
Path-Complete Lyapunov Functions
for Continuous-Time Switched Systems

Matteo Della Rossa, Mirko Pasquini, David Angeli?

LAAS – CNRS, Toulouse, France
Department of Electrical and Electronic Engineering, Imperial College, London

?(Eh ouais, le communitarisme au Imperial College c’est bien pire que au 93.)
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Switching Systems

Consider I = {1, . . . ,K}, and a family F = {f1, . . . , fK} ⊂ C1(Rn,Rn) s.t.

ẋ = fi(x)

exhibits existence, uniqueness and (forward and backward) completeness, ∀i ∈ I.

We have to specify “how to switch” among these subsystems:

S := {σ : R+ → I | σ piecewise constant} .

Given a σ ∈ S we finally have the (time-dependent) switched system

ẋ(t) = fσ(t)(x(t)). (Sw.Sys)

Basically, switching systems are a subclass of non-autonomous differential
equations, piecewise constants w.r.t the time variable.
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Constrained Switching Policies

Instead of considering one prescribed σ ∈ S, we study the behavior of (Sw.Sys)
with respect to particular subclasses of S. In particular, given τ > 0:

Fixed-Time Switching Signals:

Sfix(τ) :=

{
σ ∈ S | t

σ
i − tσi−1
τ

∈ N, ∀tσi > 0

}
.

{tσi } denotes the sequence of switching instants of σ.

Dwell-Time Switching Signals:

Sdw(τ) :=
{
σ ∈ S | tσi − tσi−1 ≥ τ , ∀ tσi > 0

}
.

Of course, ∀ τ > 0,
Sfix(τ) ⊂ Sdw(τ)
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Stability Concepts

Stability w.r.t. a set of signals

Consider a set of switching signals Ŝ ⊂ S. The switched system (Sw.Sys) is said

to be uniformly globally asymptotically stable on Ŝ (GAS), if there exists an
β ∈ KL such that

|x(t, x0, σ)| ≤ β(|x0|, t),
for all σ ∈ Ŝ, for all x0 ∈ Rn and for all t ≥ 0.

Notation: x(t, x0, σ) denotes the solution of (Sw.Sys) starting at x0 ∈ Rn, with
respect to the signal σ ∈ S, evaluated at some time t ∈ R.

Idea: Find a common Lyapunov function that works for all the fi ∈ F ...very
restrictive.

Given a τ > 0, we want to study stability with respect to Sdw(τ) and Sfix(τ) using
a multiple Lyapunov construction based on graphs.
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Path-Complete Graphs

Given a discrete alphabet I ⊂ N, a direct and labeled graph G = (S,E) is defined
by a finite set S (the set of nodes) and E ⊂ S × S × I (the set of edges).

Path-Completeness

A graph G = (S,E) is path-complete for I if, for any K ≥ 1 and any “word”
j1 . . . jK , with jk ∈ I, there exists a path {(sk, sk+1, jk)}1≤k≤K such that
(sk, sk+1, jk) ∈ E, for each 1 ≤ k ≤ K.

Intuitively, a graph is path complete, if given any sequence in IN, we can
”reconstructing” it by “walking” thorough the (labeled) edges...let’s see some
pictures, it will be nicer...
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Example of Path-Complete Graph

Alphabet I = {1, 2}, S = {a, b}, E = {(a, a, 1), (a, b, 1), (b, b, 2), (b, a, 2)},

a b

1

2

1 2

It is path complete! (You can trust me or you can try the infinite (but countable)
sequence of 1 and 2.)
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Example of Path-Complete Graph 2

Alphabet I = {1, 2}, S = {a, b, c},
E = {(a, a, 1), (a, b, 2), (b, b, 2), (b, a, 1), (b, c, 2), (c, b, 2), (c, a, 1)},

a b

c

1

2

1

21

2

It is path complete! (You can trust me or you can try the infinite (but countable)
sequence of 1 and 2.)
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Example of Path-Complete Graph 2

Alphabet I = {1, 2}, S = {a, b, c},
E = {(a, a, 1), (a, b, 2), (b, b, 2), (b, a, 1), (b, c, 2), (c, b, 2)},

a b

c

1

2

1

2

2

It is NOT path complete! Any word of the form (1,2,2,1,...) can not be
reconstructed.
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The party is over!

