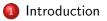
Adaptive control for time-varying systems Internship of Master 2 Robotic : Decision and Control

### LAHANA Yoni <sup>1</sup>

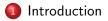
### Internship supervisor : Dimitri Peaucelle<sup>2</sup> Teaching tutor : Christophe Louembet<sup>1,2</sup>

<sup>1</sup>University Toulouse III - Paul Sabatier

<sup>2</sup>LAAS - CNRS


22th September 2020






| introduction Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | I hesis |
|-----------------------------|------------------|----------------------------------------|------------|------------|---------|
| 0000 00000000               | 00000000         | 000000000                              | 000        | 0          | 000     |

### Table of contents



- 2 Studied system and first static correction
- Implementation of the adaptive control
- Improvement of the adaptive controller
- Impact of the parameters of the control law
- 6 Conclusion
- 🗿 About the thesis

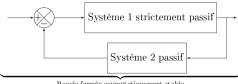


- 2 Studied system and first static correction
- 3 Implementation of the adaptive control
- Improvement of the adaptive controller
- 5 Impact of the parameters of the control law
- 6 Conclusion
- 7 About the thesis

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 0000000          | 000000000                              | 000        | 0          | 000    |
|              |                |                  |                                        |            |            |        |

#### Introduction Internship's objectives

- Thesis from
  - Alexandru-Razvan Luzi<sup>1</sup>
  - Harmonie Leduc <sup>2</sup>
- Applied to a time-varying system
- Understand behaviors of the adaptive control


<sup>&</sup>lt;sup>1</sup>Alexandru-Razvan Luzi. *Commande variante dans le temps pour le contrôle d'attitude de satellites*. PhD thesis, 2014.

<sup>&</sup>lt;sup>2</sup>Harmonie Leduc. *Contrôle adaptatif robuste. Application au contrôle d'attitude de satellites.* PhD thesis, 2017.

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 0000000          | 000000000                              | 000        | 0          | 000    |

## Origins of adaptive control Bibliographic review

- Appeared in the 50's <sup>3</sup>
- Based on systems' passivity



Boucle fermée asymptotiquement stable

<sup>&</sup>lt;sup>3</sup>Karl Aström. History of Adaptive Control. In John Baillieul and Tariq Samad, editors, *Encyclopedia of Systems and Control*, pages 1-9. Springer, London, 2014.

| tudied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis                                                                                      |
|---------------|------------------|----------------------------------------|------------|------------|---------------------------------------------------------------------------------------------|
| 000000000     | 0000000          | 000000000                              | 000        | 0          | 000                                                                                         |
|               |                  |                                        |            |            | tudied system Adaptive control Improvement of the adaptive controller Parameters Conclusion |

#### Introduction Bibliographic review

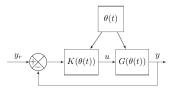



Figure: Diagram of gain scheduling

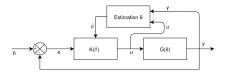



Figure: Diagram of indirect adaptive control

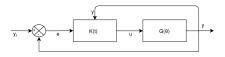
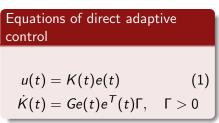




Figure: Diagram of direct adaptive control





### 2 Studied system and first static correction

- 3 Implementation of the adaptive control
- Improvement of the adaptive controller
- Impact of the parameters of the control law
- 6 Conclusion
- 7 About the thesis

| Introduction Studied syste | m Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|----------------------------|--------------------|----------------------------------------|------------|------------|--------|
| 0000 0000000               | o 0000000          | 000000000                              | 000        | 0          | 000    |

## Studied system Presentation

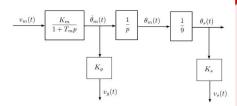



Figure: Block diagram of DC motor

#### Exogenous signals :

• Reference :  $y_r = \begin{bmatrix} K_s \pi \\ 0 \end{bmatrix}$ 

White noise measure :  
$$b(t) : P(b(t)) = 10^{-3}$$

• Disturbance : p(t) = 0.5H(t)

| Introduction S | tudied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|----------------|---------------|------------------|----------------------------------------|------------|------------|--------|
| 0000 C         | 000000000     | 00000000         | 000000000                              | 000        | 0          | 000    |

