

Platform of Reliability tOOls for Failure analysis dedicated to wide bandgap devices

## Verrous scientifiques dans l'étude des interrupteurs de puissance grand-gap - outils et méthodes d'analyses requis

David Trémouilles

COS PROOF

4 février 2021





PROJET COFINANCÉ PAR LE FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL



#### L'électronique de puissance, un domaine clé

## Forte demande sociétale en matière d'environnement et d'énergies renouvelables

- COP 21 (dec.2015 Paris) « A Global Climate Agreement Has Been Reached »
- Horizon 2020 (H2020) & Horizon 2030 (H2030)
  - 20% (40%) reduction of GHG emission in 2020 (2030)
  - 20% (30%) energy efficiency improvement in 2020 (2030)
  - 20% (27%) increase in the part of renewable energies in 2020 (2030)
- Croissance économique des pays en développements
- Électrification des transports et du chauffage
- Aujourd'hui 40% de la consommation énergétique est électrique, 60 % d'ici 2040



Source: OECD/IEA World Energy Outlook 2009 - Reference Scenario

 Des interrupteurs haute tension, haute fréquence, haute température et faibles pertes sont nécessaires pour une gestion optimisée de l'énergie



Leading AC Backup Technology

## LITTLE BOX CHALLENGE How we responded ...



### Interrupteurs grand-gap : key enabling technologies

- Faible résistance à l'état passant pour une **forte tension** bloquée
- Composant haute tension compact, permet des commutations rapides, pertes réduites
- Fonctionnement permis à plus haute température
- Pour des bénéfices majeurs au niveau des systèmes
  - → Conversion plus efficace
  - → Passifs (capacité, inductance) de beaucoup plus faible encombrement
  - → Taille et masse réduites pour les convertisseurs

Enabler of innovative systems Huge material and energy savings

### Interrupteurs grand-gap

- Aujourd'hui des bases solides,
- mais des champs encore peu explorés en termes

→ de robustesse,

→ de fiabilité et

de compréhension fine des mécanismes

• En quoi les grands-gap seraient-il différents du silicium ?

Toujours des semi-conducteurs donc même physique, non ?

→Oui, mais des propriétés différentes et...



#### Grand-Gap : De plus en plus de place pour les pièges



### Plan

- R<sub>on</sub> dynamique
- Instabilité de la tension de seuil
- Mécanismes physiques spécifiques



## R<sub>ON</sub> dynamique



 Immédiatement après le passage à l'état ON, la résistance à l'état passant (RON) peut rester relativement haute pendant plusieurs microsecondes (voir plus...)



### Banc Ron dynamique LAAS aujourd'hui



# Outils numériques pour l'analyse des variations et extractions des énergies d'activation



![](_page_9_Figure_2.jpeg)

Utilisés aussi avec la méthode de stimulation optique

### Plan

- R<sub>on</sub> dynamique
- Instabilité de la tension de seuil
- Mécanismes physiques spécifiques

![](_page_10_Figure_4.jpeg)

### Instabilité du Vth dans les MOSFET SiC

- Instabilité liée aux pièges proches de l'interface SiC / oxyde de grille
- Engendre des variations de Vth de plusieurs centaines de mV en fonction de l'historique de polarisation de la grille
- Cette variation peut être étudiée grâce à des **mesures** :
  - → De **cycles d'hystérésis** du Vth ou de la capacité de grille
  - Temporelles de conductance (similaire à Ron dynamique)
  - → Temporelles de variation de capacité (similaire à DLTS)

![](_page_11_Picture_7.jpeg)

Obtention d'une mesure Vth robuste pour suivre les études de fiabilité – utilisation d'un pré-conditionnement

![](_page_12_Figure_1.jpeg)

Projet SiCRET Post-Doc Dany HACHEM

- L'utilisation de la mesure de Vth pour le suivi des dégradations dans une étude de fiabilité requiert une mesure insensible à l'historique de polarisation
- Mise au point d'une séquence au timing parfaitement maîtrisé incluant un pré-conditionnement
- Mesure optimisée : variation de Vth de +/-5mV
- Mesure sans précaution : variation de +/-500mV

#### Plan

- R<sub>on</sub> dynamique
- Instabilité de la tension de seuil
- Mécanismes physiques spécifiques

![](_page_13_Picture_4.jpeg)

## Des qualités exceptionnelles pour l'électronique de puissance

![](_page_14_Figure_1.jpeg)

#### Fonctionnement pour la haute fréquence

Mais qui induisent des mécanismes (de défaillances) qui peuvent être différents de ceux dont on est habitué dans le silicium.

