condition : rank{CA™'B} = m

then there exists a positive real number k" and a m x m matrix K; such that
for all 0 < k; < k;* the operator

Ae = {Bk(:K,- ﬂ @)

is the generator of an exponentially stable Co-semigroup in the extended state
space Xe.
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» Require B bounded
» Based on a spectral approach — difficult to extend to nonlinear systems.

» k; is small and difficult to compute. For K; = (CA™'B)™!, previous
theorem impose

ki = minxero{[| BeKil| T IIR(A: Ae)l| ™}

) Im
_ 0 0 il—'o
B = (Bk,-K,- o) o(4) i
. 0 C : 0 Re
Ae = (k,BK, A) H
R(X\; Ae) = resolvent of A.. : L
i < ? >
‘)i@
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Forwarding Lyapunov functional
For a general abstract Cauchy problem
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Regulation of abstract Cauchy problem

13/36

Under assumption on the open-loop stability, 3 P bounded and self-adjoint,
c1, &2, W positive constants s.t. :

V(p) = (p, Pp),  allpllx <V <alelx V< -—wlelx

Theorem : Forwarding Lyapunov for ACP
(CDC18: ATJ-VA-VDSM-CZX)

Assume that all assumptions of Theorem Xu-Jerbi 95" are satisfied. There
exists a bounded operators M : X — R" and positive real numbers p and k;*
such that for all 0 < ki < k", there exists we > 0 such that the functional :

W(xe) = (@, Po) + p (£ — Mp)T (€ — Myp)

satisfies : ;
W < —wellpe||x.

Remark :
Lyapunov functional approach = same result of stability - spectral approach.



W=V+2p(E— M) (5— Mw:)
Select M and K; as :

—1 -1
Mg: = MAp = Cp, K; = (CA B)
then W(pe(t)) according to time yields

. ki
W< (=t 2 B glf ks (o2 B MIP) + allBPKGE) €

So, one obtains a k; max :

k= -
" llcATt k3| B(CATB) |
where v, k are selected in assumption on Open-Loop stability. . ; )
sac
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Forwarding Lyapunov functional

For a n x n hyperbolic system
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System of n x n hyperbolic PDE

Let a linear hyperbolic system (in Riemann coordinates):
¢e = NP« , where ¢ : [0,00) x [0,1] — R”

with

> A=diag{h,..., A}, N >0Vie{l,... 6}, \<OVie{t+1,...

» Perturbated boundary control conditions
+(t,0) Ku  Kiz| [¢4(t,1) B:
= t)+ D
Lﬁ—(fJ) Ka K| [¢-(t,0) * B u(t) + Dws
» Perturbated output to be regulated

SO O

Aim : Output regulation

lim |y(t) = yrr| =0

t—+o00
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Integral control law :

u(t) = —kiKig(t), £(t) = y(t) = yer
Assumptions :
1. Open-loop ISS properties: 3V € (L*(0,1))" and p, ¢ > 0 verifying
V(6(t)) < —2uV(6(1)) + clu(t)? . (2)

2. Regulator equation

la, O Li+L, O
w5 o)) em (LR 5)- @
3. Rank condition

T = (L1+L2)(|dn—K)7lB (4)
is full rank.

vvovey
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Spaces of solution for n x n hyperbolic PDE

Let the Hilbert space:
Xp = (L%(0,1))" x R

with the norm:
vz, = 18l 20,1yn + [€]
and the smoother Hilbert space :
Xpm = (H'(0,1))" x R
From [Bastin,Coron 16]:
» VYv € X}, satisfying the BC's, it exists a unique solution

v e C°([0, 400), X4)

> If vy € Xp1 and satisfies the C*—compatibility condition, solution is strong

and :
veE CO([07 +OO),Xh1) N Cl([07 +OO)7Xh)
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Output regulation for n x n hyperbolic PDE

Theorem : Forwarding Lyapunov for hyperbolic system
(CDC18: ATJ-VA-VDSM-CZX)

Assume assumptions 1, 2 and 3 and select K; = T~1. Then, there exist k>0
such that for all 0 < k; < k" the output regulation is achieved. More precisely
» There exist an equilibrium state Voo = (¢oo, o)’

> Voo € X} is a globally exponentially stable equilibrium

Iv(t) = Voollx, < kexp(—vit)||vo — Voollx,-

> if vp satisfies the C’-compatibility condition and is in Xy, the regulation
is achieved, i.e.
lim |y(t) = yrr| = 0.

t—+oo
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Assumptions 2 and 3 (regulator eq. + rank condition) = Jv
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Assumptions 2 and 3 (regulator eq. + rank condition) = Jv
Suppose that

> v € Xp1 and satisfies the C! compatibility conditions

> there exist a Lyapunov functional for the closed-loop system verifying

2
Voo — V
e v < W) < Lol = v,
w
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Sketch of the proof 1/3

Assumptions 2 and 3 (regulator eq. + rank condition) = Jv
Suppose that

> v € Xp1 and satisfies the ct compatibility conditions

> there exist a Lyapunov functional for the closed-loop system verifying

Iveo = vil%y

1 < W(v) < Lw||veo — V||§§h1.

