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Introduction Motivation

Many applications as Aircrafts, Satellites and Underwater Vehicles.

Regulated plant generally contains torques/forces as inputs, also called
virtual inputs.

The virtual input is generated by a set of multiple actuators, for example
microthrusters in space applications.

Each actuator might present constraints.
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Introduction Motivation

Needs to search for an adequate algorithm that:

I Is capable of generating (as much as possible) the computed control
effort in view of the constraints.

I Takes advantage of redundancy to include additional optimization crite-
ria.

I Of course, guarantees stability and some level of performance.

Thiago Lima, Sophie Tarbouriech LAAS-CRNS, France November 13, 2020 4 / 32



Introduction Motivation

Needs to search for an adequate algorithm that:

I Is capable of generating (as much as possible) the computed control
effort in view of the constraints.

I Takes advantage of redundancy to include additional optimization crite-
ria.

I Of course, guarantees stability and some level of performance.

Thiago Lima, Sophie Tarbouriech LAAS-CRNS, France November 13, 2020 4 / 32



Introduction Motivation

Needs to search for an adequate algorithm that:

I Is capable of generating (as much as possible) the computed control
effort in view of the constraints.

I Takes advantage of redundancy to include additional optimization crite-
ria.

I Of course, guarantees stability and some level of performance.

Thiago Lima, Sophie Tarbouriech LAAS-CRNS, France November 13, 2020 4 / 32



Introduction Motivation

Needs to search for an adequate algorithm that:

I Is capable of generating (as much as possible) the computed control
effort in view of the constraints.

I Takes advantage of redundancy to include additional optimization crite-
ria.

I Of course, guarantees stability and some level of performance.

Thiago Lima, Sophie Tarbouriech LAAS-CRNS, France November 13, 2020 4 / 32



Problem Formulation General view

C F M P •• •

•

r = 0 yc yf up yp
+
+

- +

Nonlinear actuator

ϕ(yf )

Figure: General view of control allocation problem.

Subsystems C, F , and P are the controller, the control allocator, and
the plant, respectively.

The plant is driven by up in Rmc inputs. The controller computes a set
of desired yc in Rmc efforts to be injected in ideal conditions.

ma ≥ mc actuators, represented by the signal yf in Rma .
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Problem Formulation General view

C F M P •• •
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r = 0 yc yf up yp
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Figure: General view of control allocation problem.

The plant input is given by up = Msat(yf ) with the decentralized
saturation function being defined as

sat(yf (i)) = sign(yf (i)) min{|yf (i)|,u(i)},u(i) > 0, (1)

for i = 1, . . . ,ma, where u(i) denotes the amplitude bound in each
actuator.

The influence matrix M in Rmc×ma maps how each individual effort of
the ma actuators combines to generate the inputs acting on the plant.
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Problem Formulation General view

The simplest allocation function often considered is given by:

F = M†, with MM† = I (2)

No allocation error is produced when the system is not saturated due
to up = MM†yc = yc =⇒ e = up − yc = 0. However:

I Does not take advantage of the multi-actuated nature of the system to
redistribute control effort among desired actuators.

I In the presence of nonlinearities as saturation, the produced error is no
longer null and guarantees of stability of the closed loop, as well as
estimation of regions of safe operation, need to be assured.

Therefore, more complex allocation functions with the ability to handle
redundancy and constraints should be applied.
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Problem Formulation Plant and Controller

The plant is described by

P ∼
{
ẋp = Apxp + Bpup,

yp = Cpxp,
(3)

where xp in Rnp is the plant state vector, up in Rmc is the plant input,
yp in Rq is the measured output.

The controller is described by

C ∼
{
ẋc = Acxc + Bcyp + vaw ,

yc = Ccxc + Dcyp,
(4)

where xc in Rnc is the controller state vector and yc in Rmc is the
controller output.
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ẋc = Acxc + Bcyp + vaw ,

yc = Ccxc + Dcyp,
(4)

where xc in Rnc is the controller state vector and yc in Rmc is the
controller output.