LAAS

CNRS

PRÖØF

### Étude robustesse ESD de composants SiC

![](_page_15_Picture_1.jpeg)

Thèse Tanguy Phulpin (2016) - LIA Widelab

![](_page_15_Picture_3.jpeg)

- Robustesse intrinsèque faible
- Deux types de défaut, fonction de la géométrie et de la technologie du composant

![](_page_15_Picture_6.jpeg)

### 1<sup>er</sup> type de défaut : claquage du diélectrique

![](_page_16_Picture_1.jpeg)

Photographie au MEB après une coupe FIB sur un MR défaillant

• Via

- Metal 1
- Metal 2
- contact

#### Métal de drain au fort potentiel

![](_page_16_Figure_8.jpeg)

Body au plus faible potentiel

![](_page_16_Picture_10.jpeg)

#### Le SiO2 ne peut soutenir le champ appliqué

Dégradation de l'oxyde suite à un trop fort champ électrique

![](_page_17_Figure_2.jpeg)

• Champ de rupture du SiO<sub>2</sub> à RT autour de 5 MV/cm<sub>,</sub> d=0,5  $\mu$ m

AAS.

La tension soutenue par le diélectrique autour de 250V

#### 2<sup>nd</sup> type de défaut : sublimation du SiC

PROB

LAAS CNRS

![](_page_18_Picture_1.jpeg)

#### **2<sup>nd</sup> type de défaut : sublimation du SiC**

![](_page_19_Picture_1.jpeg)

#### 2<sup>nd</sup> type de défaut : sublimation du SiC

![](_page_20_Picture_1.jpeg)

### **Observation d'une « fuite de grille »**

![](_page_21_Figure_1.jpeg)

- Appariation d'un courant de grille pendant le court-circuit
  - Il dépend de la polarisation de la grille (Vgs)
  - Il dépend de l'échauffement interne du composant (Vds) : Notion d'énergie "seuil" (ou température seuil)

![](_page_21_Picture_5.jpeg)

[1] F. Boige et F. Richardeau, « Gate leakage-current analysis and modelling of planar and trench power SiC MOSFET devices in extreme short-circuit operation », *Microelectron. Reliab.*, vol. 76-77, nº Supplement C, p. 532-538, sept. 2017. 5

22

22

### Origine de la Fuite de grille en CC

![](_page_22_Figure_1.jpeg)

Origine purement thermique du courant (Émission Schottky)

### Étude de barreaux de diamant dopé Bore

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

# **BV en fonction du dopage et de la distance inter-électrodes**

![](_page_24_Figure_1.jpeg)

LAAS

### Conclusion – spécificités des grand-gaps

- Certaines caractéristiques électriques distinctes / silicium
  Phénomènes électriques dynamiques liés à la présence de pièges
  - Ron dynamique,
  - Instabilité de la tension de seuil,
  - (qui peuvent aussi brouiller le suivi du vieillissement)
- Régimes extrêmes de fonctionnement
  Certains phénomènes physiques sensiblement différents de ceux du silicium
  - Report des contraintes sur les couches supérieures
  - Hautes températures et forts champs électriques
  - $\checkmark$  Pas de fusion, mais sublimation
- Besoin d'outils de caractérisations adaptés PRODUCE

\*\* Liste non exhaustive : autres aspects ?

### Repousser les limites du silicium en température et tenue en tension

![](_page_26_Figure_1.jpeg)

27

### **Repousser les limites du silicium : surface réduite à Ron et BV identique**

![](_page_27_Figure_1.jpeg)

28