### Studied system Presentation

#### State space

$$x(t) = \begin{bmatrix} v_{s}(t) \\ v_{g}(t) \end{bmatrix}$$

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} 0 & \frac{K_{s}}{9K_{g}} \\ 0 & \frac{-1}{T_{m}} \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ \frac{K_{g}K_{m}}{T_{m}} \end{bmatrix} v_{m}(t) \qquad (2)$$

$$y(t) = x(t)$$

### Equilibrum points

$$\dot{x} = \mathbf{0} \Leftrightarrow \begin{cases} \text{Null speed} \\ \text{Null engine command} \\ \text{Constant position} \end{cases}$$

(3)

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 00000000         | 000000000                              | 000        | 0          | 000    |

### First simulation

Correction by poles placement

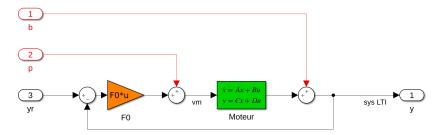



Figure: DC motor controlled by state feedback

$$rt_{5\%} = 2s = \frac{-3}{Re(eig_{A_{cl}})} = -1.5$$
 (4)

$$eig_{des} = \{-1.5, -1.6\}$$
  
 $\Rightarrow F_0 = [0.0718 - 0.285]$  (5)

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 0000000          | 000000000                              | 000        | 0          | 000    |

#### First simulation Correction by poles placement

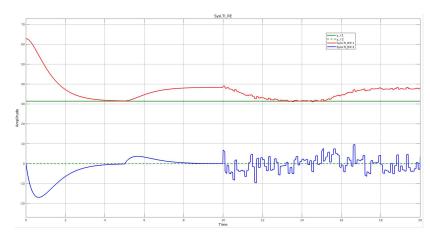



Figure: Motor controlled by state feedback (speed x10)

IntroductionStudied system<br/>000000000Adaptive controlImprovement of the adaptive controller<br/>000000000Parameters<br/>000Conclusion<br/>000Thesis<br/>000

### Modification of engine's model

Varying parameter  $\theta$ 

Modification of engine's model

$$x(t) = \begin{bmatrix} v_{s}(t) \\ v_{g}(t) \end{bmatrix}$$
$$\begin{pmatrix} \dot{x}(t) = \begin{bmatrix} 0 & \frac{K_{s}}{9K_{g}} \\ 0 & \frac{-1}{T_{m}} \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ \frac{K_{g}K_{m_{u}}(t)}{T_{m}} \end{bmatrix} v_{m}(t) \qquad (6)$$
$$y(t) = x(t)$$

$$\theta = K_{m_u}(t) = K_m(1 + \alpha sin(\omega t))$$
(7)

$$I_{\mathcal{K}_{m_u}} = [\mathcal{K}_m(1-\alpha) \quad \mathcal{K}_m(1+\alpha)] \Rightarrow |\alpha| < 1$$
(8)

$$\alpha = 0.75$$
  $\omega = 2\pi$  12/41

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 00000000000    | 00000000         | 000000000                              | 000        | 0          | 000    |

#### Study of stability Correction by poles placement

#### Definition : Quadratic stability <sup>4</sup>

The linear system

$$\dot{x}(t)=A( heta(t))x(t), \quad heta(t)\in \Theta$$

is quatrically stable if, and only if, there exists a matrix  $P\in\mathbb{S}^+$  such that

$$A(\theta)^T P + PA(\theta) < 0, \forall \theta \in \Theta$$

Quadratic stability implies robust stability, proved with the Lyapunov function  $V(x) = x^T P x$ 

<sup>&</sup>lt;sup>4</sup>B. R. Barmish. Necessary and sufficient conditions for quadratic stabilizability of an uncertain system. Journal of Optimization Theory and Applications, 46(4) :399-408, August 1985.

| Introduction Studied | system Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|----------------------|-------------------------|----------------------------------------|------------|------------|--------|
| 00000 00000          | 0000000 0000000         | 00000000                               | 000        | 0          | 000    |

### Study of stability Correction by poles placement

Theorem : Quadratic stability of a polytope <sup>5</sup>

Consider the following polytope with  $\bar{\nu}$  vertices :

$$A(\theta) = \sum_{\nu=1}^{\nu} \theta_{\nu} A^{[\nu]}, \quad \theta_{\nu} \ge 0, \quad \sum_{\nu=1}^{\nu} \theta_{\nu} = 1$$
(9)

The system

$$\dot{x}(t) = A(\theta(t))x(t)$$
(10)

is quadratically stable if, and only if,

$$\forall v \in \{1 \dots \bar{v}\} : A^{[v]^T} P + P A^{[v]} < 0, P > 0$$
 (11)

