Output feedback stabilization of non-uniformly observable control systems

Seminar at LAAS

Lucas Brivadis, lucas.brivadis@univ-lyon1.fr, PhD student at LAGEPP, Université Claude Bernard Lyon 1

In collaboration with V. Andrieu, J.-P. Gauthier, L. Sacchelli and U. Serres

September 19, 2019

- I. Introduction
- II. Observable target
- III. Unobservable target
- IV. Conclusion

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

Consider a nonlinear control system with measured output:

$$\begin{cases} \dot{x} = f(x, u) \\ y = h(x) \end{cases}$$
(1)

where x is the state, y is the output and u is the control.

Semi-global dynamic output feedback stabilization problem: For each compact set $K \subset \mathbb{R}^n$, find a dynamic output feedback

$$egin{aligned} &\hat{x} = \hat{f}(\hat{x}, u, y) \ & u = \lambda(\hat{x}, y) \end{aligned}$$

and a compact set \hat{K} such that (,0) is an asymptotically stable equilibrium with basin of attraction containing $K imes \hat{K}$ of (1)-(2).

Control value at equilibrium: $u \equiv \lambda(0, h())$.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

Consider a nonlinear control system with measured output:

$$\begin{cases} \dot{x} = f(x, u) \\ y = h(x) \end{cases}$$
(1)

where $x \in \mathbb{R}^n$ is the state, $y \in \mathbb{R}$ is the output and $u \in \mathbb{R}$ is the control.

Semi-global dynamic output feedback stabilization problem: For each compact set $K \subset \mathbb{R}^n$, find a dynamic output feedback

$$\begin{aligned} \dot{\hat{x}} &= \hat{f}(\hat{x}, u, y) \\ u &= \lambda(\hat{x}, y) \end{aligned}$$
 (2

and a compact set \hat{K} such that (,0) is an asymptotically stable equilibrium with basin of attraction containing $K \times \hat{K}$ of (1)-(2).

Control value at equilibrium: $u \equiv \lambda(0, h())$.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

Consider a nonlinear control system with measured output:

$$\begin{cases} \dot{x} = f(x, u) \\ y = h(x) \end{cases}$$
(1)

where $x \in \mathbb{R}^n$ is the state, $y \in \mathbb{R}$ is the output and $u \in \mathbb{R}$ is the control.

Semi-global dynamic output feedback stabilization problem: For each compact set $K \subset \mathbb{R}^n$, find a dynamic output feedback

$$\begin{cases} \dot{\hat{x}} = \hat{f}(\hat{x}, u, y) \\ u = \lambda(\hat{x}, y) \end{cases}$$
(2)

and a compact set \hat{K} such that $(x^*, 0)$ is an asymptotically stable equilibrium with basin of attraction containing $K \times \hat{K}$ of (1)-(2).

Control value at equilibrium: $u \equiv \lambda(0, h())$.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

Consider a nonlinear control system with measured output:

$$\begin{cases} \dot{x} = f(x, u) \\ y = h(x) \end{cases}$$
(1)

where $x \in \mathbb{R}^n$ is the state, $y \in \mathbb{R}$ is the output and $u \in \mathbb{R}$ is the control.

Semi-global dynamic output feedback stabilization problem: For each compact set $K \subset \mathbb{R}^n$, find a dynamic output feedback

$$\begin{cases} \dot{\hat{x}} = \hat{f}(\hat{x}, u, y) \\ u = \lambda(\hat{x}, y) \end{cases}$$
(2)

and a compact set \hat{K} such that $(x^*, 0)$ is an asymptotically stable equilibrium with basin of attraction containing $K \times \hat{K}$ of (1)-(2).

Control value at equilibrium: $u \equiv \lambda(0, h(x^*))$.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

Consider a nonlinear control system with measured output:

$$\begin{cases} \dot{x} = f(x, u) \\ y = h(x) \end{cases}$$
(1)

where $x \in \mathbb{R}^n$ is the state, $y \in \mathbb{R}$ is the output and $u \in \mathbb{R}$ is the control.

Semi-global dynamic output feedback stabilization problem: For each compact set $K \subset \mathbb{R}^n$, find a dynamic output feedback

$$\begin{cases} \dot{\hat{x}} = \hat{f}(\hat{x}, u, y) \\ u = \lambda(\hat{x}, y) \end{cases}$$
(2)

and a compact set \hat{K} such that (0,0) is an asymptotically stable equilibrium with basin of attraction containing $K \times \hat{K}$ of (1)-(2).

Control value at equilibrium: $u \equiv \lambda(0, h(0))$.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

Consider a nonlinear control system with measured output:

$$\begin{cases} \dot{x} = f(x, u) \\ y = h(x) \end{cases}$$
(1)

where $x \in \mathbb{R}^n$ is the state, $y \in \mathbb{R}$ is the output and $u \in \mathbb{R}$ is the control.

Semi-global dynamic output feedback stabilization problem: For each compact set $K \subset \mathbb{R}^n$, find a dynamic output feedback

$$\begin{cases} \dot{\hat{x}} = \hat{f}(\hat{x}, u, y) \\ u = \lambda(\hat{x}, y) \end{cases}$$
(2)

and a compact set \hat{K} such that (0,0) is an asymptotically stable equilibrium with basin of attraction containing $K \times \hat{K}$ of (1)-(2).

Control value at equilibrium: $u \equiv \lambda(0, h(0)) = 0$.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

State feedback stabilization problem: Find a feedback λ such that the origin is a globally asymptotically stable equilibrium point of the vector field $x \mapsto f(x, \lambda(x))$.

Idea: Design an observer system

$$\dot{\hat{x}} = \hat{f}(\hat{x}, u, y) \tag{3}$$

such that $\hat{x} - x \to 0$ for all initial conditions in $K \times \hat{K}$ and use the control $u = \lambda(\hat{x})$ with λ globally stabilizing. The closed-loop system is given by

$$\begin{cases} \dot{x} = f(x, \lambda(\hat{x})) \\ y = h(x) \\ \dot{x} = \hat{f}(\hat{x}, \lambda(\hat{x}), y). \end{cases}$$
(4)

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

State feedback stabilization problem: Find a feedback λ such that the origin is a globally asymptotically stable equilibrium point of the vector field $x \mapsto f(x, \lambda(x))$.

Idea: Design an observer system

$$\dot{\hat{x}} = \hat{f}(\hat{x}, u, y) \tag{3}$$

such that $\hat{x} - x \to 0$ for all initial conditions in $K \times \hat{K}$ and use the control $u = \lambda(\hat{x})$ with λ globally stabilizing. The closed-loop system is given by

$$\begin{cases} \dot{x} = f(x, \lambda(\hat{x})) \\ y = h(x) \\ \dot{\hat{x}} = \hat{f}(\hat{x}, \lambda(\hat{x}), y). \end{cases}$$
(4)

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

State feedback stabilization problem: Find a feedback λ such that the origin is a globally asymptotically stable equilibrium point of the vector field $x \mapsto f(x, \lambda(x))$.

