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Abstract— We study the problem of monitoring the evolution

of atmospheric variables within low-altitude cumulus clouds

with a fleet of Unmanned Aerial Vehicles (UAVs). To tackle

this challenge, two main problems can be identified: i) creating

on-line maps of the relevant variables, based on sparse local

measurements; ii) designing a planning algorithm which ex-

ploits the obtained map to generate trajectories that optimize

the adaptive data sampling process, minimizing the uncertainty

in the map, while steering the vehicles within the air flows to

generate energetic-efficient flights. Our approach is based on

Gaussian Processes (GP) for the mapping, combined with a

stochastic optimization scheme for the trajectories generation.

The system is tested in simulations carried out using a realistic

three-dimensional current field. Results for a single UAV as

well as for a fleet of multiple UAVs, sharing information to

cooperatively achieve the mission, are provided.

I. INTRODUCTION

Atmospheric scientists have been early users of UAVs,
from which significant scientific results have rapidly been
obtained, see e.g. [1]. UAVs indeed bring forth several
advantages over manned flight to probe atmospheric phenom-
ena: low cost, ease of deployment, possibility to evolve in
high turbulences [2], etc. This article depicts on-going work
on the development of an approach to probe low-altitude
cumulus clouds with UAVs. From an atmospheric science
point of view, there remain numerous uncertainties and even
unknowns in the cloud micro-physics models that could be
alleviated with the acquisition of a variety of data within

and around the cloud. Wind currents, pressure, temperature,
humidity, liquid water content, radiance and aerosols are
variables of interest that must be collected with a spatial
and temporal resolution of respectively about 10m and 1Hz
over the cloud lifespan to better understand the phenomena
that conduct cumulus formation and evolution.

Exploiting UAVs to explore a cloud is a poorly informed
and highly constrained adaptive sampling problem, in which
the UAV motions must be defined so as to maximize the
amount of gathered information and the mission duration.
The work presented here tackles this challenge. It is devel-
oped within the context of the SkyScanner project1, which
involves atmosphere and drone scientists. Its goal is to deploy
a fleet of UAVs to explore cumulus clouds, so as to be able
to synchronously gather data in various areas of the clouds.

A global approach has been defined, which casts the
overall problem in a hierarchy of two modeling and de-
cision stages. A macroscopic parametrized model of the
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cloud (Fig. 1) is built and exploited at the higher level by
an atmospheric scientist, which sets information gathering
goals. A UAV or a subset of the UAV fleet is allocated to each
goal, considering e.g. the UAVs current position in the cloud,
their on-board energy level, and their sensing capacities.

Fig. 1. Coarse schematic representation of a cumulus cloud. The black
arrows represent the wind vertical velocities, the orange blobs denote
areas where mixing is occurring between the cloud and the surrounding
atmosphere. The precise understanding of these phenomena, as well as the
definition of laws that relate the cloud dimensions, the inner wind speeds,
and the spatial distribution of the various thermodynamic variables is still
a matter of research, for which UAVs can bring significant insights. The
cloud dimensions can vary from 100m to several hundreds of meters.

These high level goals typically consist of cloud regions
to explore, and are handled by the lower level, which
autonomously optimizes the selected UAVs trajectories using
an on-line updated dense model of the variables of interest.
The article focuses on this latter level, the variables of
interest being the winds 3D coordinates, making the problem
an “explore vs. exploit” one.

