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Dynamic output feedback stabilization

Consider a nonlinear control system with measured output:{
ẋ = f (x , u)
y = h(x)

(1)

where x is the state, y is the output and u is the control.

Semi-global dynamic output feedback stabilization problem:
For each compact set K ⊂ Rn, find a dynamic output feedback{

˙̂x = f̂ (x̂ , u, y)
u = λ(x̂ , y)

(2)

and a compact set K̂ such that (, 0) is an asymptotically stable
equilibrium with basin of attraction containing K × K̂ of (1)-(2).

Control value at equilibrium: u ≡ λ(0, h()).
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Consider a nonlinear control system with measured output:{
ẋ = f (x , u)
y = h(x)

(1)

where x ∈ Rn is the state, y ∈ R is the output and u ∈ R is the control.
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Dynamic output feedback stabilization

State feedback stabilization problem: Find a feedback λ such that the
origin is a globally asymptotically stable equilibrium point of the vector
field x 7→ f (x , λ(x)).

Idea: Design an observer system

˙̂x = f̂ (x̂ , u, y) (3)

such that x̂ − x → 0 for all initial conditions in K × K̂ and use the control
u = λ(x̂) with λ globally stabilizing. The closed-loop system is given by

ẋ = f (x , λ(x̂))
y = h(x)
˙̂x = f̂ (x̂ , λ(x̂), y).

(4)
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Dynamic output feedback stabilization

Summary of the strategy:

1. Find a globally stabilizing state feedback,
2. Design an observer,
3. Show that dynamic output feedback stabilization is achieved.

Definition 1 (Observability and Uniform observability).
A control system with measured output is said to be observable in time
T > 0 and for a given input u if for all pair of initial conditions (x1, x2),{

∀t ∈ [0,T ], y(t; x1) = y(t; x2)
}

=⇒ x1 = x2. (5)

If it is observable for any time T > 0 and for any input u, then it is said
to be uniformly observable in small time.
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Figure 1: Dynamic output feedback stabilization diagram
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Figure 1: Observability
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Uniform observability

Theorem 1 (A. Teel and L. Praly 1994).
If a system is

• globally state feedback stabilizable
• and uniformly observable in small time,

then it is also semi-globally stabilizable by dynamic output feedback.

Problem: It is not generic for a dynamical system to be uniformly
observable (Gauthier and Kupka 2001).

What if there is no uniform observability?
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Non-uniformly observable systems

We distinguish 2 cases:

1. The system is not uniformly observable, but the target point
corresponds to an input that makes the system observable.

2. The control is singular at the target point.
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Non-uniformly observable systems

We distinguish 2 cases:

1. The system is not uniformly observable, but the target point
corresponds to an input that makes the system observable.
Example:

ẋ =
(

0 1 + u
−1 0

)
x , y =

(
1 0

)
x .

Observability matrix: (
C
CA

)
=
(
1 0
0 1 + u

)
.

The pair (C ,A) is observable for u ≡ λ(0) = 0, but not for u = −1.
2. The control is singular at the target point.

Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 6 / 24



Introduction
Observable target

Unobservable target
Conclusion

Dynamic output feedback stabilization
Uniform observability
Non-uniformly observable systems
Feedback perturbation

Non-uniformly observable systems

We distinguish 2 cases:

1. The system is not uniformly observable, but the target point
corresponds to an input that makes the system observable.
Example:
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Feedback perturbation

Objective: Get observability of the chosen control u.

General idea: Feedback modification

u = λ(x̂) −→ u = λ̃(x̂).

• Time-varying feedback
• Excite the system to estimate the state, then control to stabilize, and

start again...
• Coron 1994: local stabilization
• Shim and Teel 2003: practical stabilization

• Smooth autonomous perturbation
• Lagache, Serres, and Gauthier 2017: additive perturbation

u = (λ+ δ) ◦ x̂ .
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Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

1. Show that there exists a (smooth) small perturbation δ of λ such
that the control (λ+ δ) ◦ x̂ makes the system observable.

2. Show that with this control, the observer converges to the state
(and remains in a fixed compact set).

3. Show that we achieve stabilization.

Remarks:

• Example of quantum control;
• Unobservable target;
• Practical stabilization and exact stabilization.

Towards a generalization?
Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 8 / 24



Introduction
Observable target

Unobservable target
Conclusion

Dynamic output feedback stabilization
Uniform observability
Non-uniformly observable systems
Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

1. Show that there exists a (smooth) small perturbation δ of λ such
that the control (λ+ δ) ◦ x̂ makes the system observable.