Idea: Design an observer system

$$\dot{\hat{x}} = \hat{f}(\hat{x}, u, y) \tag{3}$$

such that $\hat{x} - x \to 0$ for all initial conditions in $K \times \hat{K}$ and use the control $u = \lambda(\hat{x})$ with λ globally stabilizing. The closed-loop system is given by

$$\begin{cases} \dot{x} = f(x, \lambda(\hat{x})) \\ y = h(x) \\ \dot{\hat{x}} = \hat{f}(\hat{x}, \lambda(\hat{x}), y). \end{cases}$$
(4)

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

Summary of the strategy:

- 1. Find a globally stabilizing state feedback,
- 2. Design an observer,
- 3. Show that dynamic output feedback stabilization is achieved.

Definition 1 (Observability and Uniform observability).

A control system with measured output is said to be observable in time T > 0 and for a given input u if for all pair of initial conditions (x_1, x_2) ,

$$\left\{ \forall t \in [0, T], y(t; x_1) = y(t; x_2) \right\} \Longrightarrow x_1 = x_2.$$
(5)

If it is observable for any time T > 0 and **for any input** u, then it is said to be uniformly observable in small time.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

Summary of the strategy:

- 1. Find a globally stabilizing state feedback,
- 2. Design an observer,
- 3. Show that dynamic output feedback stabilization is achieved.

Definition 1 (Observability and Uniform observability).

A control system with measured output is said to be observable in time T > 0 and for a given input u if for all pair of initial conditions (x_1, x_2) ,

$$\left\{ \forall t \in [0, T], y(t; x_1) = y(t; x_2) \right\} \Longrightarrow x_1 = x_2.$$
(5)

If it is observable for any time T > 0 and **for any input** u, then it is said to be uniformly observable in small time.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

Summary of the strategy:

- 1. Find a globally stabilizing state feedback,
- 2. Design an observer,
- 3. Show that dynamic output feedback stabilization is achieved.

Definition 1 (Observability and Uniform observability).

A control system with measured output is said to be observable in time T > 0 and for a given input u if for all pair of initial conditions (x_1, x_2) ,

$$\left\{ \forall t \in [0, T], y(t; x_1) = y(t; x_2) \right\} \Longrightarrow x_1 = x_2.$$
(5)

If it is observable for any time T > 0 and **for any input** u, then it is said to be uniformly observable in small time.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

Summary of the strategy:

- 1. Find a globally stabilizing state feedback,
- 2. Design an observer,
- 3. Show that dynamic output feedback stabilization is achieved.

Definition 1 (Observability and Uniform observability).

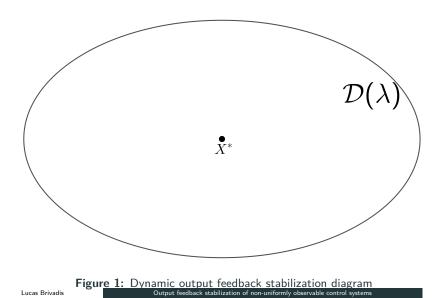
A control system with measured output is said to be observable in time T > 0 and for a given input u if for all pair of initial conditions (x_1, x_2) ,

$$\left\{ \forall t \in [0, T], y(t; x_1) = y(t; x_2) \right\} \Longrightarrow x_1 = x_2.$$
(5)

If it is observable for any time T > 0 and **for any input** u, then it is said to be uniformly observable in small time.

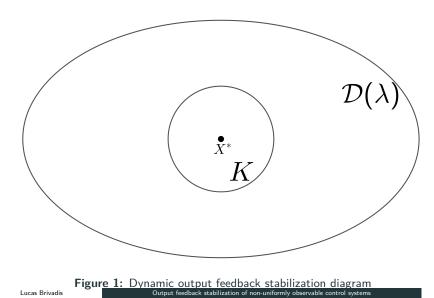
Observable target Unobservable target Conclusion Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization



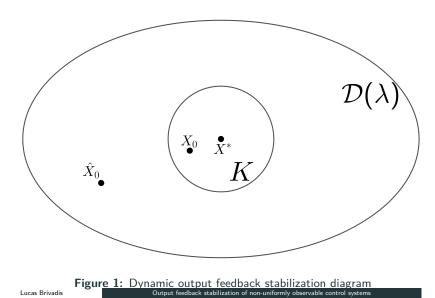
Observable target Unobservable target Conclusion Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization



Observable target Unobservable target Conclusion Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization



Observable target Unobservable target Conclusion Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

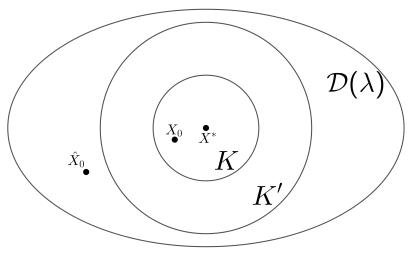


Figure 1: Dynamic output feedback stabilization diagram Output feedback stabilization of non-uniformly observable control systems

Observable target Unobservable target Conclusion Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

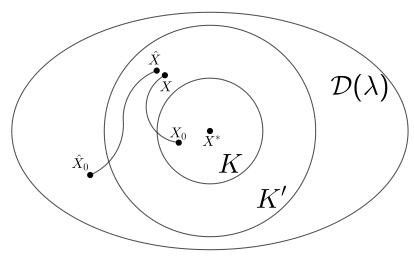


Figure 1: Dynamic output feedback stabilization diagram Output feedback stabilization of non-uniformly observable control systems

Observable target Unobservable target Conclusion Dynamic output feedback stabilization

Dynamic output feedback stabilization

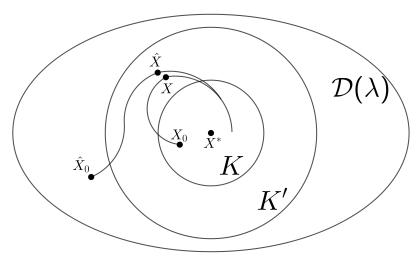


Figure 1: Dynamic output feedback stabilization diagram Output feedback stabilization of non-uniformly observable control systems

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

Summary of the strategy:

- 1. Find a globally stabilizing state feedback,
- 2. Design an observer,
- 3. Show that dynamic output feedback stabilization is achieved.

Definition 1 (Observability and Uniform observability).