Related work: While UAVs have been used for data
sampling within clouds, they are usually employed follow-
ing predefined standard trajectories: adaptive energetically-
optimal autonomous missions are still a challenge. In the
literature, few recent works have tackled the problem consid-
ering realistic models. The possibility of using dynamic soar-
ing to extend the mission duration for sampling in supercell
thunderstorms has been presented in [3]. In this case, only
the energetic part is analyzed, while the gathered information
does not affect the planning. In [4], Lawrance and Sukkarieh
present a problem very close to ours, where a glider explores
a wind field trying to exploit air flows to augment flight
duration. This work presents a hierarchic approach for the
planning, where a target point is firstly selected and then a
trajectory to reach it is generated for every planning cycle.
In a similar scenario, a reinforcement learning algorithm to
find a trade-off between energy harvesting and exploration
is proposed in [5]. The problem of tracking and mapping
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atmospheric phenomena with a UAV is also studied in [6].
Even though this latter work does not take into account air
currents for the navigation, it is worth to remark that it
includes experiments with a real platform – contrary to the
previous ones. Autonomous soaring has also been studied in
different scenarios, as in [7], where a glider has to search
for a target on the ground. The goal here is to maximize the
probability of detecting the target traveling between thermals
with known location. In all the aforementioned work, only
the use of a single UAV to achieve the mission is considered,
and no cooperative multi-robot strategies are proposed.

Autonomous exploration of current fields is not exclu-
sively related to aerial applications: the use of Autonomous
Underwater Vehicles for oceanographic studies has been
recently investigated [8], [9].

Outline: Section II depicts how the area to explore is
mapped with Gaussian Processes using data gathered locally
by the UAVs, focusing in particular on the mapping of the
wind, which conditions the UAV motions. The resulting map
is exploited to derive a utility measure, so as to drive the ex-
ploration process, which is depicted in Section III. The explo-
ration process aims at augmenting the information contained
in the map, while optimizing the energy consumption. It is
defined for a glider, and exploits a stochastic optimization
scheme. Section IV then presents some exploration results,
using a realistic atmospheric simulator to generate inputs for
the mapping processes, and a flight simulator to steer the
UAVs according to the planned motions.

II. MAPPING CLOUDS

To plan energy-efficient and informative trajectories, a
model that represents both the wind currents and the atmo-
spheric variables to measure is required. The accuracy of this
information is of course of utmost importance, as it is the
factor that steers the information gathering mission and that
conditions the expectation of the path costs estimates.

The considered context raises two main issues: the size
of the three-dimensional space, in which UAVs collect very
sparse measurements, and the dynamics of the considered
atmospheric phenomena. The only way to be able to predict
short term atmospheric conditions from the sparse mea-
surements is to make use of the strong spatio-temporal
correlations of the atmospheric processes. Considering the
little available knowledge about these, there are not many
efficient tools to tackle this problem. Among them, Gaussian
Processes (GP) can successfully be used to perform on-line
spatio-temporal regression in robotics problems. We use a GP
mapping framework similar to [4], with the added ability to
update hyper-parameters during the mission.

A. Gaussian Process Model

GP is a very general non-parametric framework, where the
underlying process is modeled by “a collection of random
variables, any finite number of which have a joint Gaussian
distribution” [10]. Under this assumption, the process y =

f(x) is defined only by its mean and covariance functions:

m(x) = E[f(x)],
k(x,x�) = E[(f(x)−m(x)(f(x�)−m(x�))] .

(1)

The mean function m is often assumed to be zero, but it
can be used to encode prior knowledge. The covariance
function k represents similarity between points: given a set
of n samples (x, y) and assuming zero mean, the GP is
fully defined by the Gram matrix ΣX,X = [k(xi, xj)] of
the covariances between all pairs of sample points. The
particularity of the GP model is to provide full predictive
distributions over all possible f , whose mean and variance
at each point can be interpreted as the process predicted value
and associated error. Indeed, with the previous knowledge of
a set (X,Y) of examples and assuming a zero mean process,
one can infer the marginal values of the mean ȳ� and variance
V[y�] of the process at a location x� using:

ȳ� = Σx�,X[ΣX,X + σ2
nI]

−1Y,

V[y�] = k(x�,x�)− Σx�,X[ΣX,X + σ2
nI]

−1Σ�
x�,X

(2)

where the σ2
nI perturbation added to the covariance matrix

is used to model Gaussian noise on the examples.
The choice of the kernel function k conditions the process
distribution as it sets a prior on the process properties such as
isotropy, stationarity or smoothness. In practice, a family of
kernels parametrized by hyper-parameters has to be chosen.
The most used, which we adopt in this article, is the squared
exponential kernel:

kSE(x,x
�) = σ2

fe
− 1

2 |x−x�|M |x−x�| (3)

with M = l−2I a diagonal matrix defining characteristic
anisotropic length scales l. This kernel is thus anisotropic,
stationary and infinitely smooth.

