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I) Examples and definition
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Ψ is the density of probability of presence of the electron:

p([r1, r2]) = 〈p, 1[r1,r2]〉 =

∫ +∞

0

1[r1,r2](r) Ψ(r)dr =

∫ r2

r1

Ψ(r)dr .
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p({a0}) = 〈p, 1{a0}〉 =

∫ a0

a0

Ψ(r)dr = 0, p(R+ \ {a0}) = 1.
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〈p, 1[−5,−1]〉 = 〈p, 1[28,32]〉 = 〈p, 1[a,a+4]〉 ∀a ∈ R.
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Leb[− 1
2
, 1

2
]([a, b]) =

∫ b

a

1[− 1
2
, 1

2
](x)dx =

∫ 1/2

−1/2

1[a,b](x)dx .
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]([a, b]) = Leb[− 1

2
, 1

2
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∀a, b, c/ −1
2 6 a, a + c , b, b + c 6 1
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∫ 1/2
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pn([a, b]) = 〈 1
2n

Leb[−n,n], 1[a,b]〉 = 〈 1
2n
1[−n,n], 1[a,b]〉

=

∫
R

1[a,b](x)
1

2n
1[−n,n](x)dx .

x

1
2n
1[−n,n](x)

p−n p
n

1
2n

pn([a, b]) = pn([a + c , b + c]) ∀a, b, c/ − n 6 a, a + c , b, b + c 6 n.



Examples and definition The Cabinet of curiosities of Pr. Lebesgue

5/16

Take B a σ-algebra on Ω (the elements of B are subsets of Ω).

definition

p : B → [0, 1] is a probability on (Ω,B) if

p(Ω) = 1

p

(⊔
i∈N

Ai

)
=
∑
i∈N

p(Ai) for (Ai)i∈N ∈ BN mutually

incompatible events.

definition

µ : B → [0,+∞] is a (positive) measure on (Ω,B) if

µ(∅) = 0

µ

(⊔
i∈N

Ai

)
=
∑
i∈N

µ(Ai) for (Ai)i∈N ∈ BN mutually disjoint

subsets of Ω.
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Examples of borel measures on R:

Leb[0,1], measure of probability with density 1[0,1].∫
R
1[0,1](x)dx = 1.

δa, measure of probability with no density. δa(R) = δa({a}) = 1,
the real a is an atom for δa.

N (m, σ2), measure of probability with density

g : x 7→ 1
σ
√

2π
exp
(
− (x−m)2

2σ2

)
.
∫
R
g(x)dx = 1.

LebR, measure with density 1. LebR(R) =
∫
R

1dx = +∞.

Why can we not build a uniform probability on R?
- This is a property of the Lebesgue measure.
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Why can we not build a uniform probability on R?
This is due to a property of the Lebesgue measure.

property

There is only one translation-invariant measure on R such that the
image of [0, 1] is 1. It is the Lebesgue measure LebR.

Take µ a measure s.t. ∀A ∈ B,∀c ∈ R, µ(A) = µ(A + c).

If µ([0, 1]) = 0 then µ = 0 and µ(R) = 0 < 1.

If µ([0, 1]) = +∞ then µ(R) > µ([0, 1]) = +∞ > 1.

If 0 < µ([0, 1]) < +∞ then 1
µ([0,1])

µ = LebR so

µ(R) = µ([0, 1])LebR(R) = +∞ > 1.
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II) The Cabinet of curiosities of Pr. Lebesgue

1 The Borelians

2 The Derivative of a measure

3 The Bochner Integral of a measure-valued map

4 Limit of processes through different asymptotic scales

5 The Fat Cantor

6 The Devil’s Staircase

7 The Infinite-Dimensional Lebesgue measure
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II)1) The Borelians

definition

B is a σ-algebra on Ω if

∅ ∈ B,

A ∈ B =⇒ Ω \ A ∈ B,

(Ai)i∈N ∈ BN =⇒
⋃
i∈N

Ai ∈ B.

The Borel σ-algebra B(Ω) is the is the most little that contains all
the open sets of Ω.
On R, it is equivalent to say that B(R) is generated by all the
intervals.
Typically, a union of intersection of union of intersection of... of open
sets is a borelian.
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II)1) The Borelians: the Vitali counterexample

Take V a Q-base on R in [0, 1] ie. a set of representatives in [0, 1] of
the equivalence relation x ∼ y ⇔ x − y ∈ Q.

So R =
⊔
q∈Q

(V + q).

Suppose LebR(V ) = 0. Then

2 = LebR([0, 2]) 6 LebR

(⊔
q∈Q

(V + q)

)
=
∑
q∈Q

LebR(V ) = 0.

Suppose LebR(V ) > 0. Then

2 = LebR([0, 2]) > LebR

 ⊔
q∈Q∩[0,1]

(V + q)

 =
∑

q∈Q∩[0,1]

LebR(V ) = +∞.
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II)2) The Derivative of a measure

Ω ⊂ Rd , D ′(Ω) = C∞c (Ω)′ = L (C∞c (Ω),R) is the set of
distributions.

f ∈ C 0(Ω) ⇒ Tf is a distribution

〈Tf , φ〉 =

∫
Ω

f (x)φ(x) dx ∀φ ∈ C∞c (Ω).