A control system with measured output is said to be observable in time T > 0 and for a given input u if for all pair of initial conditions (x_1, x_2) ,

$$\left\{\forall t \in [0, T], y(t; x_1) = y(t; x_2)\right\} \Longrightarrow x_1 = x_2.$$
(5)

If it is observable for any time T > 0 and **for any input** u, then it is said to be uniformly observable in small time.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Dynamic output feedback stabilization

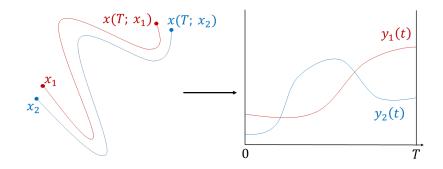


Figure 1: Observability

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Uniform observability

Theorem 1 (A. Teel and L. Praly 1994). *If a system is*

- globally state feedback stabilizable
- and uniformly observable in small time,

then it is also semi-globally stabilizable by dynamic output feedback.

Problem: It is not generic for a dynamical system to be uniformly observable (Gauthier and Kupka 2001).

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Uniform observability

Theorem 1 (A. Teel and L. Praly 1994).

If a system is

- globally state feedback stabilizable
- and uniformly observable in small time,

then it is also semi-globally stabilizable by dynamic output feedback.

Problem: It is not generic for a dynamical system to be uniformly observable (Gauthier and Kupka 2001).

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Uniform observability

Theorem 1 (A. Teel and L. Praly 1994).

If a system is

- globally state feedback stabilizable
- and uniformly observable in small time,

then it is also semi-globally stabilizable by dynamic output feedback.

Problem: It is not generic for a dynamical system to be uniformly observable (Gauthier and Kupka 2001).

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Uniform observability

Theorem 1 (A. Teel and L. Praly 1994).

If a system is

- globally state feedback stabilizable
- and uniformly observable in small time,

then it is also semi-globally stabilizable by dynamic output feedback.

Problem: It is not generic for a dynamical system to be uniformly observable (Gauthier and Kupka 2001).

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Uniform observability

Theorem 1 (A. Teel and L. Praly 1994).

If a system is

- globally state feedback stabilizable
- and uniformly observable in small time,

then it is also semi-globally stabilizable by dynamic output feedback.

Problem: It is not generic for a dynamical system to be uniformly observable (Gauthier and Kupka 2001).

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Non-uniformly observable systems

We distinguish 2 cases:

- 1. The system is not uniformly observable, but the target point corresponds to an input that makes the system observable.
- 2. The control is singular at the target point.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Non-uniformly observable systems

We distinguish 2 cases:

- 1. The system is not uniformly observable, but the target point corresponds to an input that makes the system observable.
- 2. The control is singular at the target point.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Non-uniformly observable systems

We distinguish 2 cases:

 The system is not uniformly observable, but the target point corresponds to an input that makes the system observable. Example:

$$\dot{x} = \begin{pmatrix} 0 & 1+u \\ -1 & 0 \end{pmatrix} x, \quad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x.$$

Observability matrix:

$$\begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1+u \end{pmatrix}.$$

The pair (C, A) is observable for $u \equiv \lambda(0) = 0$, but not for u = -1. 2. The control is singular at the target point.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Non-uniformly observable systems

We distinguish 2 cases:

 The system is not uniformly observable, but the target point corresponds to an input that makes the system observable. Example:

$$\dot{x} = \begin{pmatrix} 0 & 1+u \\ -1 & 0 \end{pmatrix} x, \quad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x.$$

Observability matrix:

$$\begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1+u \end{pmatrix}.$$

The pair (*C*, *A*) is observable for $u \equiv \lambda(0) = 0$, but not for u = -1.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Non-uniformly observable systems

We distinguish 2 cases:

 The system is not uniformly observable, but the target point corresponds to an input that makes the system observable. Example:

$$\dot{x} = \begin{pmatrix} 0 & 1+u \\ -1 & 0 \end{pmatrix} x, \quad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x.$$

Observability matrix:

$$\begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1+u \end{pmatrix}.$$

The pair (C, A) is observable for $u \equiv \lambda(0) = 0$, but not for u = -1.

2. The control is singular at the target point.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Non-uniformly observable systems

We distinguish 2 cases:

- 1. The system is not uniformly observable, but the target point corresponds to an input that makes the system observable.
- 2. The control is singular at the target point.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Non-uniformly observable systems

We distinguish 2 cases:

- 1. The system is not uniformly observable, but the target point corresponds to an input that makes the system observable.
- The control is singular at the target point. Example:

$$\dot{x} = \begin{pmatrix} 0 & u \\ -1 & 0 \end{pmatrix} x, \quad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x.$$

Observability matrix:

$$\begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & u \end{pmatrix}.$$

The pair (C, A) is not observable for $u \equiv \lambda(0) = 0$.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Non-uniformly observable systems

We distinguish 2 cases:

- 1. The system is not uniformly observable, but the target point corresponds to an input that makes the system observable.
- 2. The control is singular at the target point. Example:

$$\dot{x} = \begin{pmatrix} 0 & u \\ -1 & 0 \end{pmatrix} x, \quad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x.$$

Observability matrix:

$$\begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & u \end{pmatrix}.$$

The pair (C, A) is not observable for $u \equiv \lambda(0) = 0$.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Non-uniformly observable systems

We distinguish 2 cases:

- 1. The system is not uniformly observable, but the target point corresponds to an input that makes the system observable.
- 2. The control is singular at the target point. Example:

$$\dot{x} = \begin{pmatrix} 0 & u \\ -1 & 0 \end{pmatrix} x, \quad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x.$$

Observability matrix:

$$\begin{pmatrix} C \\ CA \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & u \end{pmatrix}.$$

The pair (C, A) is not observable for $u \equiv \lambda(0) = 0$.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Objective: Get observability of the chosen control *u*.

General idea: Feedback modification

$$u = \lambda(\hat{x}) \longrightarrow u = \tilde{\lambda}(\hat{x}).$$

- Excite the system to estimate the state, then control to stabilize, and start again...
- Coron 1994: local stabilization
- Shim and Teel 2003: practical stabilization
- Smooth autonomous perturbation
 - Lagache, Serres, and Gauthier 2017: additive perturbation

$$u = (\lambda + \delta) \circ \hat{x}.$$

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Objective: Get observability of the chosen control *u*.

General idea: Feedback modification

$$u = \lambda(\hat{x}) \longrightarrow u = \tilde{\lambda}(\hat{x}).$$

- Excite the system to estimate the state, then control to stabilize, and start again...
- Coron 1994: local stabilization
- Shim and Teel 2003: practical stabilization
- Smooth autonomous perturbation
 - Lagache, Serres, and Gauthier 2017: additive perturbation

$$u = (\lambda + \delta) \circ \hat{x}.$$

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Objective: Get observability of the chosen control *u*.

