Path-Complete Lyapunov Functions for Continuous-Time Switched Systems

## Matteo Della Rossa, Mirko Pasquini, David Angeli\*

LAAS – CNRS, Toulouse, France Department of Electrical and Electronic Engineering, Imperial College, London

\*(Eh ouais, le communitarisme au Imperial College c'est bien pire que au 93.)

Séminaire de Doctorants - Equipe MAC 16 Octobre 2020, Salle France, Toulouse, Europe.



| Overview |               |                                 |                                 |                                 |             |
|----------|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
|          | 0000000       | 00000                           | 000                             | 0000                            | 0           |
|          | Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

## 1 Preliminaries

- 2 Fixed-Time Stability Conditions
- Owell-Time Stability Conditions
- 4 Linear Sub-Dynamics and Example

### 5 Conclusions

| Switchi       | ng Systems                      |                                 |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 000000        | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Consider  $\mathcal{I} = \{1, \dots, K\}$ , and a family  $\mathcal{F} = \{f_1, \dots, f_K\} \subset \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$  s.t.

 $\dot{x} = f_i(x)$ 

exhibits existence, uniqueness and (forward and backward) completeness,  $\forall i \in \mathcal{I}$ .

| Switching Systems |                                 |                                 |                                 |             |
|-------------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| ●000000           | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries     | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Consider  $\mathcal{I} = \{1, \dots, K\}$ , and a family  $\mathcal{F} = \{f_1, \dots, f_K\} \subset \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$  s.t.

 $\dot{x} = f_i(x)$ 

exhibits existence, uniqueness and (forward and backward) completeness,  $\forall i \in \mathcal{I}$ . We have to specify "how to switch" among these subsystems:

 $\mathcal{S} := \{ \sigma : \mathbb{R}_+ \to \mathcal{I} \mid \sigma \text{ piecewise constant} \} \,.$ 

| Switching Systems |                                 |                                 |                                 |             |
|-------------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| ●000000           | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries     | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Consider  $\mathcal{I} = \{1, \dots, K\}$ , and a family  $\mathcal{F} = \{f_1, \dots, f_K\} \subset \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$  s.t.

 $\dot{x} = f_i(x)$ 

exhibits existence, uniqueness and (forward and backward) completeness,  $\forall i \in \mathcal{I}$ . We have to specify "how to switch" among these subsystems:

 $\mathcal{S} := \{ \sigma : \mathbb{R}_+ \to \mathcal{I} \mid \sigma \text{ piecewise constant} \}.$ 

Given a  $\sigma \in S$  we finally have the (time-dependent) switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t)).$$
 (Sw.Sys)

Basically, switching systems are a subclass of non-autonomous differential equations, piecewise constants w.r.t the time variable.

| Constra       | ined Switching                  | Policies                        |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 000000        | 00000                           | 000                             | 0000                            |             |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Instead of considering one prescribed  $\sigma \in S$ , we study the behavior of (Sw.Sys) with respect to particular subclasses of S. In particular, given  $\tau > 0$ :

ട

| Constant      | in a d. Construction of         | Delleter                        |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 000000        | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Constrained Switching Policies

Instead of considering one prescribed  $\sigma \in S$ , we study the behavior of (Sw.Sys) with respect to particular subclasses of S. In particular, given  $\tau > 0$ :

Fixed-Time Switching Signals:

$$\mathcal{S}_{\mathsf{fix}}(\pmb{\tau}) := \left\{ \sigma \in \mathcal{S} \mid \frac{t_i^\sigma - t_{i-1}^\sigma}{\pmb{\tau}} \in \mathbb{N}, \ \forall t_i^\sigma > 0 \right\}.$$

 $\{t_i^\sigma\}$  denotes the sequence of switching instants of  $\sigma.$ 

| Constant      | in a d. Construction of         | Delleter                        |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 000000        | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Constrained Switching Policies

Instead of considering one prescribed  $\sigma \in S$ , we study the behavior of (Sw.Sys) with respect to particular subclasses of S. In particular, given  $\tau > 0$ :

Fixed-Time Switching Signals:

$$\mathcal{S}_{\mathsf{fix}}(\tau) := \left\{ \sigma \in \mathcal{S} \mid \frac{t_i^\sigma - t_{i-1}^\sigma}{\tau} \in \mathbb{N}, \ \forall t_i^\sigma > 0 \right\}.$$

 $\{t_i^{\sigma}\}$  denotes the sequence of switching instants of  $\sigma$ .

**Dwell-Time Switching Signals:** 

$$\mathcal{S}_{\mathsf{dw}}(\pmb{\tau}) := \left\{ \sigma \in \mathcal{S} \mid t_i^\sigma - t_{i-1}^\sigma \geq \pmb{\tau}, \; \forall \; t_i^\sigma > 0 \right\}.$$

| Caratura      | to a d. Constants in a          | Delleter                        |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 000000        | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Constrained Switching Policies

Instead of considering one prescribed  $\sigma \in S$ , we study the behavior of (Sw.Sys) with respect to particular subclasses of S. In particular, given  $\tau > 0$ :

Fixed-Time Switching Signals:

$$\mathcal{S}_{\mathsf{fix}}(\tau) := \left\{ \sigma \in \mathcal{S} \mid \frac{t_i^\sigma - t_{i-1}^\sigma}{\tau} \in \mathbb{N}, \ \forall t_i^\sigma > 0 \right\}.$$

 $\{t_i^\sigma\}$  denotes the sequence of switching instants of  $\sigma.$ 

**Dwell-Time Switching Signals:** 

$$\mathcal{S}_{\mathsf{dw}}(\tau) := \left\{ \sigma \in \mathcal{S} \mid t_i^{\sigma} - t_{i-1}^{\sigma} \ge \tau, \ \forall \ t_i^{\sigma} > 0 \right\}.$$
  
Of course,  $\forall \tau > 0$ ,  
 $\mathcal{S}_{\mathsf{fix}}(\tau) \subset \mathcal{S}_{\mathsf{dw}}(\tau)$ 

| Preliminaries      | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |  |  |
|--------------------|---------------------------------|---------------------------------|---------------------------------|-------------|--|--|
| 000000             | 00000                           | 000                             | 0000                            |             |  |  |
| Stability Concepts |                                 |                                 |                                 |             |  |  |