µ s.t. µ(K ) < +∞ ∀K ⊂ Ω compact ⇒ µ is a distribution:
Take φ ∈ C∞c (Ω), take A = (Ai)06i6N ∈ B(Ω)N and
α = (αi)16i6N ∈ RN s.t. sA,α =

∑
i αi1Ai

> φ. Define

〈µ, φ〉 =

∫
Ω

φ(x) dµ(x) := inf
A,α
〈µ, sA,α〉 = inf

A,α

∫
Ω

sA,α dµ =
∑

06i6N

αiµ(Ai).
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II)2) The Derivative of a measure: some derivatives

If µ has density g ∈ C 1(R) then µ′ has density g ′

〈µ′, φ〉 := −〈µ, φ′〉 = −
∫
R

φ′g =

∫
R

φg ′ =

∫
R

φ(x) (g ′(x)dx).

ν with density x 7→ |x | has its derivative with density

H(x) =

{
−1 if x < 0
1 if x > 0

.
x

H(x)

−1

1

ν ′′ = 2δ0 : φ 7−→ 2φ(0), ν(3) = 2δ′0 : φ 7−→ −2φ′(0),

and ν(k) = 2δ
(k−2)
0 : φ 7−→ (−1)k−2.2φ(k−2)(0) ∀k > 2.
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II)2) The Derivative of a measure: some derivatives

Name B(0, 1) the unit ball in R3. LebB(0,1) has for gradient
−~nσS where σS the uniform measure on the sphere S = ∂B(0, 1)
and ~n is the unitary vector pointing outward from the sphere:

〈∇LebB(0,1), φ〉 := −〈LebB(0,1),∇.φ〉 = −
∫
B(0,1)

∇.φ(x) dx

= −
∫
S

φ(x).~n(x) dσS(x) = 〈−~nσS, φ〉.

LebB(0,1)
σS

∇ x ~n(x)
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II)3) The Bochner Integral

Ω ⊂ Rd .
〈µ, φ〉 =

∫
Ω
φ has a sense when φ is nice enough: 0 6

∫
Ω
|φ| < +∞.

For B a Banach space,
〈µ, λ〉 has a sense when λ : Ω→ B is nice enough.
On (Γ,B(Γ))
define M+(Γ) = {finite (positive) measures on Γ} and
M (Γ) = {finite signed measures on Γ} = {µ+ − µ−, µ+, µ− ∈M+(Γ)}.
(M (Γ), ‖ · ‖) is a Banach for some norm ‖ · ‖
so if µ(K ) < +∞ ∀K ⊂ Ω compact and λ : Ω→M (Γ) s.t.∫

Ω
‖λ(x)‖dµ(x) < +∞ then ν = 〈µ, λ〉 =

∫
Ω
λ(x)dµ(x) ∈M (Γ)

∀A ∈ B(Γ) ν(A) = 〈µ, λ(·)(A)〉 =

∫
Ω

λ(x)(A) dµ(x).
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II)3) The Bochner Integral: equations on

measure-valued maps

The measure-valued mass evolution problem

∂tµ(t) + ∂x(v(x)µ(t)) = f (x)µ(t) on [0, 1] ∀t ∈ R+

where µ : R+ →M ([0, 1]) and ∂x(vµ(t)) is in the sense of
distributions
is equivalent to

µ(t) = µ(0)∗Φt +

∫ t

0

(f µ(s))∗Φ(t−s) ds on [0, 1] ∀t ∈ R+

where Φ is a (sort of) flow encoding the spatial evolution relative to
x .
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II)4) Limit processes through asymptotic scales

video made by PhysicsFun

(seen on Facebook)

Xn the position of a parti-
cle after n possible collisions
at the times tn = 1

n
, 2tn,

...,ntn = 1.
p(Xn = k) =

(
n
k

)
2−n

Xn − E(Xn)√
Var(Xn)

−−−−→
n→+∞

N (0, 1)

considering rn
tn

= 1/4 and

pn = 1
2

constant.
What if rn

tn
−−−−→
n→+∞

0?



Examples and definition The Cabinet of curiosities of Pr. Lebesgue

16/16

video made by 3D-PHASE (seen on Youtube)

pn the probability of collision at each time tn, ..., ntn = 1 converges to 0

as n grows. There is no more convergence towards the normal law.
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Newton’s laws: rectilinear movement or elastic chocs.
t 7→ (xi(t), vi(t))06i6N deterministic process.

↓ Nr 2 ∼ 1 as N → +∞ (Boltzmann-Grad)

Boltzmann linear equation: (∂t + v .∇x)f = L(f )
t 7→ (x(t), v(t)) some Markov stochastic process.

↓ m4 log(| log r |)� 1 when Nr 2 ∼ 1 as N → +∞,m→ 0

Fokker-Planck equation: (∂t + v .∇x)F = σ2

2
∆vF +∇v .(ωvf )

Ornstein-Uhlenbeck stochastic process t 7→ (x(t), v(t)).

↓ collision term

transprt term
→ 0 as σ, ω → 0

Diffusion equation: (∂t − D∆x)ρ = 0
ρ(t, x) = E(ρ0(x + W2Dt)) where t 7→ Wt is the standard brownian
movement in R3. t 7→ x(t) stochastic process.
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