<sup>5</sup>Junior de Souza Leite. *Sur la stabilité robuste des systèmes linéaires : une approche par des fonctions dépendantes de paramètres.* PhD thesis, 2005.

| Introduction Studied syste              | n Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|-----------------------------------------|--------------------|----------------------------------------|------------|------------|--------|
| 000000000000000000000000000000000000000 | 0 0000000          | 000000000                              | 000        | 0          | 000    |

### Study of stability Correction by poles placements

### Vertices of the polytope

$$B(t) = Co\{\underline{B}, \overline{B}\}$$

$$\begin{cases} \dot{x}(t) = (\underline{A} - \underline{B}F_0) x(t) - \underline{B}F_0 y_r(t) \\ \underbrace{A_{cl}}_{y(t) = x(t)} x(t) - \overline{B}F_0 y_r(t) \\ (13) \end{cases} \begin{cases} \dot{x}(t) = (\underline{A} - \overline{B}F_0) x(t) - \overline{B}F_0 y_r(t) \\ \underbrace{A_{cl}}_{\overline{A_{cl}}} x(t) - \overline{B}F_0 y_r(t) \\ y(t) = x(t) \end{cases}$$

#### Solve LMI

$$\frac{A_{cl}}{\overline{A_{cl}}}^{T}P + P\underline{A_{cl}} < 0$$

$$\frac{A_{cl}}{\overline{A_{cl}}}^{T}P + P\overline{A_{cl}} < 0$$

$$P = \begin{bmatrix} 4.0559 & 9.5941 \\ 9.5941 & 45.1547 \end{bmatrix}$$

$$P > l_{2}$$
(16)

(12)

IntroductionStudied system<br/>000000000Adaptive controlImprovement of the adaptive controller<br/>000000000Parameters<br/>000Conclusion<br/>000Thesis<br/>000

## LPV motor controlled with poles placement $\ensuremath{\mathsf{Correction}}$ by poles placement

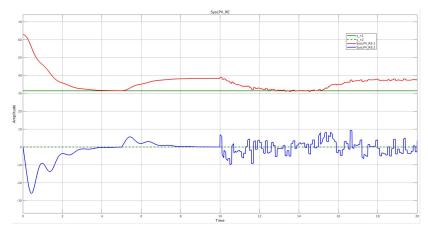



Figure: LPV engine controlled by state feedback (speed x10)



### 2 Studied system and first static correction

### Implementation of the adaptive control

- Improvement of the adaptive controller
- Impact of the parameters of the control law
- 6 Conclusion
- 7 About the thesis

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 0000000          | 000000000                              | 000        | 0          | 000    |

### Implementation of the adaptive control

### Equations of the adaptive command law

$$e(t) = y_r(t) - y(t)$$
  

$$u(t) = K(t)e(t)$$
  

$$\dot{K}(t) = Ge(t)e(t)^T\Gamma, \quad \Gamma > 0$$
(17)

IntroductionStudied system<br/>000000000Adaptive control<br/>000000000Improvement of the adaptive controller<br/>0000000000Parameters<br/>000Conclusion<br/>000Thesis<br/>000

## Implementation of the adaptive control Notion of passivity

Theorem : Passivity of squared systems <sup>6</sup>

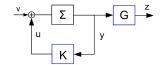
Consider the following linear system

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$
(18)

This system is strictly passive if it exists  $P \in S^+$  and Q > 0 such as the following LMI is verified :

$$\begin{bmatrix} A^{\mathsf{T}}P + PA + Q & PB - C^{\mathsf{T}} \\ B^{\mathsf{T}}P - C & 0 \end{bmatrix} \le 0$$
(19)

<sup>6</sup>Alexandru-Razvan Luzi. *Commande variante dans le temps pour le contrôle d'attitude de satellites*. PhD thesis, 2014.


| Introduction S | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|----------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000           | 0000000000     | 0000000          | 000000000                              | 000        | 0          | 000    |

## Implementation of the adaptive control Notion of passivity

#### Definition : G-passivity <sup>7</sup>

Consider the linear system (18). This system is G-passive if, for a given matrix  $G \in \mathbb{R}^{m \times p}$ , there exists two matrices P > 0 and Q > 0 such that :

$$\begin{bmatrix} A^{T}P + PA + Q & PB - C^{T}G^{T} \\ B^{T}P - GC & 0 \end{bmatrix} \leq 0$$
(20)  
$$\Leftrightarrow \begin{cases} A^{T}P + PA + Q \leq 0 \\ PB = C^{T}G^{T} \end{cases}$$
(21)