Consider a set of switching signals  $\widehat{S} \subset S$ . The switched system (Sw.Sys) is said to be *uniformly globally asymptotically stable on*  $\widehat{S}$  (GAS), if there exists an  $\beta \in \mathcal{KL}$  such that

 $|x(t, x_0, \sigma)| \le \beta(|x_0|, t),$ 

for all  $\sigma \in \widehat{S}$ , for all  $x_0 \in \mathbb{R}^n$  and for all  $t \ge 0$ .

| Stabilit      | Stability Concepts              |                                 |                                 |             |  |  |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|--|--|
| 000000        | 00000                           | 000                             | 0000                            | 0           |  |  |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |  |  |

Consider a set of switching signals  $\widehat{S} \subset S$ . The switched system (Sw.Sys) is said to be *uniformly globally asymptotically stable on*  $\widehat{S}$  (GAS), if there exists an  $\beta \in \mathcal{KL}$  such that

 $|x(t, x_0, \sigma)| \le \beta(|x_0|, t),$ 

for all  $\sigma \in \widehat{\mathcal{S}}$ , for all  $x_0 \in \mathbb{R}^n$  and for all  $t \ge 0$ .

**Notation:**  $x(t, x_0, \sigma)$  denotes the solution of (Sw.Sys) starting at  $x_0 \in \mathbb{R}^n$ , with respect to the signal  $\sigma \in S$ , evaluated at some time  $t \in \mathbb{R}$ .

| Stability Concepts |                                 |                                 |                                 |             |
|--------------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 000000             | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries      | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Consider a set of switching signals  $\widehat{S} \subset S$ . The switched system (Sw.Sys) is said to be *uniformly globally asymptotically stable on*  $\widehat{S}$  (GAS), if there exists an  $\beta \in \mathcal{KL}$  such that

 $|x(t, x_0, \sigma)| \le \beta(|x_0|, t),$ 

for all  $\sigma \in \widehat{\mathcal{S}}$ , for all  $x_0 \in \mathbb{R}^n$  and for all  $t \ge 0$ .

**Notation:**  $x(t, x_0, \sigma)$  denotes the solution of (Sw.Sys) starting at  $x_0 \in \mathbb{R}^n$ , with respect to the signal  $\sigma \in S$ , evaluated at some time  $t \in \mathbb{R}$ .

**Idea:** Find a *common Lyapunov function* that works for all the  $f_i \in \mathcal{F}$ ...very restrictive.

| Stability Concepts |                                 |                                 |                                 |             |
|--------------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 000000             | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries      | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Consider a set of switching signals  $\widehat{S} \subset S$ . The switched system (Sw.Sys) is said to be *uniformly globally asymptotically stable on*  $\widehat{S}$  (GAS), if there exists an  $\beta \in \mathcal{KL}$  such that

 $|x(t, x_0, \sigma)| \le \beta(|x_0|, t),$ 

for all  $\sigma \in \widehat{\mathcal{S}}$ , for all  $x_0 \in \mathbb{R}^n$  and for all  $t \ge 0$ .

**Notation:**  $x(t, x_0, \sigma)$  denotes the solution of (Sw.Sys) starting at  $x_0 \in \mathbb{R}^n$ , with respect to the signal  $\sigma \in S$ , evaluated at some time  $t \in \mathbb{R}$ .

**Idea:** Find a *common Lyapunov function* that works for all the  $f_i \in \mathcal{F}$ ...very restrictive.

Given a  $\tau > 0$ , we want to study stability with respect to  $S_{dw}(\tau)$  and  $S_{fix}(\tau)$  using a multiple Lyapunov construction based on graphs.

| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            |             |
| Path-C        | omplete Graph                   | S                               |                                 |             |

Given a discrete alphabet  $\mathcal{I} \subset \mathbb{N}$ , a *direct and labeled graph*  $\mathcal{G} = (S, E)$  is defined by a finite set S (the set of nodes) and  $E \subset S \times S \times \mathcal{I}$  (the set of edges).

| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            |             |
| Path-C        | omplete Graph                   | S                               |                                 |             |

Given a discrete alphabet  $\mathcal{I} \subset \mathbb{N}$ , a *direct and labeled graph*  $\mathcal{G} = (S, E)$  is defined by a finite set S (the set of nodes) and  $E \subset S \times S \times \mathcal{I}$  (the set of edges).

#### Path-Completeness

A graph  $\mathcal{G} = (S, E)$  is *path-complete* for  $\mathcal{I}$  if, for any  $K \ge 1$  and any "word"  $j_1 \ldots j_K$ , with  $j_k \in \mathcal{I}$ , there exists a *path*  $\{(s_k, s_{k+1}, j_k)\}_{1 \le k \le K}$  such that  $(s_k, s_{k+1}, j_k) \in E$ , for each  $1 \le k \le K$ .

| Path-C        | omplete Graph                   | s                               |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       |                                 |                                 |                                 |             |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Given a discrete alphabet  $\mathcal{I} \subset \mathbb{N}$ , a *direct and labeled graph*  $\mathcal{G} = (S, E)$  is defined by a finite set S (the set of nodes) and  $E \subset S \times S \times \mathcal{I}$  (the set of edges).

#### Path-Completeness

A graph  $\mathcal{G} = (S, E)$  is *path-complete* for  $\mathcal{I}$  if, for any  $K \ge 1$  and any "word"  $j_1 \ldots j_K$ , with  $j_k \in \mathcal{I}$ , there exists a *path*  $\{(s_k, s_{k+1}, j_k)\}_{1 \le k \le K}$  such that  $(s_k, s_{k+1}, j_k) \in E$ , for each  $1 \le k \le K$ .