Thiago Lima, Sophie Tarbouriech LAAS-CRNS, France November 13, 2020 8 / 32



Problem Formulation Plant and Controller

The controller is linearly designed via the connection up = yc , that is
without taking into account the saturation and with F = M†.

The anti-windup compensation signal vaw = Ecϕ(yf ), Ec in Rnc×ma ,
is added in order to mitigate the undesired effects of saturation, with
the deadzone ϕ(yf ) defined as

ϕ(yf ) = sat(yf )− yf , (5)

Remark 1

By construction, the linear connection plant-controller is supposed to be
stable. In other words, the controller (4) (with vaw = 0) stabilizes the plant
(3) through the linear interconnection up = yc and therefore the matrix

A0 =

[
Ap + BpDcCp BpCc

BcCp Ac

]
in R(np+nc )×(np+nc ) (6)

is Hurwitz.
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Problem Formulation Dynamic Allocation

Let N in Rma×nf , nf = ma − mc , be a basis for the Kernel of M, i.e.
MN = 0. We consider the following dynamic allocation function

F ∼
{
ẋf = KfN

>WNxf + KfN
>WM†yc + Ef ϕ(yf ),

yf = Nxf + M†yc ,
(7)

where xf in Rnf is the allocator state vector, and yf in Rma is the
allocator output.

W=diag(w1,w2, . . . ,wma) in S+ma
is a matrix which receives the weight-

ings that penalizes the use of each actuator.

Matrices Kf in Rnf×nf and Ef in Rnf×ma must be designed to achieve
desired behavior.
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Problem Formulation Dynamic Allocation

This allocator is in some sense optimal in terms of both the allocation
error and actuators usage, as explained in the next two remarks.

Remark 2

Consider the general expression yf = Cf xf + Df yc , and let us define the
allocator error as e = up − yc . Then using the definition of ϕ(yf ) in (5),
the expression e = (MDf − I) yc + MCf xf + Mϕ(yf ) is easily obtained. It
is straightforward to see that the choice Df = M†, Cf = N leads to
e = Mϕ(yf ), therefore the error is null in absence of saturation.
Furthermore, by guaranteeing convergence of the extended vector

x =
[
x>p x>c x>f

]>
to the origin, we always obtain e∗ = 0, where e∗ is

the steady-state value of e.

Thiago Lima, Sophie Tarbouriech LAAS-CRNS, France November 13, 2020 11 / 32



Problem Formulation Dynamic Allocation

This allocator is in some sense optimal in terms of both the allocation
error and actuators usage, as explained in the next two remarks.

Remark 2

Consider the general expression yf = Cf xf + Df yc , and let us define the
allocator error as e = up − yc . Then using the definition of ϕ(yf ) in (5),
the expression e = (MDf − I) yc + MCf xf + Mϕ(yf ) is easily obtained. It
is straightforward to see that the choice Df = M†, Cf = N leads to
e = Mϕ(yf ), therefore the error is null in absence of saturation.
Furthermore, by guaranteeing convergence of the extended vector

x =
[
x>p x>c x>f

]>
to the origin, we always obtain e∗ = 0, where e∗ is

the steady-state value of e.

Thiago Lima, Sophie Tarbouriech LAAS-CRNS, France November 13, 2020 11 / 32



Problem Formulation Dynamic Allocation

This allocator is in some sense optimal in terms of both the allocation
error and actuators usage, as explained in the next two remarks.

Remark 3

Consider the cost function

min
xf

T(yf ) = y>f Wyf subject to yf = Nxf + M†y∗c , (8)

where y∗c is any controller output. The optimal solution to (8) is given by
xf = −(N>W>N)−1N>WM†y∗c , which corresponds to the steady-state
value of xf in (7).
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Problem Formulation Dynamic Allocation

The allocator in this work generalizes the one from [1]:

I Considers the case ma ≥ mc and influence matrix M.

I Adds anti-windup gains directly to the formulation.

I Methodology to do co-design via linear matrix inequalities.

Remark 4 (Case when ma = mc and M = I)

In some papers the influence matrix M enters the plant model. In this
case, ma = mc , the system has more inputs than states (mc > np) and the
input-redundancy nature of the plant is explicit. All the results in this
paper can straightforwardly be applied in this case by making M = I and
choosing N as a base for the null space of Bp, that is, BpN = 0.