Until recently, the usage of GP models for on-line prob-
lems has been prevented by prohibitive inference cost in
O(n3), due to the inversion of the covariance matrix ΣX,X,
which must be updated each time new samples are added
or each time hyper-parameters vary. Recent algorithmic
advances in streaming data and greater computing power
spawned contributions that help to solve on-line prob-
lems [11]. Nevertheless, the issue of selecting the hyper-
parameters θ remains. In most settings, their values are
optimized off-line using the log-likelihood criterion:

log p(y|X, θ) = −
1

2
y�Σ−1y −

1

2
log |Σ|−

n

2
log 2π (4)

This non-convex optimization may not converge to the global
minimum and is relatively slow. Furthermore, in our context
it cannot be performed off-line: the hyper-parameters indeed
depend on the dynamics of the cloud, where different regions
have radically different characteristics.

B. Evaluating information utility of trajectories

For a mapping mission, the quantity of the information
that is collected along the path of the UAV is the primary
concern to decide the trajectories to achieve. The utility of



new measurements is assessed by the information gain they
bring to the current model. For this purpose, the variance of
the GP as defined by eq. (2), which represents the uncertainty
of the current model at each point in space, is a natural
candidate to evaluate the utility of new measurements. In
[5], Chung et al. integrate the variance of the GP over the
region to be mapped and derive a measure of the quality of
the model. Unfortunately, a closed-from expression of this
integral does not exist in general.

The problem of selecting the best possible future mea-
surements to estimate a statistical model has been extensively
studied. The idea is to minimize the variance of the estimator
using a statistical criterion. The integration criterion defined
in [5] is an instance of I-optimality. Other classical criteria
directly seek to minimize the covariance matrix:

• D-optimality aims to maximize the differential Shannon
entropy of the statistical model, which comes to max-
imizing the determinant of the information matrix (the
inverse of the covariance matrix).

• T-optimality aims to maximize the trace of the informa-
tion matrix.

To efficiently evaluate the information gain of a new set
of measurement points, we define the conditional covariance
ΣXnew|X of the set of m new points Xnew against X the
ones already included in the regression model:

ΣXnew|X = ΣXnew,Xnew − ΣXnew,XΣ−1
X,XΣ�

Xnew,X (5)

The ΣXnew|X matrix is of fixed size m×m which is indepen-
dent of the size of the model, which yield swift computations.
The matrix itself is computed in O(nm2+mn2), subsequent
inversion or computation of the determinant are performed
in O(m3). The values vD and vT of the D- and T-optimality
criterion are thus defined as:

vT (ΣXnew|X) = tr([ΣXnew|X + σ2
nI]

−1) (6)

vD(ΣXnew|X) =
1

2
log|[ΣXnew|X + σ2

nI]
−1

|+
m

2
log2πe

(7)

As can be seen in Fig. 2, the proposed way of computing
T- and D- criteria is faster than the computation of I-
optimality, and thus scales better with the number of samples.
Additionally, T- and I-optimality tend to exhibit the same
behavior, and T-optimality does not depend on the type of
the chosen kernel.

Although there may not exist a minimum value for all cri-
teria, there exists a maximum value: in all case (provided the
kernel is stationary), the most informative measurements will
have a diagonal covariance matrix Σopt = (k(0, 0) + σ2

n)I .
Indeed the information is maximized when all measurements
are independent. The maximal value vopt is thus defined
using Σopt instead of [ΣXnew|X + σ2

nI] in equation (6) and
(7). This bound will be used to normalize the objective
function to maximize (section III-B).