So, now the funny part of my presentation is over! Now I will start talking about:

Non-differentiable functions,

Clarke’s Generalized Gradient,

Semicontinuous Differential Inclusions interconnected with non-linear Hybrid
Systems

But, worst of all, BMIs!!!!

No, I’m joking! But let’s stop playing with graphs. :)

Matteo Della Rossa (LAAS – CNRS, France) Au Revoir MAC ! 16/10/2020 9 / 22
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Fixed-Time Policy vs Discrete Time Switched System

Let us recall

Sfix(τ) :=

{
σ ∈ S | t

σ
i − tσi−1
τ

∈ N, ∀tσi > 0

}
,

Thus, stability of switched systems under fixed time is equivalent to stability of
the discrete-time switched system

x+ ∈ co {φj(τ, x) | j ∈ I} ,

where φj : R× Rn → Rn denotes the flow map of the subsystem ẋ = fj(x).

We can have the following adaptation of results concerning path-complete graph
and discrete-time switched system.
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Encoding inequalities in labeled and directed graphs

Candidate vector-valued Lyapunov function

Given a finite set S, a candidate vector-valued Lyapunov function is a map
V : Rn → R|S|, such that, ∀` ∈ S, V` ∈ C1(Rn,R) and ∃α`, α` ∈ K∞ such that

α`(|x|) ≤ V`(x) ≤ α`(|x|), ∀x ∈ Rn.

Given τ > 0 and F = {fj}j∈I , a candidate vector-valued Lyapunov function
V : Rn → R|S| and a ρ ∈ PD; given a, b ∈ S and j ∈ I, we define a set of
labeled edges “E” between nodes in S according to the rule

(a, b, j)τ ∈ E, means Vb(φj(τ, x))− Va(x) ≤ −ρ(|x|), ∀x ∈ Rn.

Intuitevely: Fixing any c > 0 and considering the corresponding sublevel set of
Va defined by La(c) := {x ∈ Rn | Va(x) ≤ c}, solutions of ẋ = fj(x) reach the
sublevel set Lb(c) of Vb by in time τ > 0 (with a margin given by ρ).
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Path-Complete Lyapunov Functions (Fixed Time)

Fixed-Time Lyapunov Direct Result

Consider a τ > 0, F = {fj}j∈I ⊂ C1(Rn,Rn) a function ρ ∈ PD, a finite set S,
and V : Rn → R|S| a candidate vector-valued Lyapunov function. If the
associated graph G = (S,E) is path-complete for I then switched
system (Sw.Sys) is globally asymptotically stable on Sfix(τ).

Sketch of the proof: For any σ ∈ Sfix(τ), we “recursively” construct a
continuous function U : R+ × Rn → Rn decreasing along solutions, “gluing” the
node functions V` on intervals of lenght τ , following the “word” accociated to σ.

τ tσ
1

tσ
2

tσ
3

tσ
4

tσ
5

1

2

3 σ(t)

1 1 1 2 2 2 2 1 2 2 3 3 3 2

t

I

An example of switching signal σ : R+ → I := {1, 2, 3}, σ ∈ Sfix(τ) and the
associated word, that is, the sequence (1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 3, 3, 2, . . . ) ∈ IN.
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node functions V` on intervals of lenght τ , following the “word” accociated to σ.

τ tσ
1

tσ
2

tσ
3

tσ
4

tσ
5

1

2

3 σ(t)

1 1 1 2 2 2 2 1 2 2 3 3 3 2

t

I

An example of switching signal σ : R+ → I := {1, 2, 3}, σ ∈ Sfix(τ) and the
associated word, that is, the sequence (1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 3, 3, 2, . . . ) ∈ IN.
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Relaxed Conditions: “Splitting Edges”

The strength of Lyapunov direct results lies in the fact that (asymptotic) stability
is ensured without computing the solutions. On the other hand inequality encoded
in a generic arch (a, b, j), depends on the solutions of ẋ = fj(x) at time τ .

Consider fj ∈ F , τ > 0 and K ∈ N. Suppose there exist V0, . . . , VK ∈ C1(Rn,R)
positive definite (V0 ≡ Va, VK ≡ Vb) and ρ̃ ∈ PD such that{

∇Vk(x) · fj(x) + K(Vk(x)−Vk−1(x))
τ ≤ −ρ̃(|x|), ∀x ∈ Rn,

∇Vk−1(x) · fj(x) + K(Vk(x)−Vk−1(x))
τ ≤ −ρ̃(|x|), ∀x ∈ Rn.