Intuitively, a graph is path complete, if given any sequence in  $\mathcal{I}^{\mathbb{N}}$ , we can "reconstructing" it by "walking" thorough the (labeled) edges...let's see some pictures, it will be nicer...

| Evama         | la of Dath Com                  | unloto Cranh                    |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

#### Example of Path-Complete Graph

# $\mathsf{Alphabet}\ \mathcal{I} = \{1,2\},\ S = \{a,b\},\ E = \{(a,a,1),(a,b,1),(b,b,2),(b,a,2)\},$

Preliminaries
Fixed-Time Stability Conditions
Dwell-Time Stability Conditions
Linear Sub-Dynamics and Example
Conclusions

0000
0000
0000
0000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
<td

# Example of Path-Complete Graph

 $\mathsf{Alphabet}\ \mathcal{I} = \{1,2\},\ S = \{a,b\},\ E = \{(a,a,1),(a,b,1),(b,b,2),(b,a,2)\},$ 



It is path complete! (You can trust me or you can try the infinite (but countable) sequence of 1 and 2.)

| <b>-</b> 1    |                                 |                                 |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

### Example of Path-Complete Graph 2

$$\begin{split} \text{Alphabet } \mathcal{I} &= \{1,2\}, \ S = \{a,b,c\}, \\ E &= \{(a,a,1), (a,b,2), (b,b,2), (b,a,1), (b,c,2), (c,b,2), (c,a,1)\}, \end{split}$$





## Example of Path-Complete Graph 2

Alphabet  $\mathcal{I} = \{1, 2\}, S = \{a, b, c\},\ E = \{(a, a, 1), (a, b, 2), (b, b, 2), (b, a, 1), (b, c, 2), (c, b, 2), (c, a, 1)\},\$ 



It is path complete! (You can trust me or you can try the infinite (but countable) sequence of 1 and 2.)



$$\begin{split} \text{Alphabet } \mathcal{I} &= \{1,2\}, \ S = \{a,b,c\}, \\ E &= \{(a,a,1), (a,b,2), (b,b,2), (b,a,1), (b,c,2), (c,b,2)\}, \end{split}$$



It is NOT path complete! Any word of the form (1,2,2,1,...) can not be reconstructed.

| Preliminaries<br>000000● | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example<br>0000 | Conclusions<br>O |
|--------------------------|---------------------------------|---------------------------------|-----------------------------------------|------------------|
| The pa                   | rty is over!                    |                                 |                                         |                  |

• Non-differentiable functions,

| Preliminaries<br>000000● | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example<br>0000 | Conclusions<br>O |
|--------------------------|---------------------------------|---------------------------------|-----------------------------------------|------------------|
| The pa                   | rty is over!                    |                                 |                                         |                  |

- Non-differentiable functions,
- Clarke's Generalized Gradient,

| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 000000        | 00000                           | 000                             | 0000                            |             |
| The pa        | rty is over!                    |                                 |                                 |             |

- Non-differentiable functions,
- Clarke's Generalized Gradient,
- Semicontinuous Differential Inclusions interconnected with non-linear Hybrid Systems

| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 000000●       | 00000                           |                                 | 0000                            | O           |
| The pa        | rty is over!                    |                                 |                                 |             |

- Non-differentiable functions,
- Clarke's Generalized Gradient,
- Semicontinuous Differential Inclusions interconnected with non-linear Hybrid Systems
- But, worst of all, BMIs!!!!

| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 000000        | 00000                           | 000                             | 0000                            |             |
| The pa        | rty is over!                    |                                 |                                 |             |

- Non-differentiable functions,
- Clarke's Generalized Gradient,
- Semicontinuous Differential Inclusions interconnected with non-linear Hybrid Systems
- But, worst of all, BMIs!!!!

No, I'm joking! But let's stop playing with graphs. :)

| 0000000 | •0000                           | 000                             | 0000                            | 0           |
|---------|---------------------------------|---------------------------------|---------------------------------|-------------|
|         | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

## Fixed-Time Policy vs Discrete Time Switched System

Let us recall

$$\mathcal{S}_{\mathsf{fix}}(\tau) := \left\{ \sigma \in \mathcal{S} \mid \frac{t_i^\sigma - t_{i-1}^\sigma}{\tau} \in \mathbb{N}, \ \forall t_i^\sigma > 0 \right\},$$

| 0000000       | 00000                           | 000                             | 0000                            |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

## Fixed-Time Policy vs Discrete Time Switched System

Let us recall

$$\mathcal{S}_{\mathrm{fix}}(\pmb{\tau}) := \left\{ \sigma \in \mathcal{S} \mid \frac{t_i^\sigma - t_{i-1}^\sigma}{\pmb{\tau}} \in \mathbb{N}, \ \forall t_i^\sigma > 0 \right\},$$

Thus, stability of switched systems under fixed time is equivalent to stability of the discrete-time switched system

$$x^+ \in \operatorname{co} \left\{ \phi_j(\tau, x) \mid j \in \mathcal{I} \right\},\$$

where  $\phi_j : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$  denotes the flow map of the subsystem  $\dot{x} = f_j(x)$ .

| 0000000       | 00000                           | 000                             | 0000                            | 0           |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

## Fixed-Time Policy vs Discrete Time Switched System

Let us recall

$$\mathcal{S}_{\mathsf{fix}}(\boldsymbol{\tau}) := \left\{ \sigma \in \mathcal{S} \mid \frac{t_i^{\sigma} - t_{i-1}^{\sigma}}{\boldsymbol{\tau}} \in \mathbb{N}, \ \forall t_i^{\sigma} > 0 \right\},$$

Thus, stability of switched systems under fixed time is equivalent to stability of the discrete-time switched system

$$x^{+} \in \operatorname{co} \left\{ \phi_{j}(\tau, x) \mid j \in \mathcal{I} \right\},\$$

where  $\phi_j : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$  denotes the flow map of the subsystem  $\dot{x} = f_j(x)$ .