<sup>&</sup>lt;sup>7</sup>A L Fradkov. Design of an adaptive system for stabilization of a linear dynamic plant. page 9, 1974. 20/41

IntroductionStudied system<br/>000000000Adaptive controlImprovement of the adaptive controller<br/>000000000ParametersConclusionThesis<br/>000

## Implementation of the adaptive control Notion of passivity

$$A = \begin{bmatrix} 0 & \frac{K_s}{9K_F} \\ 0 & \frac{-1}{T_m} \end{bmatrix}$$
(22)

$$\begin{cases} (A - BF_0)^T P + P(A - BF_0) + Q \le 0\\ PB = C^T G^T \end{cases}$$
(23)

$$G = B^T P \tag{24}$$

#### Study of stability

$$x_{a} = \begin{pmatrix} v_{s} \\ v_{g} \\ vec(\mathcal{K}) \end{pmatrix}$$
(25)

 $V(x_a) = x^T P x + Tr[(K - F_0)\Gamma^{-1}(K - F_0)^T]$  (26)

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 00000000         | 000000000                              | 000        | 0          | 000    |

## Implementation of the adaptive control Simulation of the LTI system

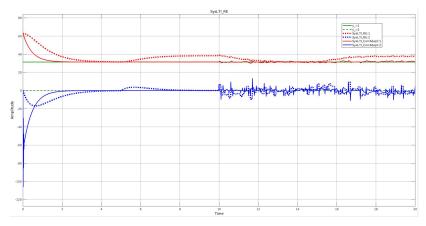



Figure: LTI system controlled by the adaptive controller, compared with the state feedback controller

IntroductionStudied system<br/>000000000Adaptive controlImprovement of the adaptive controller<br/>000000000Parameters<br/>000Conclusion<br/>000Thesis<br/>000

## Implementation of the adaptive control Simulation of the LTI system

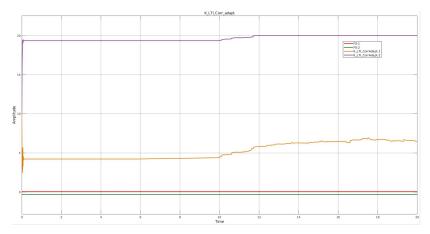



Figure: Evolution of K(t)

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 0000000          | 000000000                              | 000        | 0          | 000    |

### Implementation of the adaptive control

Time-varying parameter system

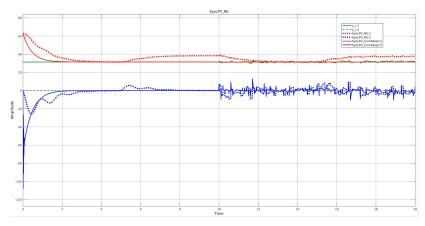


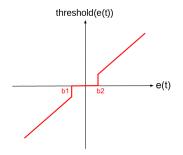

Figure: LPV system controlled by adaptive control law, compared with state feedback controller



- 2 Studied system and first static correction
- 3 Implementation of the adaptive control
- Improvement of the adaptive controller
- 5 Impact of the parameters of the control law
- 6 Conclusion
- 7 About the thesis

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 0000000          | 00000000                               | 000        | 0          | 000    |

### Improvement of the adaptive controller


Rejection of the noise measurement

Adding a threshold function

$$e(t) = y_r(t) - y(t)$$
  

$$u(t) = K(t)e(t)$$
  

$$\dot{K}(t) = G Threshold(e(t))e(t)^T \Gamma, \quad \Gamma > 0$$
(27)



IntroductionStudied system<br/>000000000Adaptive controlImprovement of the adaptive controller<br/>000000000Parameters<br/>000ConclusionThesis<br/>000

## Lyapunov function for the case 1 $_{\text{LTI system}}$

Case 1 : 
$$|e(t)| \ge \text{ threshold} \Rightarrow Threshold(e(t)) = e(t)$$
  

$$\begin{cases} \dot{K}(t) = Ge(t)e^{T}(t)\Gamma \\ v_{m}(t) = K(t)e(t) \\ \dot{x}(t) = (A - BK(t))x(t) + BK(t)y_{r}(t) \end{cases}$$
(28)

$$x_{a} = \begin{pmatrix} v_{s} \\ v_{s} \\ vec(K) \end{pmatrix}$$
(29)

$$V(x_{a}) = x^{T} P x + Tr[(K - F_{0})\Gamma^{-1}(K - F_{0})^{T}], \quad \Gamma^{-1} > 0, \quad P > 0$$
(30)
$$\dot{V}(x_{a}) = 2x^{T} P \dot{x} + 2Tr[(K - F_{0})\Gamma^{-1}(K - F_{0})^{T}]$$

$$= 2x^{T} P (A - BF_{0})x$$
(31)