2. Show that with this control, the observer converges to the state
(and remains in a fixed compact set).

3. Show that we achieve stabilization.

Remarks:

• Example of quantum control;
• Unobservable target;
• Practical stabilization and exact stabilization.

Towards a generalization?
Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 8 / 24



Introduction
Observable target

Unobservable target
Conclusion

Dynamic output feedback stabilization
Uniform observability
Non-uniformly observable systems
Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

1. Show that there exists a (smooth) small perturbation δ of λ such
that the control (λ+ δ) ◦ x̂ makes the system observable.

2. Show that with this control, the observer converges to the state
(and remains in a fixed compact set).

3. Show that we achieve stabilization.

Remarks:

• Example of quantum control;
• Unobservable target;
• Practical stabilization and exact stabilization.

Towards a generalization?
Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 8 / 24



Introduction
Observable target

Unobservable target
Conclusion

Dynamic output feedback stabilization
Uniform observability
Non-uniformly observable systems
Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

1. Show that there exists a (smooth) small perturbation δ of λ such
that the control (λ+ δ) ◦ x̂ makes the system observable.

2. Show that with this control, the observer converges to the state
(and remains in a fixed compact set).

3. Show that we achieve stabilization.

Remarks:

• Example of quantum control;
• Unobservable target;
• Practical stabilization and exact stabilization.

Towards a generalization?
Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 8 / 24



Introduction
Observable target

Unobservable target
Conclusion

Dynamic output feedback stabilization
Uniform observability
Non-uniformly observable systems
Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

1. Show that there exists a (smooth) small perturbation δ of λ such
that the control (λ+ δ) ◦ x̂ makes the system observable.

2. Show that with this control, the observer converges to the state
(and remains in a fixed compact set).

3. Show that we achieve stabilization.

Remarks:

• Example of quantum control;
• Unobservable target;
• Practical stabilization and exact stabilization.

Towards a generalization?
Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 8 / 24



Introduction
Observable target

Unobservable target
Conclusion

Dynamic output feedback stabilization
Uniform observability
Non-uniformly observable systems
Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

1. Show that there exists a (smooth) small perturbation δ of λ such
that the control (λ+ δ) ◦ x̂ makes the system observable.

2. Show that with this control, the observer converges to the state
(and remains in a fixed compact set).

3. Show that we achieve stabilization.

Remarks:

• Example of quantum control;
• Unobservable target;
• Practical stabilization and exact stabilization.

Towards a generalization?
Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 8 / 24



Introduction
Observable target

Unobservable target
Conclusion

Dynamic output feedback stabilization
Uniform observability
Non-uniformly observable systems
Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

1. Show that there exists a (smooth) small perturbation δ of λ such
that the control (λ+ δ) ◦ x̂ makes the system observable.

2. Show that with this control, the observer converges to the state
(and remains in a fixed compact set).

3. Show that we achieve stabilization.

Remarks:

• Example of quantum control;
• Unobservable target;
• Practical stabilization and exact stabilization.

Towards a generalization?
Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 8 / 24



Introduction
Observable target

Unobservable target
Conclusion

Dynamic output feedback stabilization
Uniform observability
Non-uniformly observable systems
Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

1. Show that there exists a (smooth) small perturbation δ of λ such
that the control (λ+ δ) ◦ x̂ makes the system observable.

2. Show that with this control, the observer converges to the state
(and remains in a fixed compact set).

3. Show that we achieve stabilization.

Remarks:

• Example of quantum control;
• Unobservable target;
• Practical stabilization and exact stabilization.

Towards a generalization?
Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 8 / 24



Introduction
Observable target

Unobservable target
Conclusion

Dynamic output feedback stabilization
Uniform observability
Non-uniformly observable systems
Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

1. Show that there exists a (smooth) small perturbation δ of λ such
that the control (λ+ δ) ◦ x̂ makes the system observable.

2. Show that with this control, the observer converges to the state
(and remains in a fixed compact set).

3. Show that we achieve stabilization.

Remarks:

• Example of quantum control;
• Unobservable target;
• Practical stabilization and exact stabilization.

Towards a generalization?
Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 8 / 24



Observable target



Introduction
Observable target

Unobservable target
Conclusion

Context
Avoiding observability singularities
Dissipative systems

Context

Systems under consideration: SISO bilinear systems with linear output{
ẋ = (A + uB)x + bu
y = Cx

(5)

where x ∈ Rn, u, y ∈ R, A,B ∈ Rn×n, C ∈ R1×n and b ∈ Rn.