We can have the following adaptation of results concerning path-complete graph and discrete-time switched system.

| Encodin       | a inequalities                  | in Jaholoo                  | and directed graphs                        |                  |
|---------------|---------------------------------|-----------------------------|--------------------------------------------|------------------|
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability<br>000 | Conditions Linear Sub-Dynamics and Example | Conclusions<br>O |

## Candidate vector-valued Lyapunov function

Given a finite set S, a candidate vector-valued Lyapunov function is a map  $V : \mathbb{R}^n \to \mathbb{R}^{|S|}$ , such that,  $\forall \ell \in S$ ,  $V_\ell \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$  and  $\exists \underline{\alpha}_\ell, \overline{\alpha}_\ell \in \mathcal{K}_\infty$  such that

 $\underline{\alpha}_{\ell}(|x|) \leq V_{\ell}(x) \leq \overline{\alpha}_{\ell}(|x|), \ \forall x \in \mathbb{R}^{n}.$ 

| Preliminaries<br>0000000 | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions<br>O |
|--------------------------|---------------------------------|---------------------------------|---------------------------------|------------------|
| Encodir                  | ng inequalities i               | n labeled and c                 | lirected graphs                 |                  |

#### Candidate vector-valued Lyapunov function

Given a finite set S, a candidate vector-valued Lyapunov function is a map  $V : \mathbb{R}^n \to \mathbb{R}^{|S|}$ , such that,  $\forall \ell \in S$ ,  $V_\ell \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$  and  $\exists \underline{\alpha}_\ell, \overline{\alpha}_\ell \in \mathcal{K}_\infty$  such that

 $\underline{\alpha}_{\ell}(|x|) \le V_{\ell}(x) \le \overline{\alpha}_{\ell}(|x|), \quad \forall x \in \mathbb{R}^n.$ 

Given  $\tau > 0$  and  $\mathcal{F} = \{f_j\}_{j \in \mathcal{I}}$ , a candidate vector-valued Lyapunov function  $V : \mathbb{R}^n \to \mathbb{R}^{|S|}$  and a  $\rho \in \mathcal{PD}$ ; given  $a, b \in S$  and  $j \in \mathcal{I}$ , we define a set of labeled edges "E" between nodes in S according to the rule

 $(\pmb{a}, b, j)_\tau \in E, \quad \textit{means} \quad V_b(\phi_j(\tau, x)) - V_{\pmb{a}}(x) \leq -\rho(|x|), \quad \forall x \in \mathbb{R}^n.$ 

| Preliminaries<br>0000000 | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions<br>O |
|--------------------------|---------------------------------|---------------------------------|---------------------------------|------------------|
| Encodir                  | ng inequalities                 | in labeled and                  | directed graphs                 |                  |

#### Candidate vector-valued Lyapunov function

Given a finite set S, a candidate vector-valued Lyapunov function is a map  $V : \mathbb{R}^n \to \mathbb{R}^{|S|}$ , such that,  $\forall \ell \in S$ ,  $V_\ell \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$  and  $\exists \underline{\alpha}_\ell, \overline{\alpha}_\ell \in \mathcal{K}_\infty$  such that

 $\underline{\alpha}_{\ell}(|x|) \leq V_{\ell}(x) \leq \overline{\alpha}_{\ell}(|x|), \ \forall x \in \mathbb{R}^{n}.$ 

Given  $\tau > 0$  and  $\mathcal{F} = \{f_j\}_{j \in \mathcal{I}}$ , a candidate vector-valued Lyapunov function  $V : \mathbb{R}^n \to \mathbb{R}^{|S|}$  and a  $\rho \in \mathcal{PD}$ ; given  $a, b \in S$  and  $j \in \mathcal{I}$ , we define a set of labeled edges "E" between nodes in S according to the rule

 $(\pmb{a}, \pmb{b}, j)_\tau \in E, \quad \textit{means} \quad V_b(\phi_j(\tau, x)) - V_{\pmb{a}}(x) \leq -\rho(|x|), \quad \forall x \in \mathbb{R}^n.$ 

**Intuitevely:** Fixing any c > 0 and considering the corresponding sublevel set of  $V_a$  defined by  $L_a(c) := \{x \in \mathbb{R}^n \mid V_a(x) \le c\}$ , solutions of  $\dot{x} = f_j(x)$  reach the sublevel set  $L_b(c)$  of  $V_b$  by in time  $\tau > 0$  (with a margin given by  $\rho$ ).



### Fixed-Time Lyapunov Direct Result

Consider a  $\tau > 0$ ,  $\mathcal{F} = \{f_j\}_{j \in \mathcal{I}} \subset \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$  a function  $\rho \in \mathcal{PD}$ , a finite set S, and  $V : \mathbb{R}^n \to \mathbb{R}^{|S|}$  a candidate vector-valued Lyapunov function. If the associated graph  $\mathcal{G} = (S, E)$  is path-complete for  $\mathcal{I}$  then switched system (Sw.Sys) is globally asymptotically stable on  $\mathcal{S}_{\text{fix}}(\tau)$ .



### Fixed-Time Lyapunov Direct Result

Consider a  $\tau > 0$ ,  $\mathcal{F} = \{f_j\}_{j \in \mathcal{I}} \subset \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$  a function  $\rho \in \mathcal{PD}$ , a finite set S, and  $V : \mathbb{R}^n \to \mathbb{R}^{|S|}$  a candidate vector-valued Lyapunov function. If the associated graph  $\mathcal{G} = (S, E)$  is path-complete for  $\mathcal{I}$  then switched system (Sw.Sys) is globally asymptotically stable on  $\mathcal{S}_{\text{fix}}(\tau)$ .

Sketch of the proof: For any  $\sigma \in S_{\text{fix}}(\tau)$ , we "recursively" construct a <u>continuous</u> function  $U : \mathbb{R}_+ \times \mathbb{R}^n \to \mathbb{R}^n$  decreasing along solutions, "gluing" the node functions  $V_\ell$  on intervals of lenght  $\tau$ , following the "word" accociated to  $\sigma$ .



#### Fixed-Time Lyapunov Direct Result

Consider a  $\tau > 0$ ,  $\mathcal{F} = \{f_j\}_{j \in \mathcal{I}} \subset \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$  a function  $\rho \in \mathcal{PD}$ , a finite set S, and  $V : \mathbb{R}^n \to \mathbb{R}^{|S|}$  a candidate vector-valued Lyapunov function. If the associated graph  $\mathcal{G} = (S, E)$  is path-complete for  $\mathcal{I}$  then switched system (Sw.Sys) is globally asymptotically stable on  $\mathcal{S}_{\text{fix}}(\tau)$ .