This implies that there exists a ρ ∈ PD such that

Vb(φj(τ, x))− Va(x) ≤ −ρ(|x|), ∀ x ∈ Rn.

Roughly speaking, increasing K ∈ N, i.e. the number of “auxiliary” functions
between Va ≡ V0 and Vb ≡ VK , we decrease the conservatism in proving
(a, b, j) ∈ E
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Sketch of the Proof

W.l.o.g. case K = 1 (no auxiliary functions between Va and Vb). Define
W : [0, τ ]× Rn → R by

W (t, x) :=
τ − t
τ

Va(x) +
t

τ
Vb(x) ∀t ∈ [0, τ ].

Computing the derivative of W along the solution x(t) := φj(t, x) we have

Ẇ (t, x(t)) = 〈∂W
∂x

(t, x(t)), fj(x(t))〉+
∂W

∂t
(t, x(t))

=
τ − t
τ
〈∇Va(x(t)), fj(x(t))〉+

t

τ
〈∇Vb(x(t)), fj(x(t))〉+

Vb(x(t))− Va(x(t))

τ

=
τ − t
τ

(
〈∇Va(x(t)), fj(x(t))〉+

Vb(x(t))− Va(x(t))

τ

)
+
t

τ

(
〈∇Vb(x(t)), fj(x(t))〉+

Vb(x(t))− Va(x(t))

τ

)
≤ −ρ̃(|x(t)|).

Thus W (τ, x(τ))−W (0, x(0)) = Vb(x(τ))− Va(x) ≤ −ρ(|x|).
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Dwell-Time: Reinforcing the Edges

In order to provide a dwell time counterpart of the previous theorem, we need to
reinforce the conditions encoded in a generic edge.

We say that there is a “dwell time” edge (a, b, j)dw
τ ∈ Edw if

Vb(φj(t, x))− Va(x) ≤ −ρ(|x|), ∀x ∈ Rn, ∀ t ∈ [τ, 2τ).

Intuitively: Fixing any c > 0 and considering the corresponding sublevel set of Va
defined by La(c) := {x ∈ Rn | Va(x) ≤ c}, solutions φj(·, x) starting in La(c) not
only reach the sublevel set Lb(c) in time τ , but also remain inside it for at least an
interval of length τ .
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Stability Result for Dwell-Time

Corollary

Consider a finite set S, and V : Rn → R|S| a candidate vector-valued function.
Consider a τ > 0. Suppose the associated graph G = (S,Edw) is path-complete
for I. Then system (Sw.Sys) is GAS on Sdw(τ).

The proof follows similar ideas, just splitting each interval [tσi , t
σ
i+1], in n(i)− 1

sub-intervals of length τ , and the last one of length in [τ, 2τ). (Defining

n(i) := b t
σ
i −t

σ
i−1

τ c) which is ≥ 1 by definition of Sdw(τ).

1

2

3 σ(t)

τ τ τ
tσ1 tσ2

t

I

Then the construction of the decreasing W : R+ × Rn → R is the same.
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Splitting Edges, Dwell-Time Case

Again, we need a way to ensure (a, b, j)dw ∈ Edw without computing solutions.

Splitting Edges

Consider fj ∈ F , τ > 0 and K ∈ N. Suppose there exist V0, . . . , VK ∈ C1(Rn,R)
(V0 ≡ Va, VK ≡ Vb) and ρ̃ ∈ PD such that{

∇Vk(x) · fj(x) + K(Vk(x)−Vk−1(x))
s ≤ −ρ̃(|x|), ∀x ∈ Rn,

∇Vk−1(x) · fj(x) + K(Vk(x)−Vk−1(x))
s ≤ −ρ̃(|x|), ∀x ∈ Rn,

for both s = τ and s = 2τ , and for all k ∈ {1, . . . ,K}. This implies that
(a, b, j)dw

τ ∈ Edw.

Basically, for each edge, we require to verify 4K inequalities involving gradients of
some auxiliary functions (V0, . . . VK ∈ C1(Rn,R)). Main drawback: the number of
inequalities increases rapidly as we increase the number of nodes and K, as
required to reduce conservativeness.
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Linear Switched Systems

Consider A = {A1, . . . , AK} ⊂ Rn×n, we define the linear switched system, as

ẋ(t) = Aσ(t)x(t), (Sw.Lin)

where the switching signals σ are again selected in (a subclass of) S.