III. OPTIMAL TRAJECTORIES PLANNING

The algorithm to guide the UAVs must optimize the
two main objectives of the considered mission: minimize

Fig. 2. Comparing D-, T- and I-optimality information criteria. I-optimality
has been implemented using the formula described in [5]. Left: execution
time depending of number of samples in the model (T-optimality is not
shown as it is confounded with D-optimality) Right: normalized utility of
a single sample taken in 1D space on a line between samples taken every
unit, using kse kernel (σf = 1, l = 0.5, σn = 1e− 3).

the uncertainty on the mapped atmospheric variables, and
exploit the air flows to augment the mission duration. The
map resulting from the GP provides the information needed
to generate the optimal trajectories, which are generated
over a sequence of short-time horizons ∆T , defined by the
frequency at which the GP hyper-parameters are updated.
Before detailing the optimization algorithm, we firstly de-
scribe the UAV model and we formalize the optimization
criteria to define the objective function.

A. UAV model

Even though the project future experiments will exploit
moto-gliders, we consider a glider without any means of
propulsion to test and validate our approach in this paper.
The absence of propulsion does not change the nature of the
problem, neither over-simplifies it, and hence remains a valid
and realistic test for the optimization algorithms.

Let us consider a classic UAV dynamics model, expressed
as follows:

p(t+ dt) = p(t) + (V + c)dt (8)

ψ(t+ dt) = ψ(t) + ψ̇(t) dt

(9)

where c is the wind velocity, p the UAV position, ψ its yaw
angle and V the velocity relative to the air currents, whose
components are:

vx = V cos θ cosψ (10)
vy = V cos θ sinψ (11)
vz = V sin θ (12)

θ = arctan

�
1

L/D cosφ

�
(13)

φ = arctan

�
ψ̇V

g

�
(14)

where V = �V� is the airspeed and L/D is the lift-to-drag
ratio. In our model we have V = 15ms−1 and L/D = 30.
From the previous equations, we can notice that the entire
motion is completely defined by V and ψ. However, the
airspeed V depends mainly on the angle of attack and is
usually considered as constant during the flight. As a result,



in our model the trajectory is uniquely defined by the yaw
angle, and so the only optimization variable is ψ̇, which is
constrained by ψ̇ ∈ [ψ̇min, ψ̇max] = ∆ψmax. No assumption
has been made on the current speed, which can be also
greater than V , and hence define unreachable areas.

B. Utility function

The following step to formalize the optimization problem
is to define a utility function which incorporates the criteria
corresponding to energy and gathered information. As a third
criterion, we also included a penalization term to force the
UAVs to remain within a given region of interest, which can
be considered as a soft constraint to satisfy.

1) Energy: The first term, UE , reflects the aim of flying
and mapping at a given optimal altitude zopt, which is fixed
for every planning horizon ∆T . The gliders will thus need
to periodically exploit the updraft present into the cloud
to regain this altitude, compensating the continuous loss of
energy. Note also that the vertical currents are completely
unknown at the beginning of the mission and estimated
during the exploration by the mapping process. Formally,
we define UE as follows:

UE(dz(j)) =

�
1−

|sign(zopt − z(j)in )dzmax − dz(j)|
dzmax + |dz(j)|

�
×

×



1−
1

1 +
(zopt−z(j)

in )2

lE



 (15)

UE(dz) =
1

Nr

�

j∈[1..Nr]

UE(dz(j)) , (16)

where dz(j) and z(j)in are the total difference in altitude and
the initial altitude for the j-th glider respectively.

2) Information: The mission goal is to minimize the
uncertainty in the built map. To define an objective function,
we adopted the D-optimality criterion, as defined in eq. (7),
with samples along the trajectories of all UAVs. The resulting
value v is then normalized using the theoretical optimal value
vopt, as defined in section II-B:

UI(v) =
1

1 + (vopt−v)2

lI

. (17)

The information utility is computed for all UAVs at once,
and thus favors trajectories that are not too close, as they
would gather redundant information.

3) Boundaries: Finally, to force the gliders to remain in
a predefined region of interest, we include a term, UB , to
penalize paths that partially exit this area:

UB(nout) =
1

1 + n2
out
lB

, (18)

where nout is the number of total way-points external to the
region of interest.