Sketch of the proof: For any  $\sigma \in S_{\text{fix}}(\tau)$ , we "recursively" construct a <u>continuous</u> function  $U : \mathbb{R}_+ \times \mathbb{R}^n \to \mathbb{R}^n$  decreasing along solutions, "gluing" the node functions  $V_\ell$  on intervals of lenght  $\tau$ , following the "word" accociated to  $\sigma$ .



An example of switching signal  $\sigma : \mathbb{R}_+ \to \mathcal{I} := \{1, 2, 3\}, \sigma \in \mathcal{S}_{\text{fix}}(\tau) \text{ and the}$  associated word, that is, the sequence  $(1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 3, 3, 2, \dots) \in \mathcal{I}^{\mathbb{N}}$ .

| Relaxed       | Conditions:                     | "Splitting Edges                | 11                              |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

The strength of Lyapunov direct results lies in the fact that (asymptotic) stability is ensured without computing the solutions. On the other hand inequality encoded in a generic arch (a, b, j), depends on the solutions of  $\dot{x} = f_j(x)$  at time  $\tau$ .

| Relaxed       | Conditions:                     | "Splitting Edges                | 11                              |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

The strength of Lyapunov direct results lies in the fact that (asymptotic) stability is ensured *without* computing the solutions. On the other hand inequality encoded in a generic arch (a, b, j), depends on the solutions of  $\dot{x} = f_j(x)$  at time  $\tau$ .

Consider  $f_j \in \mathcal{F}$ ,  $\tau > 0$  and  $K \in \mathbb{N}$ . Suppose there exist  $V_0, \ldots, V_K \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$ positive definite  $(V_0 \equiv V_a, V_K \equiv V_b)$  and  $\tilde{\rho} \in \mathcal{PD}$  such that

$$\begin{cases} \nabla V_k(x) \cdot f_j(x) &+ \frac{K(V_k(x) - V_{k-1}(x))}{\tau} \leq -\widetilde{\rho}(|x|), \quad \forall x \in \mathbb{R}^n, \\ \nabla V_{k-1}(x) \cdot f_j(x) &+ \frac{K(V_k(x) - V_{k-1}(x))}{\tau} \leq -\widetilde{\rho}(|x|), \quad \forall x \in \mathbb{R}^n. \end{cases}$$

This implies that there exists a  $\rho \in \mathcal{PD}$  such that

 $V_b(\phi_j(\tau, x)) - \underline{V_a}(x) \le -\rho(|x|), \quad \forall \ x \in \mathbb{R}^n.$ 

| Relaxed       | Conditions:                     | "Splitting Edges                | 11                              |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

The strength of Lyapunov direct results lies in the fact that (asymptotic) stability is ensured *without* computing the solutions. On the other hand inequality encoded in a generic arch (a, b, j), depends on the solutions of  $\dot{x} = f_j(x)$  at time  $\tau$ .

Consider  $f_j \in \mathcal{F}$ ,  $\tau > 0$  and  $K \in \mathbb{N}$ . Suppose there exist  $V_0, \ldots, V_K \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$  positive definite  $(V_0 \equiv V_a, V_K \equiv V_b)$  and  $\tilde{\rho} \in \mathcal{PD}$  such that

$$\begin{cases} \nabla V_k(x) \cdot f_j(x) &+ \frac{K(V_k(x) - V_{k-1}(x))}{\tau} \leq -\widetilde{\rho}(|x|), \quad \forall x \in \mathbb{R}^n, \\ \nabla V_{k-1}(x) \cdot f_j(x) &+ \frac{K(V_k(x) - V_{k-1}(x))}{\tau} \leq -\widetilde{\rho}(|x|), \quad \forall x \in \mathbb{R}^n. \end{cases}$$

This implies that there exists a  $\rho \in \mathcal{PD}$  such that

$$V_b(\phi_j(\tau, x)) - V_a(x) \le -\rho(|x|), \quad \forall \ x \in \mathbb{R}^n.$$

Roughly speaking, increasing  $K \in \mathbb{N}$ , i.e. the number of "auxiliary" functions between  $V_a \equiv V_0$  and  $V_b \equiv V_K$ , we decrease the conservatism in proving  $(a, b, j) \in E$ 

| Skatah        | of the Broof                    |                                 |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Sketch of the Proof

W.l.o.g. case K = 1 (no auxiliary functions between  $V_a$  and  $V_b$ ). Define  $W: [0, \tau] \times \mathbb{R}^n \to \mathbb{R}$  by

$$W(t,x) := \frac{\tau - t}{\tau} V_a(x) + \frac{t}{\tau} V_b(x) \qquad \forall t \in [0,\tau].$$

Computing the derivative of W along the solution  $x(t):=\phi_j(t,x)$  we have

$$\begin{split} \dot{W}(t,x(t)) &= \langle \frac{\partial W}{\partial x}(t,x(t)), f_j(x(t)) \rangle + \frac{\partial W}{\partial t}(t,x(t)) \\ &= \frac{\tau - t}{\tau} \langle \nabla V_a(x(t)), f_j(x(t)) \rangle + \frac{t}{\tau} \langle \nabla V_b(x(t)), f_j(x(t)) \rangle + \frac{V_b(x(t)) - V_a(x(t))}{\tau} \\ &= \frac{\tau - t}{\tau} \left( \langle \nabla V_a(x(t)), f_j(x(t)) \rangle + \frac{V_b(x(t)) - V_a(x(t))}{\tau} \right) \\ &+ \frac{t}{\tau} \left( \langle \nabla V_b(x(t)), f_j(x(t)) \rangle + \frac{V_b(x(t)) - V_a(x(t))}{\tau} \right) \leq -\tilde{\rho}(|x(t)|). \end{split}$$

| Skotch        | of the Proof                    |                                 |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            | 0           |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Sketch of the Proof

W.l.o.g. case K = 1 (no auxiliary functions between  $V_a$  and  $V_b$ ). Define  $W: [0, \tau] \times \mathbb{R}^n \to \mathbb{R}$  by

$$W(t,x) := \frac{\tau - t}{\tau} V_a(x) + \frac{t}{\tau} V_b(x) \qquad \forall t \in [0,\tau].$$