[1] L. Zaccarian, “Dynamic allocation for input redundant control systems,” Automatica,
vol. 45, no. 6, pp. 1431 –1438, 2009, issn: 0005-1098.
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Problem Formulation Closed-loop system

The complete closed-loop system with x =
[
x>p x>c x>f

]>
in Rn,

n = np + nc + nf , can be written as{
ẋ = (A + LfKfC)x + (B + LE)ϕ(yf )

yf = Cx
(9)

where

A =

[
A0 0
0 0

]
,B =

[
BpM

0

]
,E =

[
Ec

Ef

]
,C= N>WC

L =

0np×nc

Lf =︷ ︸︸ ︷
0np×nf

Inc 0nc×nf
0nf×nc Inf

 ,C =
[
M†DcCp M†Cc N

]
,

with A0 defined in (6).

Thiago Lima, Sophie Tarbouriech LAAS-CRNS, France November 13, 2020 14 / 32



Problem Formulation Closed-loop system

The presence of the deadzone in the closed-loop dynamics (9) implies
to characterize a suitable region of the state space in which the stability
is ensured.

Then the problem we intend to solve can be summarized as follows.

Problem 1

Given the controller matrices Ac , Bc , Cc , Dc , and the weighting matrix
W, design matrices Kf , Ef and Ec , such that

i the regional asymptotic stability of the closed-loop system (9) is ensured and
the estimate of the region of attraction is maximized.

ii the total energy consumption of the actuators over time is minimized.
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Main Results Design

The following theorem provides a solution to Problem 1.

Theorem 1

Assume the existence of matrices P in S+n , Jo in R(np+nc )×(np+nc ), Jf in
Rnf×n, Kf in Rnf×nf , Ke in R(nc+nf )×ma , G in Rma×n, diagonal matrix
S = S> in S+ma

and positive scalar γ such that

Ψ =


−J−J

>
P+ AJ

>
+ Z−J Ψ13 0

? AJ
>

+ Z +JA>+ Z> Ψ23 JC>W
1
2

? ? −2S SW
1
2

? ? ? −γI

 ≺ 0,

[
P G

>
(i)

? u2(i)

]
� 0,

(10)

hold with Ψ13 = BS + LKe , Ψ23 = Ψ13 +G
> −JC> and where

J=
[
C
⊥
J>o J>f

]>
in Rn×n, C

⊥
in Rn×(np+nc ) is a matrix such that

CC
⊥

= 0, and Z =diag(0np+nc ,Kf ).
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Main Results Design

Theorem 1 - Continuation

Then, matrices E =
[
E>c E>f

]>
= KeS

−1, Kf =Kf

(
CJ>f

)−1
are solution

to Problem 1. In other words:

1 the closed-loop system (9) is asymptotically stable in the ellipsoid

ε(P, 1) = {x in Rn; x>Px ≤ 1}, with P = JPJ> and J = J
−1

;

2 the energy of the actuators usage signal is limited and given by∫∞
0

sat(yf (τ))>Wsat(yf (τ))dτ ≤ γ.
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Main Results Design

The proof is based in the application of the following inequality:

1︷ ︸︸ ︷
V̇(x)−

2︷ ︸︸ ︷
2ϕ>(yf )S−1[ϕ(yf ) + θ] +

3︷ ︸︸ ︷
γ−1sat(yf )>Wsat(yf ) < 0, (11)

I 1 comes from a quadratic Lyapunov function V(x) = x>Px , with P � 0.

I 2 comes from the application of the generalized sector condition, with
θ = Cx −Gx and S a diagonal matrix in S+n . The first item in Theorem
1 is guaranteed by (11) and a inclusion of the level set ε(P, 1) = {x in
Rn; x>Px ≤ 1} in a set obtained from the application of the generalized
sector condition.