All the previous terms are normalized against a known
maximum value to be Ux ∈ [0, 1] and the parameters lx are
fixed scale factors which were manually tuned. Combining

these three utility terms, the final utility function we aim to
maximize along the path is:

U =
1

3
(UE + UI + UB) . (19)

In future work it is our intention to explore also different
methods to tackle this multi-criteria optimization problems,
e.g using Multi Criteria Decision Making approaches [12].

C. Trajectory generation

To generate optimal UAVs trajectories, for each planning
horizon we consider m sections of duration dt in which the
UAVs yaw angles are constant. As a result, the trajectory for
the robot j during ∆T is described by the sequence ψ(j)

i ,
with i ∈ {1, ...,m}, and a given initial condition ψ(j)

0 .
For every ∆T , we can now formulate the trajectory

generation problem, which consists in maximizing eq. (19)
subject to the constraints:

|ψ(j)
i − ψ(j)

i−1| ≤ ∆ψmax ∀i, j . (20)

To tackle this optimization, we propose a centralized2 two-
step approach: a first phase based on a blind random search
in order to have a good trajectories initialization, followed by
a gradient ascent algorithm to optimize them. To perform the
gradient ascent we adopted a constrained version of the Si-
multaneous Perturbation Stochastic Approximation (SPSA)
algorithm [13], [14]. This algorithm ensures a faster conver-
gence to a local maximum with respect to classic gradient ap-
proximation algorithms, as for example the Finite Difference
Stochastic Approximation, where the optimization variables
are varied one at a time instead of simultaneously. At every
algorithm iteration k, the optimization variables ψ are then
updated as follows:

ψk+1 = Π(ψk + akĝ(ψk)) , (21)

where Π is a projection operator to force ψ to stay in the
feasible space, and ĝ is the gradient approximation, for which
we used the one-sided version:

ĝk(ψk) =





U(ψk+ck∆k)−U(ψk)
ck∆k1

...
U(ψk+ck∆k)−U(ψk)

ck∆kN



 (22)

To ensure the convergence of the algorithm, a simple and
popular distribution for the random perturbation vector ∆k

is the symmetric Bernoulli ±1 distribution, and the standard
conditions on the gain sequences ak, ck are:

ak > 0, ck > 0, ak → 0, ck → 0,
∞�

k=0

ak = ∞,
∞�

k=0

a2k
c2k

< ∞ . (23)

2Note that the optimization is achieved across the joint space of all UAVs.
Even though this would scale poorly with the number of robots, in our
application we do not deal with large swarms, but only small fleets of
typically 3-5 aircrafts.



The first phase of our optimization process, based on a
blind random search, is instead achieved creating a set of fea-
sible trajectories obtained by a constrained random sampling
of directions angles ψi, and exploiting the approximated field
generated by the GP regression. The trajectories are then
evaluated using the utility function U and the best set of
Nr trajectories is the initial configuration for the gradient
ascent phase. The presence of the first sampling step is due
to the dependence of the gradient-based solution on the initial
configuration. In this way, even though we only have local
convergence guarantees, the probability of getting stuck in
local maxima far from the global optimum is reduced.

Figure 3 shows some trajectories obtained for a simple
two-dimensional case where fictitious current field and utility
maps has been defined to make the results easy to visualize
and understand. Here the optimization function is given by
the sum of the utility collected along the trajectory.

Fig. 3. Left: one UAV is moving in a 2D environment where a scalar
utility map and a wind field are defined. The trajectories initialized by a
blind search at every planning-horizon ∆T are shown in magenta, and the
final trajectories provided by the SPSA algorithm are in red. Right: 3 UAVs
are steered in the same environment to maximize the total utility (only the
final trajectories are shown).