Computing the derivative of W along the solution  $x(t):=\phi_j(t,x)$  we have

$$\begin{split} \dot{W}(t,x(t)) &= \langle \frac{\partial W}{\partial x}(t,x(t)), f_j(x(t)) \rangle + \frac{\partial W}{\partial t}(t,x(t)) \\ &= \frac{\tau - t}{\tau} \langle \nabla V_a(x(t)), f_j(x(t)) \rangle + \frac{t}{\tau} \langle \nabla V_b(x(t)), f_j(x(t)) \rangle + \frac{V_b(x(t)) - V_a(x(t))}{\tau} \\ &= \frac{\tau - t}{\tau} \left( \langle \nabla V_a(x(t)), f_j(x(t)) \rangle + \frac{V_b(x(t)) - V_a(x(t))}{\tau} \right) \\ &+ \frac{t}{\tau} \left( \langle \nabla V_b(x(t)), f_j(x(t)) \rangle + \frac{V_b(x(t)) - V_a(x(t))}{\tau} \right) \leq -\tilde{\rho}(|x(t)|). \end{split}$$

Thus  $W(\tau, x(\tau)) - W(0, x(0)) = V_b(x(\tau)) - V_a(x) \le -\rho(|x|).$ 

| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       |                                 | •00                             | 0000                            | O           |
| Dwell-        | Time: Reinforci                 | ng the Edges                    |                                 |             |

In order to provide a dwell time counterpart of the previous theorem, we need to reinforce the conditions encoded in a generic edge.

| Preliminaries<br>0000000 | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions<br>●00 | Linear Sub-Dynamics and Example | Conclusions<br>O |
|--------------------------|---------------------------------|----------------------------------------|---------------------------------|------------------|
| Dwell-7                  | ime: Reinforci                  | ng the Edges                           |                                 |                  |

In order to provide a dwell time counterpart of the previous theorem, we need to reinforce the conditions encoded in a generic edge.

We say that there is a "dwell time" edge  $(a,b,j)^{\rm dw}_{\tau}\in E^{\rm dw}$  if

 $V_b(\phi_j(t,x)) - V_a(x) \le -\rho(|x|), \quad \forall x \in \mathbb{R}^n, \ \forall t \in [\tau, 2\tau).$ 

In order to provide a dwell time counterpart of the previous theorem, we need to reinforce the conditions encoded in a generic edge.

We say that there is a "dwell time" edge  $(a,b,j)^{\mathrm{dw}}_{\tau} \in E^{\mathrm{dw}}$  if

 $V_b(\phi_j(t,x)) - V_a(x) \le -\rho(|x|), \quad \forall x \in \mathbb{R}^n, \ \forall t \in [\tau, 2\tau).$ 

**Intuitively:** Fixing any c > 0 and considering the corresponding sublevel set of  $V_a$  defined by  $L_a(c) := \{x \in \mathbb{R}^n \mid V_a(x) \le c\}$ , solutions  $\phi_j(\cdot, x)$  starting in  $L_a(c)$  not only reach the sublevel set  $L_b(c)$  in time  $\tau$ , but also remain inside it for at least an interval of length  $\tau$ .

| 0000000  |                                 | 000 | 0000 | O |  |  |  |
|----------|---------------------------------|-----|------|---|--|--|--|
| Stabilit | Stability Result for Dwell-Time |     |      |   |  |  |  |

#### Corollary

Consider a finite set S, and  $V : \mathbb{R}^n \to \mathbb{R}^{|S|}$  a candidate vector-valued function. Consider a  $\tau > 0$ . Suppose the associated graph  $\mathcal{G} = (S, E^{\mathsf{dw}})$  is path-complete for  $\mathcal{I}$ . Then system (Sw.Sys) is GAS on  $\mathcal{S}_{\mathsf{dw}}(\tau)$ .

The proof follows similar ideas, just splitting each interval  $[t_i^{\sigma}, t_{i+1}^{\sigma}]$ , in  $\underline{n}(i) - 1$  sub-intervals of length  $\tau$ , and the last one of length in  $[\tau, 2\tau)$ . (Defining  $\underline{n}(i) := \lfloor \frac{t_i^{\sigma} - t_{i-1}^{\sigma}}{\tau} \rfloor$ ) which is  $\geq 1$  by definition of  $S_{dw}(\tau)$ .

| 0000000  | 00000                           |  | 0000 | O |  |  |  |
|----------|---------------------------------|--|------|---|--|--|--|
| Stabilit | Stability Result for Dwell-Time |  |      |   |  |  |  |

#### Corollary

Consider a finite set S, and  $V : \mathbb{R}^n \to \mathbb{R}^{|S|}$  a candidate vector-valued function. Consider a  $\tau > 0$ . Suppose the associated graph  $\mathcal{G} = (S, E^{\mathsf{dw}})$  is path-complete for  $\mathcal{I}$ . Then system (Sw.Sys) is GAS on  $\mathcal{S}_{\mathsf{dw}}(\tau)$ .

The proof follows similar ideas, just splitting each interval  $[t_i^{\sigma}, t_{i+1}^{\sigma}]$ , in  $\underline{n}(i) - 1$  sub-intervals of length  $\tau$ , and the last one of length in  $[\tau, 2\tau)$ . (Defining  $\underline{n}(i) := \lfloor \frac{t_i^{\sigma} - t_{i-1}^{\sigma}}{\tau} \rfloor$ ) which is  $\geq 1$  by definition of  $S_{dw}(\tau)$ .



| 0000000  | 00000                           |  | 0000 | O |  |  |  |
|----------|---------------------------------|--|------|---|--|--|--|
| Stabilit | Stability Result for Dwell-Time |  |      |   |  |  |  |

#### Corollary

Consider a finite set S, and  $V : \mathbb{R}^n \to \mathbb{R}^{|S|}$  a candidate vector-valued function. Consider a  $\tau > 0$ . Suppose the associated graph  $\mathcal{G} = (S, E^{\mathsf{dw}})$  is path-complete for  $\mathcal{I}$ . Then system (Sw.Sys) is GAS on  $\mathcal{S}_{\mathsf{dw}}(\tau)$ .