General idea: Feedback modification

$$u = \lambda(\hat{x}) \longrightarrow u = \tilde{\lambda}(\hat{x}).$$

- Excite the system to estimate the state, then control to stabilize, and start again...
- Coron 1994: local stabilization
- Shim and Teel 2003: practical stabilization
- Smooth autonomous perturbation
 - Lagache, Serres, and Gauthier 2017: additive perturbation

$$u = (\lambda + \delta) \circ \hat{x}.$$

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Objective: Get observability of the chosen control *u*.

General idea: Feedback modification

$$u = \lambda(\hat{x}) \longrightarrow u = \tilde{\lambda}(\hat{x}).$$

- Excite the system to estimate the state, then control to stabilize, and start again...
- Coron 1994: local stabilization
- Shim and Teel 2003: practical stabilization
- Smooth autonomous perturbation
 - Lagache, Serres, and Gauthier 2017: additive perturbation

$$u = (\lambda + \delta) \circ \hat{x}.$$

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Objective: Get observability of the chosen control *u*.

General idea: Feedback modification

$$u = \lambda(\hat{x}) \longrightarrow u = \tilde{\lambda}(\hat{x}).$$

- Excite the system to estimate the state, then control to stabilize, and start again...
- Coron 1994: local stabilization
- Shim and Teel 2003: practical stabilization
- Smooth autonomous perturbation
 - Lagache, Serres, and Gauthier 2017: additive perturbation

$$u = (\lambda + \delta) \circ \hat{x}.$$

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Objective: Get observability of the chosen control *u*.

General idea: Feedback modification

$$u = \lambda(\hat{x}) \longrightarrow u = \tilde{\lambda}(\hat{x}).$$

- Excite the system to estimate the state, then control to stabilize, and start again...
- Coron 1994: local stabilization
- Shim and Teel 2003: practical stabilization
- Smooth autonomous perturbation
 - Lagache, Serres, and Gauthier 2017: additive perturbation

$$u = (\lambda + \delta) \circ \hat{x}.$$

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Objective: Get observability of the chosen control *u*.

General idea: Feedback modification

$$u = \lambda(\hat{x}) \longrightarrow u = \tilde{\lambda}(\hat{x}).$$

- Excite the system to estimate the state, then control to stabilize, and start again...
- Coron 1994: local stabilization
- Shim and Teel 2003: practical stabilization
- Smooth autonomous perturbation
 - Lagache, Serres, and Gauthier 2017: additive perturbation

$$u = (\lambda + \delta) \circ \hat{x}.$$

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Objective: Get observability of the chosen control *u*.

General idea: Feedback modification

$$u = \lambda(\hat{x}) \longrightarrow u = \tilde{\lambda}(\hat{x}).$$

- Excite the system to estimate the state, then control to stabilize, and start again...
- Coron 1994: local stabilization
- Shim and Teel 2003: practical stabilization
- Smooth autonomous perturbation
 - Lagache, Serres, and Gauthier 2017: additive perturbation

$$u=(\lambda+\delta)\circ\hat{x}.$$

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

- 1. Show that there exists a (smooth) small perturbation δ of λ such that the control $(\lambda + \delta) \circ \hat{x}$ makes the system observable.
- 2. Show that with this control, the observer converges to the state (and remains in a fixed compact set).
- 3. Show that we achieve stabilization.

Remarks:

- Example of quantum control;
- Unobservable target;
- Practical stabilization and exact stabilization.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

- 1. Show that there exists a (smooth) small perturbation δ of λ such that the control $(\lambda + \delta) \circ \hat{x}$ makes the system observable.
- 2. Show that with this control, the observer converges to the state (and remains in a fixed compact set).
- 3. Show that we achieve stabilization.

Remarks:

- Example of quantum control;
- Unobservable target;
- Practical stabilization and exact stabilization.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

- 1. Show that there exists a (smooth) small perturbation δ of λ such that the control $(\lambda + \delta) \circ \hat{x}$ makes the system observable.
- 2. Show that with this control, the observer converges to the state (and remains in a fixed compact set).
- 3. Show that we achieve stabilization.

Remarks:

- Example of quantum control;
- Unobservable target;
- Practical stabilization and exact stabilization.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

- 1. Show that there exists a (smooth) small perturbation δ of λ such that the control $(\lambda + \delta) \circ \hat{x}$ makes the system observable.
- 2. Show that with this control, the observer converges to the state (and remains in a fixed compact set).
- 3. Show that we achieve stabilization.

Remarks:

- Example of quantum control;
- Unobservable target;
- Practical stabilization and exact stabilization.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

- 1. Show that there exists a (smooth) small perturbation δ of λ such that the control $(\lambda + \delta) \circ \hat{x}$ makes the system observable.
- 2. Show that with this control, the observer converges to the state (and remains in a fixed compact set).
- 3. Show that we achieve stabilization.

Remarks:

- Example of quantum control;
- Unobservable target;
- Practical stabilization and exact stabilization.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

- 1. Show that there exists a (smooth) small perturbation δ of λ such that the control $(\lambda + \delta) \circ \hat{x}$ makes the system observable.
- 2. Show that with this control, the observer converges to the state (and remains in a fixed compact set).
- 3. Show that we achieve stabilization.

Remarks:

- Example of quantum control;
- Unobservable target;
- Practical stabilization and exact stabilization.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

- 1. Show that there exists a (smooth) small perturbation δ of λ such that the control $(\lambda + \delta) \circ \hat{x}$ makes the system observable.
- 2. Show that with this control, the observer converges to the state (and remains in a fixed compact set).
- 3. Show that we achieve stabilization.

Remarks:

- Example of quantum control;
- Unobservable target;
- Practical stabilization and exact stabilization.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

- 1. Show that there exists a (smooth) small perturbation δ of λ such that the control $(\lambda + \delta) \circ \hat{x}$ makes the system observable.
- 2. Show that with this control, the observer converges to the state (and remains in a fixed compact set).
- 3. Show that we achieve stabilization.

Remarks:

- Example of quantum control;
- Unobservable target;
- Practical stabilization and exact stabilization.

Dynamic output feedback stabilization Uniform observability Non-uniformly observable systems Feedback perturbation

Feedback perturbation

Strategy of Lagache, Serres, and Gauthier 2017:

- 1. Show that there exists a (smooth) small perturbation δ of λ such that the control $(\lambda + \delta) \circ \hat{x}$ makes the system observable.
- 2. Show that with this control, the observer converges to the state (and remains in a fixed compact set).
- 3. Show that we achieve stabilization.

Remarks:

- Example of quantum control;
- Unobservable target;
- Practical stabilization and exact stabilization.

Observable target

Context Avoiding observability singularities Dissipative systems

Context

Systems under consideration: SISO bilinear systems with linear output

$$\begin{cases} \dot{x} = (A + uB)x + bu\\ y = Cx \end{cases}$$
(5)

where $x \in \mathbb{R}^n$, $u, y \in \mathbb{R}$, $A, B \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{1 \times n}$ and $b \in \mathbb{R}^n$.