27 / 41

IntroductionStudied system<br/>000000000Adaptive controlImprovement of the adaptive controller<br/>000000000Parameters<br/>000ConclusionThesis<br/>000

## Lyapunov function for the case 2 LTI system

Case 2 : 
$$|e(t)| < \text{threshold} \Rightarrow Threshold(e(t)) = 0$$

$$\begin{cases} \dot{K}(t) = 0\\ v_m(t) = Ke(t)\\ \dot{x}(t) = (A - BK)x(t) + BKy_r(t) \end{cases}$$
(32)

$$V(x_a) = x^T P x + Tr[(K - F_0)\Gamma^{-1}(K - F_0)^T], \quad \Gamma^{-1} > 0, \quad P > 0$$
(33)

$$\dot{V}(x_a) = 2x^T P \dot{x} + 2Tr[(K - F_0)\Gamma^{-1}(K - F_0)^T]$$
  
=  $2x^T P(A - BK)x$  (34)

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 00000000         | 00000000                               | 000        | 0          | 000    |

## $\begin{array}{c} \mbox{Lyapunov function for the case 2} \\ \mbox{Case of the LTI system} \end{array}$

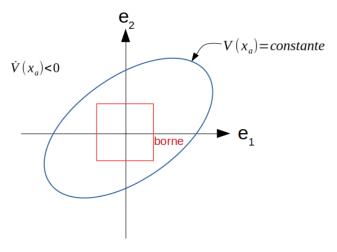



Figure: Lyapunov's equipotential

### Improvement of the adaptive controller

Modification of the control law structure

#### Adding the $\sigma$ -modification

$$\begin{cases} e(t) = y_r(t) - y(t) \\ v_m(t) = \mathcal{K}(t)e(t) \\ \dot{\mathcal{K}}(t) = (Ge(t)e^T(t) - \sigma(\mathcal{K}(t) - F_0))\Gamma, \quad \Gamma > 0, \quad \sigma > 0 \end{cases}$$
(35)

IntroductionStudied system<br/>000000000Adaptive controlImprovement of the adaptive controller<br/>0000000000Parameters<br/>000Conclusion<br/>000Thesis<br/>000

## Improvement of the adaptive controller Equilibrium point of $\dot{K}(t)$

$$\dot{K}(t) = (Gee^{T} - \sigma(K_{eq} - F_{0}))\Gamma, \quad \Gamma > 0, \quad \sigma > 0$$

$$e(t) = y_{r}(t) - y(t) + p(t)$$
(36)
$$If \ p(t) = 0 \qquad If \ p(t) \neq 0$$

$$\dot{K}(t) = 0 \qquad \dot{K}(t) = 0$$

$$\Leftrightarrow \sigma(K_{eq} - F_{0})\Gamma = 0 \qquad \Leftrightarrow K_{eq} = \sigma^{-1}Gpp^{T} - F_{0}$$
(37)

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 0000000          | 00000000000                            | 000        | 0          | 000    |

### $\sigma \text{-modification} \\ \text{Use on the LTI system} \\$

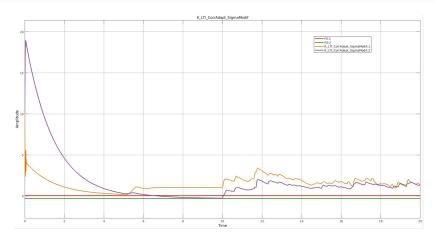



Figure: Evolution of K(t) from the adaptive controller with  $\sigma$ -modification

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 0000000          | 000000000                              | 000        | 0          | 000    |

#### $\sigma$ -modification Use on the LTI system

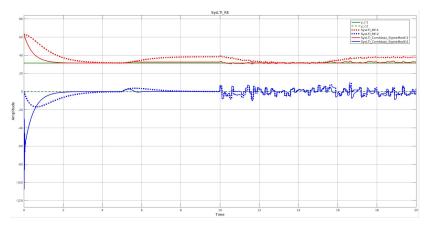



Figure: Simulation of the LTI system controlled with adaptive control law with  $\sigma$ -modification, with speed x10

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 0000000          | 00000000                               | 000        | 0          | 000    |