Observer system:

˙̂x = (A + uB)x̂ + bu − PC∗C(x̂ − x) (6)

with either Ṗ = 0 (Luenberger observer) or

Ṗ = (A + uB)P + P(A + uB)∗ + Q − PC∗CP (Kalman observer).
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Ṗ = (A + uB)P + P(A + uB)∗ + Q − PC∗CP (Kalman observer).

Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 9 / 24



Introduction
Observable target

Unobservable target
Conclusion

Context
Avoiding observability singularities
Dissipative systems

Context

Systems under consideration: SISO bilinear systems with linear output{
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• Assume that the target is observable: (C ,A) is observable.

• Assume that the system is state feedback stabilizable.

• We are able to perform Step 1.

• Under genericity assumptions on the system, there exists a residual
set of (smooth) small perturbations δ of λ such that the control
(λ+ δ) ◦ x̂ makes the system observable.
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Recall that the system {
ẋ = (A + uB)x + bu
y = Cx

(7)

is observable in time T > 0 for a given input u if for all pair of initial
conditions (x1, x2),{

∀t ∈ [0,T ], y(t; x1) = y(t; x2)
}

=⇒ x1 = x2. (8)

Let ω(t) = x(t; x1)− x(t; x2) for all t ∈ [0,T ]. Then{
ω̇ = (A + uB)ω
Cω = y(t; x1)− y(t; x2).

(9)

Hence, observability is equivalent to:{
∀t ∈ [0,T ],Cω(t) = 0

}
=⇒ ω(0) = 0. (10)
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Avoiding observability singularities

Let λ : Rn 7→ R be a state stabilizing feedback with basin of attraction
D(λ). Let K = K1 × K2 × K3 ⊂ D(λ)× Rn × S++(n) be a compact set.

Theorem 2.
If the pairs (C ,A) and (C ,B) are observable and 0 /∈ K1, then there exist
η > 0, k > 0 and a dense open subset O ⊂ N(k,K1, η) such that for all
initial condition in K × Sn−1 the solution of ω̇ = (A + (λ+ δ)(x̂)B)ω
with δ ∈ O satisfies

∃k0 ∈ {0, . . . , k} | dk0

dtk0

∣∣∣∣
t=0

Cω(t) 6= 0. (11)

For k ∈ N, K ⊂ Rn compact and η > 0:

N(k,K , η) = {δ ∈ C∞(Rn,R) | ‖δ‖k,K < η}

‖δ‖k,K = sup
{∣∣∂`δ(x)

∣∣ | 0 6 ` 6 k, x ∈ K
}
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Avoiding observability singularities

Some remarks:

• The statement of the theorem is stronger than observability of the
system for any time T > 0.

• The proof is based on transversality theory.
• A crucial point in the proof is to show that there exists a positive

integer k such that the solution of the observer system satisfies
x̂ (k)(0) 6= 0. We have shown that this is true for Kalman and
Luenberger observers.
Cω
C ω̇
C ω̈
...

Cω(`−1)

 =


C

C(A + uB)
C(A + uB)2 + u̇CB

...
C(A + uB)`−1 + CPn−1(u̇, u(2), . . . , u(`−2))

ω (12)
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Dissipative systems

We have not been able to show the asymptotic stabilization.

Dissipative systems:

ẋ = A(u)x + bu, y = Cx (13)

with
x∗A(u)x 6 0, ∀x ∈ Rn, ∀u ∈ R. (14)

Theorem 3.
Assume that λ is a globally stabilizing state feedback, (C ,A(0)) is
observable, and A(u) is dissipative for all u ∈ R. Then for any compact
set K ⊂ Rn, there exists α > 0 such that (0, 0) is an asymptotically
stable equilibrium point with basin of attraction containing K × K of{

ε̇ = (A(λ(x̂))− αC∗C) ε
˙̂x = A(λ(x̂))x̂ + bλ(x̂)− αC∗Cε.

(15)
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Dissipative systems

Sketch of the proof:

1. Local asymptotic stability of the target.
Proof: Linearization of the system at 0.

2. Bounded trajectories converge to the target.
Proof: “Limit set techniques”, using the dissipative property.

3. All trajectories are bounded.
Proof: Choose α large enough, so x does not exit the stability
domain.

Remarks:

• No feedback perturbation needed;
• Practical stabilization can be achieved.
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An example

Let J =
(
0 −1
1 0

)
and b =

(
0
1

)
. Consider the problem of stabilization

at 0 of the following system:{
ẋ = Jx + bu,
y = x21 + x22 .

(16)

Natural choice of state feedback:

λ(x1, x2) = −2x2. (17)

Observability at 0: {
ẋ = Jx
y = |x |2 ≡ cst.