IV. RESULTS

Working with meteorologists, we use realistic meso-scale
atmospheric simulations as settings of our experiments.
These simulations are provided by the CNRM-GAME lab3

and generated using the Meso-NH4 atmospheric model.
These micro-physics simulations use preset initial conditions
and let field of clouds evolve over the course of a day. The
simulations provided have a 10m spatial resolution and 1 s
time resolution, over a field of 4 × 4 km2, and up to an
altitude of 3 km. A typical cumulus cloud field as generated
by the Meso-NH simulation is shown in Fig. 4. Each time-
frame occupies about 700Mb, one hour over 2.5Tb. Due
to technical restrictions, we currently use only frozen time-
frame (one single second) to test our models.

The 3D wind produced by the simulation is the “ground
truth”. It is used to simulate data acquisition for the mapping
process, and as an input to the flight simulator.

To test our mapping and optimization scheme, we firstly
simulate one single UAV flying in the vector field generated
by a Meso-NH simulation at a given time, i.e. it is not varying

3http://www.cnrm.meteo.fr/?lang=en
4http://mesonh.aero.obs-mip.fr

Fig. 4. View from above of a cumulus cloud field generated by a Meso-NH
simulation (vertical axis stretched). Clouds are identified by the presence of
liquid water (concentration in shades of gray), isometric curves of vertical
0.5ms−1 upwind on the 1 km altitude plane are drawn in orange.

in time. The simulated flight starts from an altitude of 900m
already in an area that contains vertical currents. The optimal
altitude zopt for the exploration phase is set at 1000m. Fig. 5
shows the 3D trajectory of the glider and the behavior of its
height of flight as a function of time. The glider remains into
the updraft until the optimal altitude is reached, it then starts
to explore more distant areas, before coming back again so
as to regain the required altitude and pursue the exploration.
The result of the GP regression is presented in Fig. 6. The
map of the true vertical wind is compared with the predicted
one obtained using measurements taken along the trajectory.
Additionally, absolute error and predicted variance are also
shown: they show the ability of the model to estimate well
the wind around the explored area.

Fig. 5. Top: trajectory executed by a single UAV in a 3D currents field.
Only the vertical component of the wind is visualized (but the flight is also
affected by horizontal winds). Bottom: evolution of the UAV altitude during
time.

Fig. 7 presents the results for a scenario that involves
3 UAVs, with the same initial conditions as for the single
UAV scenario (the 3 UAVs start from the same location).
The UAVs exploit the vertical currents to reach the required
altitude, where they stabilize. The maximization of the infor-
mation gathered by the fleet lead also to a spread of the UAVs



Fig. 6. Maps showing the true and predicted vertical wind, the absolute
error and its predicted variance. Black dots are measurements taken into
account in the model for the prediction.

over the area of interest to avoid overlapping information5.

Fig. 7. Top: same scenario as in Fig. 5, but with three UAVs exploring
the environment, all with the same required optimal altitude.

V. CONCLUSIONS AND FUTURE WORK

This paper presented first results of a challenging project
whose objective is to navigate a fleet of UAVs within low-
altitude clouds to optimally gather atmospheric data, while
exploiting air flows to achieve enduring flights. An approach
to map atmospheric variables based on local measurements is
integrated with a planning algorithm to generate trajectories
which aims at simultaneously maximizing the accuracy on
the map and optimize an energetic criterion. The results

5No collision avoidance check has been implemented so far, this will of
course be included for future experimental tests

obtained in simulation show the effectiveness of the approach
for both a single UAV and a multi-UAV system.

We aim to extend this work along several directions.
Firstly, considering a moto-glider rather than a glider, includ-
ing a new energetic consumption model, and time-varying
currents will better match the future experimental phase.
Then, beyond the local planning presented in this paper, the
design of a global mission which combines the coarse and
local cloud models will be crucial to reach the project’s goals.
A global planner will also include total energy information to
ensure that a safe return of the UAVs to ground is possible at
every moment. The mapping approach will also benefit from
the integration of a global cloud model, and will consider
other variables than wind. Finally, we will consider other
planning requirements during the data sampling mission,
such as synchronized observations in distant areas or for-
mation specifications within the fleet.
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