Then, using Gronwall lemma

W(v(t)) < e “'W(w) .
And finally, using Sobolev embedding

im {y(t) = yrer| = 0.

Thus, it only remains to build W(v(t)) to conclude !
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The Lyapunov candidate is
W(E ¢) = V(¢) + p(§ — M) (€ — M¢)

ISS and open-loop stability assumptions

V(g,t) < —2uV(¢, t) + clkiKiE(t)?

Find out M¢ such that
Ee(t) — Mor(t,.) = —kig(t)

21/36
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The Lyapunov candidate is

W(E ¢) = V() + p(€ — M) (€ — M¢)

ISS and open-loop stability assumptions

V(g,t) < —2uV(¢, t) + clkiKiE(t)?

Find out M¢ such that
Ee(t) — Mor(t,.) = —kig(t)

Solution

1
qu:/o MA"'¢(s)ds, with M = ['g‘f _,(?nil] (LiK + L2) (la, —K) ™"

3o

it yields,

Moy(t,.) = z(t) — Tu(t)
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Then
Wa(v(t)) < —2uV(8(2)) + clu(®)* - 2p [¢(t) — M(-, )] " Tu(t)
using Ki = T~ % and u(t) = —kiK:£(t)
Wa(v(t)) < —2uV(8(t)) + pkial M(-, t)|* + K (C""IKiI2 —-2p+ g) ()
» Same form as for the abstract Cauchy problem
» Always possible to find wi, a, p € Rt st

Wi(v(t)) < —2m W(v(t))

A A 4 a
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Application of this Lyapunov method
Drilling system
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Drilling system

Kelly

Rotatory, <> (f) pumps
table 1
| —1=

Drill
pipes

Drill —
collars I I
Bit

Figure: Diagram of a drilling device
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Drilling system

Kelly

Mud
Rotatory <H> @ pumps
table 1

=] y—=

Drill
pipes

Drill —_—
collars l I
Bit

Figure: Diagram of a drilling device
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Mechanical vibrations :
> Stick-Slip
» Bit bounce

» Lateral vibrations

Time Gaconds)

Figure: Oscillation of the radial
velocities due to Stick-Slip



Using an equation of balance laws

Inside the pipe:

9x (G(x)bx(x, 1))
P

O (x, t) = = B(x)0e(x, t)

Top boundary condition :

GJOL(0, t) = ¢, (0:(0, £) — (1))

Bottom boundary condition:

Is0c(L, t) = —GJOL(L, t) — Ts (6:(L, 1))

A A 4 a
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Rotatory table control :
u(t) = Q(t) + du
Topside velocity measurement :

y(t) = 6:(0, 1)
Friction term + a constant perturbation :

Is0:(L, t) = —G(L)JO(L, t) — cube(L, t) — To

A A 4 a
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26/36

Rotatory table control :

u(t) = Q(t) + du
Topside velocity measurement :

y(t) = 6:(0, 1)
Friction term + a constant perturbation :

Is0:(L, t) = —G(L)JO(L, t) — cube(L, t) — To

to regulate the downside velocity despite of constant perturbations :

Jim 10:(L, t) — yrer| = 0
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The system written into Riemann coordinates:

pi(x, t) = N(x)iox(x, ) + N(x)p(x, t), Vx € (0,1),
z(t) = —(a+ b)z(t) + ap™ (1,t) + db,
€e(t) = 0 (0,8) + 97 (0,) — Fer
Boundary conditions :
¢ (0,t) = aop (0, t)+ ki(t) + dy
¢ (L 1) =~ (1,1) +22(1),

with o(x, t) = [‘p_(x’ t)] , clx) =

@t (x,t)
L0 0] e [FAR#G) —(A) — Gi(x) -
A‘X)‘[ 0 c(x)]’ M )‘[—(A<x>+cx<x>> ~(Mx) - G(x)) ?

A
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Result for drilling system

Theorem (IEEE TAC 18 : ATJ-VA-MTF-VDSM)

Considering that all physical parameters are positives, and provided that
Vx € [0,1], | Gx(x)| < G, there exist real numbers k; and positive real numbers
k and v such that ¥(J.r, d) € R? and Yv(x,0) € X, the following holds

1. 3 an equilibrium state denoted v, globally exponentially stable in X for
the previous system. More precisely, we have :

[[v(£) = veollx < kexp(—vt)[vo — veo [x;

2. If moreover vy satisfies the Cl-compatibility condition and is in X, the
regulation is achieved, i.e.

lim |7(t) = Frer| = 0.

t—+oo —
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Result for drilling system

Theorem (IEEE TAC 18 : ATJ-VA-MTF-VDSM)

Considering that all physical parameters are positives, and provided that
Vx € [0,1], | Gx(x)| < G, there exist real numbers k; and positive real numbers
k and v such that ¥(J.r, d) € R? and Yv(x,0) € X, the following holds

1. 3 an equilibrium state denoted v, globally exponentially stable in X for
the previous system. More precisely, we have :

[[v(£) = veollx < kexp(—vt)[vo — veo [x;

2. If moreover vy satisfies the Cl-compatibility condition and is in X, the
regulation is achieved, i.e.

lim |7(t) = Frer| = 0.

t—+oo —

im[0e(L, £) = yer| = 0

/6 —> we regulate the downside velocity !