In this case a well-known result is that if the matrices A1, . . . , AKare Hurwitz
then there exists a (large enough) τ > 0 for which (Sw.Lin) is GAS on Sdw(τ).

Problem: Estimation of the minimal dwell-time τdw > 0 for which this hold...in
general an hard problem.

Given a set S, we consider functions V : Rn → R|S| component-wise quadratic,
that is

V`(x) = x>P`x, ∀x ∈ Rn,

where P` ∈ Rn×n are positive definite, for any ` ∈ S.
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ẋ(t) = Aσ(t)x(t), (Sw.Lin)

where the switching signals σ are again selected in (a subclass of) S.

In this case a well-known result is that if the matrices A1, . . . , AKare Hurwitz
then there exists a (large enough) τ > 0 for which (Sw.Lin) is GAS on Sdw(τ).

Problem: Estimation of the minimal dwell-time τdw > 0 for which this hold...in
general an hard problem.

Given a set S, we consider functions V : Rn → R|S| component-wise quadratic,
that is

V`(x) = x>P`x, ∀x ∈ Rn,

where P` ∈ Rn×n are positive definite, for any ` ∈ S.

Matteo Della Rossa (LAAS – CNRS, France) Au Revoir MAC ! 16/10/2020 18 / 22



Preliminaries Fixed-Time Stability Conditions Dwell-Time Stability Conditions Linear Sub-Dynamics and Example Conclusions

Linear Switched Systems

Consider A = {A1, . . . , AK} ⊂ Rn×n, we define the linear switched system, as
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Edges and LMIs (I underline LMIs, not BMIs :) )

In this framework, once a τ > 0 is fixed, the conditions encoded in edges are LMIs:

The self loop (a, a, j) ∈ E ⇒ PaAj +A>j Pa < 0 (already seen somewhere ?)

Edge (a, b, j) ∈ E ⇒ eA
>
j τPbe

Ajτ − Pa < 0, and once we split “K-times”:
existence of P0, . . . , PK > 0, with P0 = Pa, PK = Pb such that{

PkAj + A>j Pk − K
τ (Pk − Pk−1) < 0,

Pk−1Aj +A>j Pk−1 − K
τ (Pk − Pk−1) < 0.

for all k ∈ {1, . . . ,K}.
Dwell Time Edge (a, b, j)dw ∈ Edw ⇒ once we split “K-times”:
existence of P0, . . . , PK >, with P0 = Pa, PK = Pb such that{

PkAj +A>j Pk −Ks (Pk − Pk−1) < 0,

Pk−1Aj +A>j Pk−1 −Ks (Pk − Pk−1) < 0.

for any s ∈ {τ, 2τ}, for all k ∈ {1, . . . ,K}.
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Example

Consider A = {A1, A2} ⊂ R2×2, with:

A1 =

[
−18 17
−9 8

]
, A2 =

[
13 −79
4 −20

]
.

The convex combination 1
2A1 +

1
2A2 is non-Hurwitz, implying that the system is

not stable under arbitrary switching.

Using the switching signal σ = {1, 2, 1, 2, . . . }, with a fixed switching time
τ = 0.3125, the system diverges, implying that τdw > 0.3125.

But A1, A2 are Hurwitz, we can
estimate the minimal dwell time (that
we now know bigger than 0.3125).
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Extimation of τdw

Consider the (quite simple) path complete graph

a b

1

2

1 2

Splitting 4 times the LMIs are feasible up to τ = 0.8,

Splitting 50 times the LMIs are feasible up to τ = 0.35,

Splitting 90 times the LMIs are feasible up to τ = 0.345,

So we know that 0.3125 < τdw ≤ 0.345.
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Conclusion

Summary:

Multiple Lyapunov functions construction for continuous-time switched
systems relying on path-complete graphs;

Conditions for stability under fixed time and dwell time policy;

Open Questions:

Linear Case : a converse Lyapunov theorem with quadratics only?

A partial order relation between path-complete graphs (if you want, a
hierarchy), to properly choose the set of LMIs/inequality to solve.

Thank you !! Questions ??

Go Aneel, finally you can destroy me.

And, since a certain moment I’ve to shoot a movie about this for the CDC,
feedbacks on the slides are well accepted (of course I will remove all the bêtises.)
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