The proof follows similar ideas, just splitting each interval  $[t_i^{\sigma}, t_{i+1}^{\sigma}]$ , in  $\underline{n}(i) - 1$  sub-intervals of length  $\tau$ , and the last one of length in  $[\tau, 2\tau)$ . (Defining  $\underline{n}(i) := \lfloor \frac{t_i^{\sigma} - t_{i-1}^{\sigma}}{\tau} \rfloor$ ) which is  $\geq 1$  by definition of  $S_{dw}(\tau)$ .



Then the construction of the decreasing  $W : \mathbb{R}_+ \times \mathbb{R}^n \to \mathbb{R}$  is the same.

| Preliminaries<br>0000000 | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions<br>00● | Linear Sub-Dynamics and Example | Conclusions<br>O |
|--------------------------|---------------------------------|----------------------------------------|---------------------------------|------------------|
| Splittin                 | g Edges, Dwell                  | -Time Case                             |                                 |                  |

Again, we need a way to ensure  $(a, b, j)^{dw} \in E^{dw}$  without computing solutions.

| Splittin      | a Edaes [                | Well Time Case                          |                                 |             |
|---------------|--------------------------|-----------------------------------------|---------------------------------|-------------|
| 0000000       | 00000                    | 000                                     | 0000                            |             |
| Preliminaries | Fixed-Time Stability Con | ditions Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Again, we need a way to ensure  $(a, b, j)^{dw} \in E^{dw}$  without computing solutions.

## Splitting Edges

Consider  $f_j \in \mathcal{F}$ ,  $\tau > 0$  and  $K \in \mathbb{N}$ . Suppose there exist  $V_0, \ldots, V_K \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$  $(V_0 \equiv V_a, V_K \equiv V_b)$  and  $\tilde{\rho} \in \mathcal{PD}$  such that

$$\begin{cases} \nabla V_k(x) \cdot f_j(x) &+ \frac{K(V_k(x) - V_{k-1}(x))}{s} \leq -\widetilde{\rho}(|x|), \ \forall x \in \mathbb{R}^n, \\ \nabla V_{k-1}(x) \cdot f_j(x) &+ \frac{K(V_k(x) - V_{k-1}(x))}{s} \leq -\widetilde{\rho}(|x|), \ \forall x \in \mathbb{R}^n, \end{cases}$$

for both  $s = \tau$  and  $s = 2\tau$ , and for all  $k \in \{1, \ldots, K\}$ . This implies that  $(a, b, j)^{dw}_{\tau} \in E^{dw}$ .

| Splittin      | a Edaes [                | Well Time Case                          |                                 |             |
|---------------|--------------------------|-----------------------------------------|---------------------------------|-------------|
| 0000000       | 00000                    | 000                                     | 0000                            |             |
| Preliminaries | Fixed-Time Stability Con | ditions Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

Again, we need a way to ensure  $(a, b, j)^{dw} \in E^{dw}$  without computing solutions.

## Splitting Edges

Consider  $f_j \in \mathcal{F}$ ,  $\tau > 0$  and  $K \in \mathbb{N}$ . Suppose there exist  $V_0, \ldots, V_K \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$  $(V_0 \equiv V_a, V_K \equiv V_b)$  and  $\tilde{\rho} \in \mathcal{PD}$  such that

$$\begin{cases} \nabla V_k(x) \cdot f_j(x) &+ \frac{K(V_k(x) - V_{k-1}(x))}{s} \leq -\widetilde{\rho}(|x|), \quad \forall x \in \mathbb{R}^n, \\ \nabla V_{k-1}(x) \cdot f_j(x) &+ \frac{K(V_k(x) - V_{k-1}(x))}{s} \leq -\widetilde{\rho}(|x|), \quad \forall x \in \mathbb{R}^n, \end{cases}$$

for both  $s = \tau$  and  $s = 2\tau$ , and for all  $k \in \{1, \dots, K\}$ . This implies that  $(a, b, j)^{dw}_{\tau} \in E^{dw}$ .

Basically, for each edge, we require to verify 4K inequalities involving gradients of some auxiliary functions  $(V_0, \ldots, V_K \in C^1(\mathbb{R}^n, \mathbb{R}))$ . Main drawback: the number of inequalities increases rapidly as we increase the number of nodes and K, as required to reduce conservativeness.

| Linear        | Switched Syste                  | ms                              |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            |             |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$
 (Sw.Lin)

where the switching signals  $\sigma$  are again selected in (a subclass of) S.

| Linear        | Switched Syste                  | ms                              |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            |             |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$
 (Sw.Lin)

where the switching signals  $\sigma$  are again selected in (a subclass of) S.

In this case a well-known result is that if the matrices  $A_1, \ldots, A_K$  are Hurwitz then there exists a (large enough)  $\tau > 0$  for which (Sw.Lin) is GAS on  $S_{dw}(\tau)$ .

| Linear        | Switched Syste                  | ms                              |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            |             |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$
 (Sw.Lin)

where the switching signals  $\sigma$  are again selected in (a subclass of) S.

In this case a well-known result is that if the matrices  $A_1, \ldots, A_K$  are Hurwitz then there exists a (large enough)  $\tau > 0$  for which (Sw.Lin) is GAS on  $S_{dw}(\tau)$ .

**Problem:** Estimation of the minimal dwell-time  $\tau_{dw} > 0$  for which this hold...in general an hard problem.

| Linear        | Switched Syste                  | ms                              |                                 |             |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            |             |
| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |

$$\dot{x}(t) = A_{\sigma(t)}x(t),$$
 (Sw.Lin)

where the switching signals  $\sigma$  are again selected in (a subclass of) S.

In this case a well-known result is that if the matrices  $A_1, \ldots, A_K$  are Hurwitz then there exists a (large enough)  $\tau > 0$  for which (Sw.Lin) is GAS on  $S_{dw}(\tau)$ .

**Problem:** Estimation of the minimal dwell-time  $\tau_{dw} > 0$  for which this hold...in general an hard problem.

Given a set S, we consider functions  $V:\mathbb{R}^n\to\mathbb{R}^{|S|}$  component-wise quadratic, that is

$$V_{\ell}(x) = x^{\top} P_{\ell} x, \quad \forall x \in \mathbb{R}^n,$$

where  $P_{\ell} \in \mathbb{R}^{n \times n}$  are positive definite, for any  $\ell \in S$ .



