Selected publications NEO

 

Book & Editorials

  • Innovating in Energetic Materials from the Bottom, Propellants Explos. Pyrotech. 42, 235–236 (2017)

  • Simulation à l’échelle atomique en ALD pour les oxydes ultra-minces, Les Techniques de L’ingénieur, N°RE259, 51 (2016)

  • Al-based energetic nanomaterials - design, manufacturing, properties and applications, ISTE Ltd, London and John Wiley & Sons, New York, June 2015
  • Two decades of research on nano-energetic materials,Propellants Explos. Pyrotech. 2014; 39, 323. DOI: 10.1002/prep.201480151
  • Nanoscale energetic materials, J. Phys. Chem. Sol. 2010, 71, 57. http://dx.doi.org/10.1016/j.jpcs.2009.10.015

Scientific Journals :

  • Engineering Multilayered Nanocrystal Solids with Enhanced Optical Properties Using Metal Oxides, ACS Applied Nano Materials 1 (12), 6782–6789 (2018), DOI: 10.1021/acsanm.8b01577

  • Water dissociation and partial hydroxylation of perfect and defective polar ZnO model-surfaces, ACS J. Phys. Chem. C 122 (38), 21861 (2018), DOI: 10.1021/acs.jpcc.8b04952

  • Correlation between DNA Self-Assembly Kinetics, Microstructure, and Thermal Properties of Tunable Highly Energetic Al-CuO Nanocomposites for Micro-Pyrotechnic Applications, ACS Appl. Nano Mat., 1 (9), 4716 (2018), DOI: 10.1021/acsanm.8b00939

  • Al Interaction with ZnO Surfaces, ACS J. Phys. Chem. C 122 , 17856 (2018), DOI: 10.1021/acs.jpcc.8b04952

  • Effect of surface nano/micro-structuring on the early formation of microbial anodes with Geobacter sulfurreducens: Experimental and theoretical approaches, Bioelectrochemistry 121, 191 (2018), DOI: 10.1016/j.bioelechem.2018.02.005

  • Engineering of Al/CuO reactive multilayer thin films for tunable initiation and actuation, accepted Propellants, Explosives, Pyrotechnics (2018)
  • Structure and chemical characterization at the atomic level of reactions in Al/CuO multilayers, ACS Applied Energy Materials 1 (4), 1762-1770 (2018), DOI: 10.1021/acsaem.8b00296

  • Fast circuit breaker based on integration of Al/CuO nanothermites,  Sensor & Actuator A 273, 249 (2018), DOI : 10.1016/j.sna.2018.02.044

  • Controlled  growth and grafting of High-Density Au Nanoparticles on Zinc Oxide Thin Films by Photo-Deposition, Langmuir 34 (5), pp 1932–1940 (2018), DOI: 10.1021/acs.langmuir.7b04105

  • Investigation of Al/CuO multilayered thermite ignition, Journal of Applied Physics 121, 034503 (2017), DOI: http://dx.doi.org/10.1063/1.4974288

  • Role of Trimethylaluminum (TMA) in Low Temperature Atomic Layer Deposition of Silicon Nitride, ACS Chem. Mat. 29, 6022, 2017, DOI: 10.1021/acs.chemmater.7b01816

  • Basic Mechanisms of Al Interaction with the ZnO Surface, ACS J. Phys. Chem. C,  121, 12788 (2017), DOI: 10.1021/acs.jpcc.7b02661
  • A diffusion - reaction scheme for modelling ignition and self-propagating reactions in Al/CuO multilayered thin films, Journal of Applied Physics, 122, 155105 (2017), https://doi.org/10.1063/1.5000312
  • Performance Enhancement via Incorporation of ZnO Nanolayers in Energetic Al/CuO Multilayers, ACS Langmuir 33 (41), pp 11086–11093, (2017), DOI: 10.1021/acs.langmuir.7b02964
  • DNA grafting and arrangement on oxide surfaces for self-assembly of Al and CuO nanoparticles, ACS Langmuir 33 (43), 12193-12203, (2017), DOI: 10.1021/acs.langmuir.7b02159
  • A multi-phase micro-kinetic model for simulating aluminum based thermite reactions, Combustion and Flame, 180 , 10–19 (2017), https://doi.org/10.1016/j.combustflame.2017.02.031
  • Role of impurities, defects and their complexes on the trapping of hydrogen in bulk aluminum and on the Al(111) surface, Computational Materials Science 126 (2017) 272–279, https://doi.org/10.1016/j.commatsci.2016.09.047
  • Nanothermite/RDX based miniature device for impact ignition of high explosives, Propellants Explos. Pyrotech. 2017, 42, Issue 3, 308–317 (Journal Back Cover)
  • A general strategy for the design of DNA coding sequences applied to nanoparticles assembly, ACS Langmuir 2016, 32, 9676−9686, DOI: 10.1021/acs.langmuir.6b02843
  • Effect of temperature and O2 pressure on the gaseous species produced during combustion of Aluminum, Chemical Physics Letters,  649 (2016) doi:10.1016/j.cplett.2016.02.048
  • Self-organized Al2Cu nanocrystals at the interface of aluminum based reactive nanolaminates to lower reaction onset temperature, ACS App. Mat. & Inter. 8, 13104 (2016) DOI:10.1021/acsami.6b02008
  • Role of alumina coatings for selective and controlled bonding of DNA on technologically relevant oxide surfaces, J. Phys. Chem. C 119, 23527, 2 (2015). DOI: 10.1021/acs.jpcc.5b06820
  • Enhancing the reactivity of Al/CuO nanolaminates by incorporing Cu at the interfaces, ACS App. Mat. & Inter. 22, 11713 (2015) DOI: 10.1021/acsami.5b02653
  • Modelling the pressure generation in Alumino-based thermites, Propellants Explos. & Pyrotech 40, 402 (2015). DOI: 10.1002/prep.201400297
  • NanoEnergetics as pressure generator for nontoxic impact primers: comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE, Combustion & Flame 162, 1813 (2015). DOI.org/10.1016/j.combustflame.2014.12.002
  • Elementary surface chemistry during CuO/Al nanothermite synthesis: copper and oxygen deposition on Aluminum (111) surfaces, ACS Appl. Mater. Interfaces, 6, 15086 (2014) DOI: 10.1021/am503126k
  • Interfacial chemistry in Al/CuO reactive nanomaterial and its role in exothermic reaction, ACS App. Mat. & Int. 5 (3), 605 (2013). DOI:10.1021/am3019405
  • High-Energy Al/CuO nanocomposites obtained by DNA Directed assembly, Advanced Functional Materials, 22, 323 (2012). DOI: 10.1002/adfm.201100763
  • Nanopatterning Si(111) surfaces – a road to new selective surface chemistry, Nature Materials 9, 266 (2010). doi:10.1038/nmat2611