I 3 is used to ensure some bound in the energy of signal sat(yf ) and leads
to the second item in Theorem 1.
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Main Results Design

Similarly to the problem of SOF (static output feedback) design, the
presence of the term C in Rnf×n multiplying Kf in the closed loop (9)
could complicate the gathering of convex conditions for the computa-
tion of the unknown variables.

This problem was overcame by the application of Finsler’s Lemma with
a special format given to the Lagrange multipliers.

I Details on the proof can be found in [2].

[2] T. A. Lima, S. Tarbouriech, F. G. Nogueira, et al., “Co-design of dynamic allocation
functions and anti-windup,” working paper or preprint, 2020.
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Main Results Design

Remark 5 (On the choice of matrix W)

It can be noted from Remark 3 and item ii) of Theorem 1 that the entries
of the matrix W are inversely proportional to the level of usage of the
actuator. Although the user can specify any desired value wi > 0, one
promising choice in the case the level of saturation of the different
actuators is different is to make wi = u−1(i) .

Remark 6 (Global stability case)

In case the plant state matrix Ap is Hurwitz stable, global stability of the
closed loop can be achieved and the design of Kf , Ef , Ec can also be
realized by solving LMI (10) with G= 0.
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Main Results Optimization Issues

Minimization of γ leads to minimization of the energy of sat(yf (t)).

Minimization of the trace of P leads to maximization of the ellipsoid
ε(P, 1).

By considering an auxiliary matrix P0 � 0, and inequality[
P0 I

? J+J
> −P

]
� 0, (12)

the following optimization problem can be formulated:

Optimization problem

Consider weighting parameters ρ1, ρ2. Then the following optimization
procedure takes place in case of Theorem 1

min ρ1λ+ ρ2γ

subject to (10), (12),P0 � λI
(13)
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Simulation Results Example 1

Plant from [1], with saturation limits given by u =
[

1 0.01 0.02
]>

.[
Ap Bp

Cp Dp

]
=

 −0.157 −0.094 0.87 0.253 0.743
−0.416 −0.45 0.39 0.354 0.65

0 1 0 0 0

 .

[1] inserts an integrator and designs a stabilizing LQG controller which
purposefully only uses the first two input channels. The resulting con-
troller is given by

[
Ac Bc

Cc Dc

]
=



−1.57 0.5767 0.822 −0.65 0
−0.9 −0.501 −0.94 0.802 0

0 1 −1.61 1.614 0
0 0 0 0 −1

1.81 −1.2 −0.46 0 0
−0.62 1.47 0.89 0 0

0 0 0 0 0


.

[1] L. Zaccarian, “Dynamic allocation for input redundant control systems,” Automatica,
vol. 45, no. 6, pp. 1431 –1438, 2009, issn: 0005-1098.
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Simulation Results Example 1

For this example, ma = mc and M = I. We select then N as the Kernel

of Bp, resulting in N =
[
−0.4726 −1.3143 1

]>
.

The entries of matrix W are chosen as wi = u−1(i) .

By running the developed methods we obtain Kf = −2.4992 and

[
Ec

Ef

]
=


−0.8972 −0.1642 −0.7012
−0.3176 −0.3523 −0.6356
−0.5494 0.0361 −0.0159
−0.5607 0.2415 0.1140

−0.5958 −0.0456 −0.6322

 .
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Simulation Results Example 1

We simulate the system response for an initial condition xp(0) =[
0 1

]>
, with xc(0) = 0 and xf (0) = 0

0 10 20 30
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1

0 10 20 30

-1
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0

0.5

0 10 20 30

0

0.4

0.8
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Simulation Results Example 2

Satellite formation flying control problem from [3].

yp represents the relative position between two satellites in z − axis.

The process can be represented by the following model

[
Ap Bp

Cp Dp

]
=

 0 1 0 0

0 0 m−11 −m−12

1 0 0 0

 ,
Two forces act individually in each satellite, and are generate by a set
of 8 thrusters.

[3] J. Boada, C. Prieur, S. Tarbouriech, et al., “Formation flying control for satellites:
Anti-windup based approach,” in Modeling and Optimization in Space Engineering, G.
Fasano and J. D. Pintér, Eds., New York, NY: Springer New York, 2013, pp. 61–83, isbn:
978-1-4614-4469-5.
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Simulation Results Example 2

The influence matrix is given by M =

[
M1 0
0 M2

]
, with M1 = M2 =[

1 −1 −1 1
]

ui = 50 mN, i = 1, . . . , 8.