In this framework, once a  $\tau>0$  is fixed, the conditions encoded in edges are LMIs:

- The self loop  $(a, a, j) \in E \Rightarrow P_a A_j + A_j^\top P_a < 0$  (already seen somewhere ?)
- Edge  $(a, b, j) \in E \Rightarrow e^{A_j^\top \tau} P_b e^{A_j \tau} P_a < 0$ , and once we split "K-times": existence of  $P_0, \ldots, P_K > 0$ , with  $P_0 = P_a$ ,  $P_K = P_b$  such that

$$\begin{cases} P_k A_j + A_j^\top P_k - \frac{K}{\tau} (P_k - P_{k-1}) < 0, \\ P_{k-1} A_j + A_j^\top P_{k-1} - \frac{K}{\tau} (P_k - P_{k-1}) < 0 \end{cases}$$

for all  $k \in \{1, \ldots, K\}$ .

• Dwell Time Edge  $(a, b, j)^{dw} \in E^{dw} \Rightarrow$  once we split "K-times": existence of  $P_0, \ldots, P_K >$ , with  $P_0 = P_a$ ,  $P_K = P_b$  such that

$$\begin{cases} P_k A_j + A_j^\top P_k & -\frac{K}{s} (P_k - P_{k-1}) < 0, \\ P_{k-1} A_j + A_j^\top P_{k-1} & -\frac{K}{s} (P_k - P_{k-1}) < 0. \end{cases}$$

for any  $s \in \{\tau, 2\tau\}$ , for all  $k \in \{1, \dots, K\}$ .

| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            |             |
| Examp         | le                              |                                 |                                 |             |

Consider  $\mathcal{A} = \{A_1, A_2\} \subset \mathbb{R}^{2 \times 2}$ , with:

$$A_1 = \begin{bmatrix} -18 & 17 \\ -9 & 8 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 13 & -79 \\ 4 & -20 \end{bmatrix}.$$

| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            |             |
| Examp         | le                              |                                 |                                 |             |

Consider  $\mathcal{A} = \{A_1, A_2\} \subset \mathbb{R}^{2 \times 2}$ , with:

$$A_1 = \begin{bmatrix} -18 & 17 \\ -9 & 8 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 13 & -79 \\ 4 & -20 \end{bmatrix}.$$

The convex combination  $\frac{1}{2}A_1 + \frac{1}{2}A_2$  is non-Hurwitz, implying that the system is not stable under arbitrary switching.

| Prelin |      | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |
|--------|------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 000    | 0000 | 00000                           | 000                             | 0000                            |             |
| Ex     | ampl | е                               |                                 |                                 |             |

Consider  $\mathcal{A} = \{A_1, A_2\} \subset \mathbb{R}^{2 \times 2}$ , with:

$$A_1 = \begin{bmatrix} -18 & 17 \\ -9 & 8 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 13 & -79 \\ 4 & -20 \end{bmatrix}.$$

The convex combination  $\frac{1}{2}A_1 + \frac{1}{2}A_2$  is non-Hurwitz, implying that the system is not stable under arbitrary switching.

Using the switching signal  $\sigma = \{1, 2, 1, 2, ...\}$ , with a fixed switching time  $\tau = 0.3125$ , the system diverges, implying that  $\tau_{dw} > 0.3125$ .





| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            |             |
| Extima        | tion of $\tau_{dw}$             |                                 |                                 |             |

## Consider the (quite simple) path complete graph



| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            |             |
| Extima        | tion of $\tau_{dw}$             |                                 |                                 |             |

Consider the (quite simple) path complete graph



- Splitting 4 times the LMIs are feasible up to  $\tau = 0.8$ ,
- Splitting 50 times the LMIs are feasible up to  $\tau = 0.35$ ,
- Splitting 90 times the LMIs are feasible up to  $\tau = 0.345$ ,
- So we know that  $0.3125 < \tau_{\rm dw} \le 0.345$ .

| Preliminaries<br>0000000 | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example<br>0000 | Conclusions |
|--------------------------|---------------------------------|---------------------------------|-----------------------------------------|-------------|
| Conclu                   | sion                            |                                 |                                         |             |

• Multiple Lyapunov functions construction for continuous-time switched systems relying on path-complete graphs;

| Preliminaries | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example | Conclusions |
|---------------|---------------------------------|---------------------------------|---------------------------------|-------------|
| 0000000       | 00000                           | 000                             | 0000                            | •           |
| Conclu        | sion                            |                                 |                                 |             |

- Multiple Lyapunov functions construction for continuous-time switched systems relying on path-complete graphs;
- Conditions for stability under fixed time and dwell time policy; **Open Questions:** 
  - Linear Case : a converse Lyapunov theorem with quadratics only?

| Preliminaries<br>0000000 | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example<br>0000 | Conclusions<br>• |
|--------------------------|---------------------------------|---------------------------------|-----------------------------------------|------------------|
| Conclu                   | sion                            |                                 |                                         |                  |

- Multiple Lyapunov functions construction for continuous-time switched systems relying on path-complete graphs;
- Conditions for stability under fixed time and dwell time policy; **Open Questions:** 
  - Linear Case : a converse Lyapunov theorem with quadratics only?
  - A partial order relation between path-complete graphs (if you want, a hierarchy), to properly choose the set of LMIs/inequality to solve.

| Preliminaries<br>0000000 | Fixed-Time Stability Conditions | Dwell-Time Stability Conditions | Linear Sub-Dynamics and Example<br>0000 | Conclusions<br>• |
|--------------------------|---------------------------------|---------------------------------|-----------------------------------------|------------------|
| Conclu                   | sion                            |                                 |                                         |                  |

- Multiple Lyapunov functions construction for continuous-time switched systems relying on path-complete graphs;
- Conditions for stability under fixed time and dwell time policy; **Open Questions:** 
  - Linear Case : a converse Lyapunov theorem with quadratics only?
  - A partial order relation between path-complete graphs (if you want, a hierarchy), to properly choose the set of LMIs/inequality to solve.

## Thank you !! Questions ??

Go Aneel, finally you can destroy me.

And, since a certain moment l've to shoot a movie about this for the CDC, feedbacks on the slides are well accepted (of course I will remove all the bêtises.)