Observer system:

$$\dot{\hat{x}} = (A + uB)\hat{x} + bu - PC^*C(\hat{x} - x)$$
 (6)

with either $\dot{P} = 0$ (Luenberger observer) or

 $\dot{P} = (A + uB)P + P(A + uB)^* + Q - PC^*CP \quad \text{(Kalman observer)}.$

Context Avoiding observability singularities Dissipative systems

Context

Systems under consideration: SISO bilinear systems with linear output

$$\begin{cases} \dot{x} = (A + uB)x + bu\\ y = Cx \end{cases}$$
(5)

where $x \in \mathbb{R}^n$, $u, y \in \mathbb{R}$, $A, B \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{1 \times n}$ and $b \in \mathbb{R}^n$.

Observer system:

$$\dot{\hat{x}} = (A + uB)\hat{x} + bu - PC^*C(\hat{x} - x)$$
 (6)

with either P = 0 (Luenberger observer) or

 $\dot{P} = (A + uB)P + P(A + uB)^* + Q - PC^*CP \quad \text{(Kalman observer)}.$

Context Avoiding observability singularities Dissipative systems

Context

Systems under consideration: SISO bilinear systems with linear output

$$\begin{cases} \dot{x} = (A + uB)x + bu\\ y = Cx \end{cases}$$
(5)

where $x \in \mathbb{R}^n$, $u, y \in \mathbb{R}$, $A, B \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{1 \times n}$ and $b \in \mathbb{R}^n$.

Observer system:

$$\dot{\hat{x}} = (A + uB)\hat{x} + bu - PC^*C(\hat{x} - x)$$
 (6)

with either $\dot{P} = 0$ (Luenberger observer) or

 $\dot{P} = (A + uB)P + P(A + uB)^* + Q - PC^*CP$ (Kalman observer).

Context Avoiding observability singularities Dissipative systems

Context

Systems under consideration: SISO bilinear systems with linear output

$$\begin{cases} \dot{x} = (A + uB)x + bu\\ y = Cx \end{cases}$$
(5)

where $x \in \mathbb{R}^n$, $u, y \in \mathbb{R}$, $A, B \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{1 \times n}$ and $b \in \mathbb{R}^n$.

Observer system:

$$\dot{\hat{x}} = (A + uB)\hat{x} + bu - PC^*C(\hat{x} - x)$$
 (6)

with either $\dot{P} = 0$ (Luenberger observer) or

$$\dot{P} = (A + uB)P + P(A + uB)^* + Q - PC^*CP$$
 (Kalman observer).

Context Avoiding observability singularities Dissipative systems

- Assume that the target is observable: (C, A) is observable.
- Assume that the system is state feedback stabilizable.
- We are able to perform Step 1.
- Under genericity assumptions on the system, there exists a residual set of (smooth) small perturbations δ of λ such that the control (λ + δ) ∘ x̂ makes the system observable.

Context Avoiding observability singularities Dissipative systems

- Assume that the target is observable: (C, A) is observable.
- Assume that the system is state feedback stabilizable.
- We are able to perform Step 1.
- Under genericity assumptions on the system, there exists a residual set of (smooth) small perturbations δ of λ such that the control (λ + δ) ∘ x̂ makes the system observable.

Context Avoiding observability singularities Dissipative systems

- Assume that the target is observable: (C, A) is observable.
- Assume that the system is state feedback stabilizable.
- We are able to perform Step 1.
- Under genericity assumptions on the system, there exists a residual set of (smooth) small perturbations δ of λ such that the control (λ + δ) ∘ x̂ makes the system observable.

Context Avoiding observability singularities Dissipative systems

- Assume that the target is observable: (C, A) is observable.
- Assume that the system is state feedback stabilizable.
- We are able to perform Step 1.
- Under genericity assumptions on the system, there exists a residual set of (smooth) small perturbations δ of λ such that the control (λ + δ) ∘ x̂ makes the system observable.

Context Avoiding observability singularities Dissipative systems

Context

Recall that the system

$$\begin{cases} \dot{x} = (A + uB)x + bu\\ y = Cx \end{cases}$$
(7)

is observable in time T > 0 for a given input u if for all pair of initial conditions (x_1, x_2) ,

$$\left\{\forall t \in [0, T], y(t; x_1) = y(t; x_2)\right\} \Longrightarrow x_1 = x_2.$$
(8)

Let $\omega(t) = x(t; x_1) - x(t; x_2)$ for all $t \in [0, T]$. Then

$$\begin{cases} \dot{\omega} = (A + uB)\omega\\ C\omega = y(t; x_1) - y(t; x_2). \end{cases}$$
(9)

Hence, observability is equivalent to:

$$\left\{ \forall t \in [0, T], C\omega(t) = 0 \right\} \Longrightarrow \omega(0) = 0.$$
(10)

Context Avoiding observability singularities Dissipative systems

Context

Recall that the system

$$\begin{cases} \dot{x} = (A + uB)x + bu\\ y = Cx \end{cases}$$
(7)

is observable in time T > 0 for a given input u if for all pair of initial conditions (x_1, x_2) ,

$$\left\{ \forall t \in [0, T], y(t; x_1) = y(t; x_2) \right\} \Longrightarrow x_1 = x_2.$$
(8)

Let $\omega(t) = x(t; x_1) - x(t; x_2)$ for all $t \in [0, T]$. Then

$$\begin{cases} \dot{\omega} = (A + uB)\omega \\ C\omega = y(t; x_1) - y(t; x_2). \end{cases}$$
(9)

Hence, observability is equivalent to:

$$\left\{ \forall t \in [0, T], C\omega(t) = 0 \right\} \Longrightarrow \omega(0) = 0.$$
(10)

Context Avoiding observability singularities Dissipative systems

Context

Recall that the system

$$\begin{cases} \dot{x} = (A + uB)x + bu\\ y = Cx \end{cases}$$
(7)

is observable in time T > 0 for a given input u if for all pair of initial conditions (x_1, x_2) ,

$$\left\{ \forall t \in [0, T], y(t; x_1) = y(t; x_2) \right\} \Longrightarrow x_1 = x_2.$$
(8)

Let $\omega(t) = x(t; x_1) - x(t; x_2)$ for all $t \in [0, T]$. Then

$$\begin{cases} \dot{\omega} = (A + uB)\omega \\ C\omega = y(t; x_1) - y(t; x_2). \end{cases}$$
(9)

Hence, observability is equivalent to:

$$\left\{\forall t \in [0, T], C\omega(t) = 0\right\} \Longrightarrow \omega(0) = 0.$$
(10)

Lucas Brivadis

Context Avoiding observability singularities Dissipative systems

Avoiding observability singularities

Let $\lambda : \mathbb{R}^n \mapsto \mathbb{R}$ be a state stabilizing feedback with basin of attraction $\mathcal{D}(\lambda)$. Let $K = K_1 \times K_2 \times K_3 \subset \mathcal{D}(\lambda) \times \mathbb{R}^n \times S_{++}(n)$ be a compact set.