(18)
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Immersion into a dissipative system

Idea: Immersion into a bilinear dissipative system with linear output

τ(x1, x2) =
(
x21 + x22

2 , x1, x2
)
. (19)

Let z = τ(x). Then
ẋ = Jx + bu
y = |x |2

x(0) ∈ R2

−→
z=τ(x)


ż = A(u)z + Bu
y = Cz
z(0) ∈ {z ∈ R3 | 2z1 = z22 + z23} =: P

(20)

with

A(u) =

0 0 u
0 0 −1
0 1 0

 , B =

0
0
1

 and C =
(
1 0 0

)
.

Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 17 / 24



Introduction
Observable target

Unobservable target
Conclusion

An example
Immersion into a dissipative system
Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Idea: Immersion into a bilinear dissipative system with linear output

τ(x1, x2) =
(
x21 + x22

2 , x1, x2
)
. (19)

Let z = τ(x). Then
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Immersion into a dissipative system

Observer system: {
ε̇ = (A(u)− K (u)C) ε
˙̂z = A(u)ẑ + Bu − K (u)Cε.

(21)

with K (u) =

α0
u

 and α > 0. Then,

A(u)− K (u)C =

 0 0 u
0 0 −1
−u 1 0


︸ ︷︷ ︸

dissipative

− αC∗C .︸ ︷︷ ︸
Luenberger correction term

(22)
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Sketch of the proof:

1. Add a perturbation to the feedback:

λδ(z) = −2z3 + δz1. (23)

2. If (ε0, ẑ0) 6= (0, 0), then u = λδ(ẑ) makes the system observable in
time T for any T > 0.
Proof: Compute the first derivatives of Cω where ω̇ = A(u)ω and
ω0 6= 0.

3. If the trajectories is bounded, then ε→ 0.
Proof: Otherwise, R > |ε| > r > 0 since |ε| is non increasing.
Then, the input is persistent, thus ε→ 0 (see Celle et al. 1989).
Then ẑ → 0. Proof: Choose δ small enough.

4. Trajectories are bounded.
Proof: Choose α large enough.
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Then ẑ → 0. Proof: Choose δ small enough.

4. Trajectories are bounded.
Proof: Choose α large enough.

Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 19 / 24



Introduction
Observable target

Unobservable target
Conclusion

An example
Immersion into a dissipative system
Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Sketch of the proof:

1. Add a perturbation to the feedback:

λδ(z) = −2z3 + δz1. (23)
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Immersion into a dissipative system

Proposition 4.
Let U be a compact subset of R6. There exist δ0 > 0, α0 > 0 such that
for all δ ∈ (δ0,+∞) and all α ∈ (0, α0), (0, 0) is an asymptotically stable
equilibrium point of the system{

ε̇ = (A(λδ(ẑ))− K (λδ(ẑ))C) ε
˙̂z = A(λδ(ẑ))ẑ + Bu − K (λδ(ẑ))Cε.

(24)

with initial condition (ε0, ẑ0) ∈ U such that ẑ0 − ε0 ∈ P.

Towards a generalization?

How to immerse a system into a dissipative system?

According to Celle et al. 1989, under “reasonable” hypotheses, a control
affine system can be immersed into an infinite-dimensional dissipative
bilinear system.
Lucas Brivadis Output feedback stabilization of non-uniformly observable control systems 20 / 24
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Immersion into an infinite-dimensional dissipative bilinear system:

τ(x) : θ ∈ S1 7→ exp (iµ(x1 cos(θ) + x2 sin(θ))) . (25)

Let z = τ(x). Then
ẋ = Jx + bu
y = |x |
x(0) ∈ R2

−→
z=τ(x)


ż = A(u)z
J0(µy) = Cz
z0 ∈ Im τ ⊂ L2(S1)

(26)

with
A(u) = − ∂

∂θ
+ iu sin(θ), C = 〈·, 1〉L2(S1)

and J0 the Bessel function of order 0.
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Figure 2: Bessel functions − Wikipedia
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Immersion into an infinite-dimensional dissipative system

Infinite-dimensional observer system:{ ˙̂z = A(u)ẑ − C∗Cε
ε̇ = (A(u)− C∗C)ε.

(27)

with A(u) skew-adjoint for all u.

This system has been investigated in Celle et al. 1989.

Main differences with the finite dimensional case:

• Find a pseudo-inverse of τ ;
• Weak convergence of ε.

Concluding remark: The next step is a generalization of the result, first
to other examples, then to a class of systems.
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