### $\sigma \text{-modification} \\ \text{Use on the LPV system} \\$

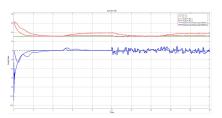



Figure: Simulation of the LPV system controlled with adaptive control law with  $\sigma$ -modification, with speed x10

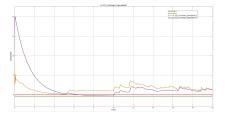
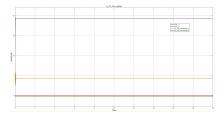
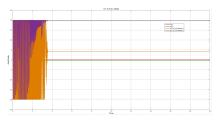



Figure: K(t) from the adaptive controller with  $\sigma$ -modification




- 2 Studied system and first static correction
- 3 Implementation of the adaptive control
- Improvement of the adaptive controller
- Impact of the parameters of the control law
- 6 Conclusion


#### 7 About the thesis

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 00000000         | 000000000                              | 000        | 0          | 000    |

### Impact of the parameters of the control law



**Figure**: K(t) with  $\Gamma = 0.1$ 



**Figure**: K(t) with  $\Gamma = 100$ 

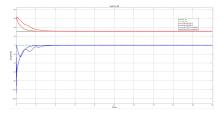



Figure:  $y(t)_{LPV_{CorrAdapt}}$  with  $\Gamma = 0.1$ 

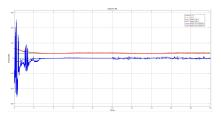



Figure:  $y(t)_{LPV_{CorrAdapt}}$  with  $\Gamma = 100_{36/41}$ 

| Introduction | Studied system | Adaptive control | Improvement of the adaptive controller | Parameters | Conclusion | Thesis |
|--------------|----------------|------------------|----------------------------------------|------------|------------|--------|
| 0000         | 0000000000     | 00000000         | 000000000                              | 000        | 0          | 000    |

### Impact of the parameters of the control law

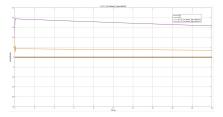



Figure: K(t) with  $\sigma = 0.1$ 

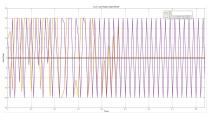



Figure: K(t) with  $\sigma = 10^3$ 

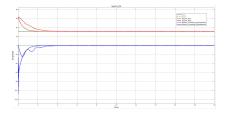



Figure:  $y(t)_{LPV_{CorrAdapt+\sigma modif}}$  with  $\sigma = 0.1$ 

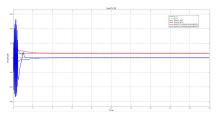



Figure:  $y(t)_{LPV_{CorrAdapt+\sigma modif}}$  with  $\sigma = 10^3 \frac{37}{41}$ 

|  | Studied system | Improvement of the adaptive controller | Conclusion<br>• | Thesis<br>000 |
|--|----------------|----------------------------------------|-----------------|---------------|
|  |                |                                        |                 |               |

### Conclusion

- First static correction
- Addition of a time-varying parameter
- Implementation of the adaptive control law
- Improvement of the adaptive control law
- Study of the variation of parameters

#### Outlooks

- Different frequencies for sine wave in  $K_{m_u}(t)$
- Add integral effect to cancel static error
- $V(x_a, \theta) = x^T P(\theta) x + Tr[(K F_0(\theta))\Gamma^{-1}(K F_0(\theta))^T]$

|  | Studied system | and the second second second | Improvement of the adaptive controller | Conclusion<br>O | Thesis<br>●00 |
|--|----------------|------------------------------|----------------------------------------|-----------------|---------------|
|  |                |                              |                                        |                 |               |

### Two firsts thesis

- Alexandru-Razvan Luzi (2014) : *Time-varying control for* satellite attitude control
  - Replace the current commutation control law with adpative controllers
  - Avoid saturation of the controller
- Harmonie Leduc (2017) : *Robust adaptive control. Application to satellite attitude control* 
  - Reinforce previous results with robustness proofs
  - Only for constant bounded parameters

|  | Studied system | and the second sec | Improvement of the adaptive controller | Parameters<br>000 | Thesis<br>0●0 |
|--|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|---------------|
|  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                   |               |

### About the thesis

# Adaptive control robust to time-varying parameters for satellite attitude control

Supervisor : Dimitri Peaucelle

Objective : Design theoretical and practical frame of adaptive control laws for satellite attitude control, robust to continuous or discontinuous temporal variations of parameters

## Thanks for your attention