After choosing m1 = m2 = 1000 kg , a stabilizing LQG controller is
designed.

[
Ac Bc

Cc Dc

]
=


−1.7321 1 1.7321
−1.0014 −0.0532 1

−0.7071 −26.6009 0
0.7071 26.6009 0

 .
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Simulation Results Example 2

We then compute M†=0.25diag(M>1 ,M
>
2 ), N = diag(N1,N2), with

N1=N2=

[
1 1 −1

I3

]

We choose W=diag(100, 1, . . . , 1), that is we want to penalize the use
of the first actuator.

Using optimization procedure (13) with weights ρ1 = 1, ρ2 = 0.15, we
obtain

Kf =



−1.1684 0.6813 −0.4766 0.0034 0.0034 −0.0034
0.7282 −1.0438 −0.3054 0.0249 0.0249 −0.0249
−0.4528 −0.3418 −0.8017 0.0284 0.0284 −0.0284
−0.0200 0.0792 0.0584 −0.8628 0.1381 −0.1381
−0.0200 0.0792 0.0584 0.1381 −0.8628 −0.1381
0.0200 −0.0792 −0.0584 −0.1381 −0.1381 −0.8628

 ,
(14)
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Simulation Results Example 2

[
Ec

Ef

]
=



0.0019 −0.0000 0.0394 −0.0193 0.0325 −0.0411−0.0411 0.0411
−0.0002−0.0047 0.0142 −0.0043 0.0118 −0.0160−0.0160 0.0160

1.2781 0.0144 0.1663 −0.0741 0.1006 0.1297 0.1297 −0.1297
−0.6243−0.0044−0.0738 0.3141 0.2881 −0.0918−0.0918 0.0918
0.7725 0.0088 0.0736 0.2114 0.3749 0.0720 0.0720 −0.0720
−0.9763−0.0119 0.0949 −0.0674 0.0721 0.9519 −0.3357 0.3357
−0.9763−0.0119 0.0949 −0.0674 0.0721 −0.3357 0.9519 0.3357
0.9763 0.0119 −0.0949 0.0674 −0.0721 0.3357 0.3357 0.9519


(15)
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Simulation Results Example 2

Simulation for xp(0) =
[
−0.25 0

]>
, with xc(0) = 0 and xf (0) = 0.

0 20 40 60 80 100 120 140 160 180

-0.2

-0.1

0

0 20 40 60 80 100 120 140 160 180
-0.05

0

0.05

0 20 40 60 80 100 120 140 160 180
-0.05

0

0.05

Figure: Example 2: Output and actuators .

Both strategies stabilize the system, however the dynamic allocation
successfully reduces the usage of the penalized actuator.
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Conclusions

Contributions

Co-design of dynamic allocation functions along with anti-windup.

The Allocation+AW problem is solved simultaneously, unlike previous
formulations.

Introduction of influence matrix M to the dynamic allocator formulation
from [1], allowing to deal with broader range of cases.

Guaranteed convergence of the allocator error to zero, avoiding waste
of energy.

[1] L. Zaccarian, “Dynamic allocation for input redundant control systems,” Au-
tomatica, vol. 45, no. 6, pp. 1431 –1438, 2009, issn: 0005-1098.

Future Research

Consideration of other nonlinearities.

The case of event-triggered control.
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Summary of LAAS séjour

Allocation

“Energy based design of dynamic allocation in the presence of satu-
rating actuators,” Accepted for Proceedings of the 24th International
Symposium on MTNS, August 2021.

“Co-design of dynamic allocation functions and anti-windup,” preprint
submitted to IEEE CSS Letters.

Time delays

“Analysis and experimental application of a dead-time compensator for
input saturated processes with output time-varying delays,” Accepted
for publication at IET Control Theory and Applications.

“New predictor-based stabilization for systems with time-varying de-
lays,”, preprint under work.
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