Theorem 2.

If the pairs (C, A) and (C, B) are observable and $0 \notin K_1$, then there exist $\eta > 0$, k > 0 and a dense open subset $\mathfrak{O} \subset \mathfrak{N}(k, K_1, \eta)$ such that for all initial condition in $K \times \mathbb{S}^{n-1}$ the solution of $\dot{\omega} = (A + (\lambda + \delta)(\hat{x})B)\omega$ with $\delta \in \mathfrak{O}$ satisfies

$$\exists k_0 \in \{0, \dots, k\} \quad | \quad \frac{d^{k_0}}{dt^{k_0}} \Big|_{t=0} C\omega(t) \neq 0.$$
 (11)

For $k \in \mathbb{N}$, $K \subset \mathbb{R}^n$ compact and $\eta > 0$:

$$\mathcal{N}(k, K, \eta) = \{ \delta \in C^{\infty}(\mathbb{R}^{n}, \mathbb{R}) \mid \|\delta\|_{k, K} < \eta \}$$
$$\|\delta\|_{k, K} = \sup \{ \left| \partial^{\ell} \delta(x) \right| \mid 0 \leq \ell \leq k, \quad x \in K \}$$

Lucas Brivadis

Context Avoiding observability singularities Dissipative systems

Avoiding observability singularities

Let $\lambda : \mathbb{R}^n \mapsto \mathbb{R}$ be a state stabilizing feedback with basin of attraction $\mathcal{D}(\lambda)$. Let $K = K_1 \times K_2 \times K_3 \subset \mathcal{D}(\lambda) \times \mathbb{R}^n \times S_{++}(n)$ be a compact set.

Theorem 2.

If the pairs (C, A) and (C, B) are observable and $0 \notin K_1$, then there exist $\eta > 0$, k > 0 and a dense open subset $\mathfrak{O} \subset \mathfrak{N}(k, K_1, \eta)$ such that for all initial condition in $K \times \mathbb{S}^{n-1}$ the solution of $\dot{\omega} = (A + (\lambda + \delta)(\hat{x})B)\omega$ with $\delta \in \mathfrak{O}$ satisfies

$$\exists k_0 \in \{0, \dots, k\} \mid \left. \frac{d^{k_0}}{dt^{k_0}} \right|_{t=0} C\omega(t) \neq 0.$$
 (11)

For $k \in \mathbb{N}$, $K \subset \mathbb{R}^n$ compact and $\eta > 0$:

$$\mathcal{N}(k, \mathcal{K}, \eta) = \{ \delta \in C^{\infty}(\mathbb{R}^{n}, \mathbb{R}) \mid \|\delta\|_{k, \mathcal{K}} < \eta \}$$
$$\|\delta\|_{k, \mathcal{K}} = \sup \{ \left| \partial^{\ell} \delta(x) \right| \mid 0 \leq \ell \leq k, \quad x \in \mathcal{K} \}$$

Context Avoiding observability singularities Dissipative systems

Avoiding observability singularities

Some remarks:

- The statement of the theorem is stronger than observability of the system for any time *T* > 0.
- The proof is based on transversality theory.
- A crucial point in the proof is to show that there exists a positive integer k such that the solution of the observer system satisfies x̂^(k)(0) ≠ 0. We have shown that this is true for Kalman and Luenberger observers.

$$\begin{pmatrix} C\omega\\ C\dot{\omega}\\ C\ddot{\omega}\\ \vdots\\ C\omega^{(\ell-1)} \end{pmatrix} = \begin{pmatrix} C\\ C(A+uB)\\ C(A+uB)^{2} + \dot{u}CB\\ \vdots\\ C(A+uB)^{\ell-1} + CP_{n-1}(\dot{u}, u^{(2)}, \dots, u^{(\ell-2)}) \end{pmatrix} \omega \quad (12)$$

Context Avoiding observability singularities Dissipative systems

Avoiding observability singularities

Some remarks:

- The statement of the theorem is stronger than observability of the system for any time T > 0.
- The proof is based on transversality theory.
- A crucial point in the proof is to show that there exists a positive integer k such that the solution of the observer system satisfies x̂^(k)(0) ≠ 0. We have shown that this is true for Kalman and Luenberger observers.

$$\begin{pmatrix} C\omega\\ C\dot{\omega}\\ C\ddot{\omega}\\ \vdots\\ C\omega^{(\ell-1)} \end{pmatrix} = \begin{pmatrix} C\\ C(A+uB)\\ C(A+uB)^{2} + \dot{u}CB\\ \vdots\\ C(A+uB)^{\ell-1} + CP_{n-1}(\dot{u}, u^{(2)}, \dots, u^{(\ell-2)}) \end{pmatrix} \omega \quad (12)$$

Context Avoiding observability singularities Dissipative systems

Avoiding observability singularities

Some remarks:

- The statement of the theorem is stronger than observability of the system for any time T > 0.
- The proof is based on transversality theory.
- A crucial point in the proof is to show that there exists a positive integer k such that the solution of the observer system satisfies x̂^(k)(0) ≠ 0. We have shown that this is true for Kalman and Luenberger observers.

$$\begin{pmatrix} C\omega\\ C\dot{\omega}\\ C\ddot{\omega}\\ \vdots\\ C\omega^{(\ell-1)} \end{pmatrix} = \begin{pmatrix} C\\ C(A+uB)\\ C(A+uB)^{2} + \dot{u}CB\\ \vdots\\ C(A+uB)^{\ell-1} + CP_{n-1}(\dot{u}, u^{(2)}, \dots, u^{(\ell-2)}) \end{pmatrix} \omega \quad (12)$$

Context Avoiding observability singularities Dissipative systems

Avoiding observability singularities

Some remarks:

- The statement of the theorem is stronger than observability of the system for any time T > 0.
- The proof is based on transversality theory.
- A crucial point in the proof is to show that there exists a positive integer k such that the solution of the observer system satisfies $\hat{x}^{(k)}(0) \neq 0$. We have shown that this is true for Kalman and Luenberger observers.

$$\begin{pmatrix} C\omega\\ C\dot{\omega}\\ C\ddot{\omega}\\ \vdots\\ C\omega^{(\ell-1)} \end{pmatrix} = \begin{pmatrix} C\\ C(A+uB)\\ C(A+uB)^{2} + \dot{u}CB\\ \vdots\\ C(A+uB)^{\ell-1} + CP_{n-1}(\dot{u}, u^{(2)}, \dots, u^{(\ell-2)}) \end{pmatrix} \omega \quad (12)$$