1. One can find u, p, g s.t for all parameters with G«(x) = 0 the functional

V(z, ) = qz2+-jf (0 (5,02 + plp™(s..))e ""ds

Verifying )
V(z,9) < —wiV(z,9) + clki€(t)

A A 4 a

ot @0

29/36



1. One can find u, p, g s.t for all parameters with G«(x) = 0 the functional

1
V(z,¢) = g2 + / (9™ (5, )€™ + p(o (s, ) e ds
0
Verifying )
V(z,0) < —wiV(z, ) + clki&(t)?

2. Using forwarding Lyapunov method, build W(z,&, ¢) and find k", w» s.t
W(27 57 SO) < —w W(27 €7 30)
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1. One can find u, p, g s.t for all parameters with G«(x) = 0 the functional

V(z, ) = qz2+-jc (0 (5,02 + plp™(s..))e ""ds

Verifying )
V(z,9) < —wiV(z,9) + clki€(t)

2. Using forwarding Lyapunov method, build W(z,&, ¢) and find k", w» s.t
W(Z, 57 SO) < —w W(27 €7 30)

3. Let Gi(x) #0. For all 0 < k; < k', there exist k¢ s.t
W(z,€,0) < —waW(z,&,¢) + ke| Gu(x)|W(z, €, )

wo @0
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Lyapunov design

1. One can find u, p, g s.t for all parameters with G«(x) = 0 the functional

V(z,¢) = g2 + / (9 (s.))%e ™™ + ply~ (s, ))2e™ds

Verifying )
V(z,9) < —wiV(z,9) + clki€(t) ]

2. Using forwarding Lyapunov method, build W(z,¢&, ) and find k', w> s.t
W(Z7£7 QO) < _WQW(27£7 L,O)

3. Let Gi(x) #0. For all 0 < ki < ki, there exist k¢ s.t
W(z.€,0) < —waW(z,£,0) + ke |Gu(x)|W(2,€, ¢)

4. Select G, = 3e st

W(Z7E7¢) < 7%‘/‘/(2757@)
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Application of this Lyapunov method

Study-case of a simple delayed ODE
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We want to know the possible values of k such that
z(t) = —kz(t — 1)

converge to zero. The pole s verify

™

Re(s)<0<:>0<k<2
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We want to know the possible values of k such that
z(t) = —kz(t — 1)
converge to zero. The pole s verify

Re(s)<0(:>0<k<g

Equivalence Delay/Transport PDE

(j)t(X, t) = _¢X(Xa t) = ¢(1a t) = ¢(0a t— 1)
Can be formulate
¢f(x’ t) = —d)X(X, t)
9(0, 8) = —ke(t)
y(t) = ¢(1,t), 2(t) = y(t)

A A 4 a
vvovey

ot @0

31/36



Lyapunov candidate

3 1 2 s ( 1 )2
W—/0 o(s,.) e *ds+p z-i-/0 o(s,.)ds

% (z + /01 o(s, .)ds) = —kz(t)

Using Holder inequality:

Note that

W< —¢(1, t)e " — w' (t)Mw(t)

wi (S k) g win) = (o 0(s t)ds
th M (—pk k(2p—k)> d w(t) < 2(t) )

Applying Sylvester criterion

2pp?
k< ———— =1In(2) = 0.69 =p=1In2
< 2§ pP(er — 1) n(2) avec p=p=1In

3o

Using Lyapunov of [Ngoc Tu 16'] for hyperbolic PDE = kmax =~ 0.39

S
£
)
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Results

Existing control methods based on 1D drilling model :
» Time-delay, backstepping, flatness, Smith predictor with A\ = 0.
» Backstepping for a drilling model (A = cst, ¢ = cst) [Roman et al. 16, ...]

Remarks on the Forwarding Lyapunov design :

» Can be less conservative than the Lyapunov functional initiated by [Coron,
Xu-Gauthier]

> Allow to deal with complex system (see drilling result)
» Give an explicit limit for the gain k;

» Improve the stability result obtains using the Lyapunov functional initiated
by [Coron, Xu-Gauthier] or [Ngoc Tu 16']
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Perspectives

1. Lyapunov approach :

» Extension to nonlinear controller (local stability)

» Time varying perturbation d(t)

» Extension to the general case of system of balance laws
» Extension to coupled hyperbolic PDE with linear ODE

2. Drilling system :

» Take account of rotatory table inertia.
» Consider axial dynamics and coupled axial torsional friction function.
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Thanks for your attention
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