Context Avoiding observability singularities Dissipative systems

Avoiding observability singularities

Some remarks:

- The statement of the theorem is stronger than observability of the system for any time T > 0.
- The proof is based on transversality theory.
- A crucial point in the proof is to show that there exists a positive integer k such that the solution of the observer system satisfies $\hat{x}^{(k)}(0) \neq 0$. We have shown that this is true for Kalman and Luenberger observers.

$$\begin{pmatrix} C\omega\\ C\dot{\omega}\\ C\ddot{\omega}\\ \vdots\\ C\omega^{(\ell-1)} \end{pmatrix} = \begin{pmatrix} C\\ C(A+uB)\\ C(A+uB)^{2}+\dot{u}CB\\ \vdots\\ C(A+uB)^{\ell-1}+CP_{n-1}(\dot{u},u^{(2)},\ldots,u^{(\ell-2)}) \end{pmatrix} \omega \quad (12)$$

Context Avoiding observability singularities Dissipative systems

Avoiding observability singularities

Some remarks:

- The statement of the theorem is stronger than observability of the system for any time T > 0.
- The proof is based on transversality theory.
- A crucial point in the proof is to show that there exists a positive integer k such that the solution of the observer system satisfies $\hat{x}^{(k)}(0) \neq 0$. We have shown that this is true for Kalman and Luenberger observers.

$$\begin{pmatrix} C\omega\\ C\dot{\omega}\\ C\ddot{\omega}\\ \vdots\\ C\omega^{(\ell-1)} \end{pmatrix} = \begin{pmatrix} C\\ C(A+uB)\\ C(A+uB)^{2}+\dot{u}CB\\ \vdots\\ C(A+uB)^{\ell-1}+CP_{n-1}(\dot{u},u^{(2)},\ldots,u^{(\ell-2)}) \end{pmatrix} \omega \quad (12)$$

Context Avoiding observability singularities Dissipative systems

Dissipative systems

We have not been able to show the asymptotic stabilization.

Dissipative systems:

$$\dot{x} = A(u)x + bu, \qquad y = Cx \tag{13}$$

with

$$x^*A(u)x \leq 0, \quad \forall x \in \mathbb{R}^n, \ \forall u \in \mathbb{R}.$$
 (14)

Theorem 3.

Assume that λ is a globally stabilizing state feedback, (C, A(0)) is observable, and A(u) is dissipative for all $u \in \mathbb{R}$. Then for any compact set $K \subset \mathbb{R}^n$, there exists $\alpha > 0$ such that (0, 0) is an asymptotically stable equilibrium point with basin of attraction containing $K \times K$ of

$$\begin{aligned} \dot{\varepsilon} &= (A(\lambda(\hat{x})) - \alpha C^* C) \varepsilon \\ \dot{\hat{x}} &= A(\lambda(\hat{x})) \hat{x} + b\lambda(\hat{x}) - \alpha C^* C \varepsilon. \end{aligned}$$
(15)

Context Avoiding observability singularities Dissipative systems

Dissipative systems

We have not been able to show the asymptotic stabilization.

Dissipative systems:

$$\dot{x} = A(u)x + bu, \qquad y = Cx \tag{13}$$

with

$$x^*A(u)x \leq 0, \quad \forall x \in \mathbb{R}^n, \ \forall u \in \mathbb{R}.$$
 (14)

Theorem 3.

Assume that λ is a globally stabilizing state feedback, (C, A(0)) is observable, and A(u) is dissipative for all $u \in \mathbb{R}$. Then for any compact set $K \subset \mathbb{R}^n$, there exists $\alpha > 0$ such that (0,0) is an asymptotically stable equilibrium point with basin of attraction containing $K \times K$ of

$$\begin{aligned} \dot{\varepsilon} &= (A(\lambda(\hat{x})) - \alpha C^* C) \varepsilon \\ \dot{\dot{x}} &= A(\lambda(\hat{x})) \hat{x} + b\lambda(\hat{x}) - \alpha C^* C \varepsilon. \end{aligned} (15)$$

Context Avoiding observability singularities Dissipative systems

Dissipative systems

We have not been able to show the asymptotic stabilization.

Dissipative systems:

$$\dot{x} = A(u)x + bu, \qquad y = Cx \tag{13}$$

with

$$x^*A(u)x \leq 0, \quad \forall x \in \mathbb{R}^n, \ \forall u \in \mathbb{R}.$$
 (14)

Theorem 3.

Assume that λ is a globally stabilizing state feedback, (C, A(0)) is observable, and A(u) is dissipative for all $u \in \mathbb{R}$. Then for any compact set $K \subset \mathbb{R}^n$, there exists $\alpha > 0$ such that (0,0) is an asymptotically

stable equilibrium point with basin of attraction containing K imes K of

$$\begin{cases} \dot{\varepsilon} = (A(\lambda(\hat{x})) - \alpha C^* C) \varepsilon \\ \dot{\hat{x}} = A(\lambda(\hat{x})) \hat{x} + b\lambda(\hat{x}) - \alpha C^* C \varepsilon. \end{cases}$$
(15)

Context Avoiding observability singularities Dissipative systems

Dissipative systems

We have not been able to show the asymptotic stabilization.

Dissipative systems:

$$\dot{x} = A(u)x + bu, \qquad y = Cx \tag{13}$$

with

$$x^*A(u)x \leq 0, \quad \forall x \in \mathbb{R}^n, \ \forall u \in \mathbb{R}.$$
 (14)

Theorem 3.

Assume that λ is a globally stabilizing state feedback, (C, A(0)) is observable, and A(u) is dissipative for all $u \in \mathbb{R}$. Then for any compact set $K \subset \mathbb{R}^n$, there exists $\alpha > 0$ such that (0,0) is an asymptotically stable equilibrium point with basin of attraction containing $K \times K$ of

$$\begin{cases} \dot{\varepsilon} = (A(\lambda(\hat{x})) - \alpha C^* C) \varepsilon \\ \dot{\dot{x}} = A(\lambda(\hat{x})) \hat{x} + b\lambda(\hat{x}) - \alpha C^* C \varepsilon. \end{cases}$$
(15)

Context Avoiding observability singularities Dissipative systems

Dissipative systems

We have not been able to show the asymptotic stabilization.

Dissipative systems:

$$\dot{x} = A(u)x + bu, \qquad y = Cx \tag{13}$$

with

$$x^*A(u)x \leq 0, \qquad \forall x \in \mathbb{R}^n, \ \forall u \in \mathbb{R}.$$
 (14)

Theorem 3.

Assume that λ is a globally stabilizing state feedback, (C, A(0)) is observable, and A(u) is dissipative for all $u \in \mathbb{R}$. Then for any compact set $K \subset \mathbb{R}^n$, there exists $\alpha > 0$ such that (0,0) is an asymptotically stable equilibrium point with basin of attraction containing $K \times K$ of

$$\begin{cases} \dot{\varepsilon} = (A(\lambda(\hat{x})) - \alpha C^* C) \varepsilon \\ \dot{\hat{x}} = A(\lambda(\hat{x})) \hat{x} + b\lambda(\hat{x}) - \alpha C^* C \varepsilon. \end{cases}$$
(15)

Context Avoiding observability singularities Dissipative systems

Dissipative systems

We have not been able to show the asymptotic stabilization.

Dissipative systems:

<

$$\dot{x} = A(u)x + bu, \qquad y = Cx \tag{13}$$

with

$$x^*A(u)x \leq 0, \qquad \forall x \in \mathbb{R}^n, \ \forall u \in \mathbb{R}.$$
 (14)

Theorem 3.

Assume that λ is a globally stabilizing state feedback, (C, A(0)) is observable, and A(u) is dissipative for all $u \in \mathbb{R}$. Then for any compact set $K \subset \mathbb{R}^n$, there exists $\alpha > 0$ such that (0,0) is an asymptotically stable equilibrium point with basin of attraction containing $K \times K$ of

$$\begin{cases} \dot{\varepsilon} = (A(\lambda(\hat{x})) - \alpha C^* C) \varepsilon \\ \dot{\hat{x}} = A(\lambda(\hat{x}))\hat{x} + b\lambda(\hat{x}) - \alpha C^* C \varepsilon. \end{cases}$$
(15)

Context Avoiding observability singularities Dissipative systems

Dissipative systems

Sketch of the proof:

1. Local asymptotic stability of the target.

Proof: Linearization of the system at 0.

- Bounded trajectories converge to the target.
 Proof: "Limit set techniques", using the dissipative property.
- All trajectories are bounded.
 Proof: Choose α large enough, so x does not exit the stability domain.

- No feedback perturbation needed;
- Practical stabilization can be achieved.

Context Avoiding observability singularities Dissipative systems

Dissipative systems

Sketch of the proof:

- 1. Local asymptotic stability of the target. Proof: Linearization of the system at 0.
- Bounded trajectories converge to the target.
 Proof: "Limit set techniques", using the dissipative property.
- All trajectories are bounded.
 Proof: Choose α large enough, so x does not exit the stability domain.

- No feedback perturbation needed;
- Practical stabilization can be achieved.

Context Avoiding observability singularities Dissipative systems

Dissipative systems

Sketch of the proof:

- 1. Local asymptotic stability of the target. Proof: Linearization of the system at 0.
- Bounded trajectories converge to the target.
 Proof: "Limit set techniques", using the dissipative propert
- 3. All trajectories are bounded. Proof: Choose α large enough, so x does not exit the stability domain.

- No feedback perturbation needed;
- Practical stabilization can be achieved.

Context Avoiding observability singularities Dissipative systems

Dissipative systems

Sketch of the proof:

- 1. Local asymptotic stability of the target. Proof: Linearization of the system at 0.
- Bounded trajectories converge to the target.
 Proof: "Limit set techniques", using the dissipative property.
- All trajectories are bounded.
 Proof: Choose α large enough, so x does not exit the stability domain.

- No feedback perturbation needed;
- Practical stabilization can be achieved.

Context Avoiding observability singularities Dissipative systems

Dissipative systems

Sketch of the proof:

- 1. Local asymptotic stability of the target. Proof: Linearization of the system at 0.
- Bounded trajectories converge to the target.
 Proof: "Limit set techniques", using the dissipative property.
- 3. All trajectories are bounded. Proof: Choose α large enough, so x does not exit the stability domain.

- No feedback perturbation needed;
- Practical stabilization can be achieved.

Context Avoiding observability singularities Dissipative systems

Dissipative systems

Sketch of the proof:

- 1. Local asymptotic stability of the target. Proof: Linearization of the system at 0.
- Bounded trajectories converge to the target.
 Proof: "Limit set techniques", using the dissipative property.
- 3. All trajectories are bounded. Proof: Choose α large enough, so x does not exit the stability domain.

- No feedback perturbation needed;
- Practical stabilization can be achieved.

Context Avoiding observability singularities Dissipative systems

Dissipative systems

Sketch of the proof:

- 1. Local asymptotic stability of the target. Proof: Linearization of the system at 0.
- Bounded trajectories converge to the target.
 Proof: "Limit set techniques", using the dissipative property.
- 3. All trajectories are bounded. Proof: Choose α large enough, so x does not exit the stability domain.

- No feedback perturbation needed;
- Practical stabilization can be achieved.

Context Avoiding observability singularities Dissipative systems

Dissipative systems

Sketch of the proof:

- 1. Local asymptotic stability of the target. Proof: Linearization of the system at 0.
- Bounded trajectories converge to the target.
 Proof: "Limit set techniques", using the dissipative property.
- 3. All trajectories are bounded. Proof: Choose α large enough, so x does not exit the stability domain.

- No feedback perturbation needed;
- Practical stabilization can be achieved.

Unobservable target

< \cdot</p>

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

An example

/

Let
$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $b = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. O at 0 of the following system:

`

Consider the problem of stabilization

 $\begin{cases} \dot{x} = Jx + bu, \\ y = x_1^2 + x_2^2. \end{cases}$ (16)

Natural choice of **state feedback**:

$$\lambda(x_1, x_2) = -2x_2. \tag{17}$$

Observability at 0:

$$\begin{cases} \dot{x} = Jx \\ y = |x|^2 \equiv cst. \end{cases}$$
(18)

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

An example

/

Let
$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $b = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. (at 0 of the following system:

`

Consider the problem of stabilization

$$\begin{cases} \dot{x} = Jx + bu, \\ y = x_1^2 + x_2^2. \end{cases}$$
(16)

Natural choice of state feedback:

$$\lambda(x_1, x_2) = -2x_2. \tag{17}$$

Observability at 0:

$$\begin{cases} \dot{x} = Jx \\ y = |x|^2 \equiv cst. \end{cases}$$
(18)

< \cdot</p>

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

An example

/

Let
$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $b = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. C
at 0 of the following system:

`

Consider the problem of stabilization

$$\begin{cases} \dot{x} = Jx + bu, \\ y = x_1^2 + x_2^2. \end{cases}$$
(16)

Natural choice of state feedback:

$$\lambda(x_1, x_2) = -2x_2. \tag{17}$$

Observability at 0:

$$\begin{cases} \dot{x} = Jx \\ y = |x|^2 \equiv cst. \end{cases}$$
(18)

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Idea: Immersion into a bilinear dissipative system with linear output

$$\tau(x_1, x_2) = \left(\frac{x_1^2 + x_2^2}{2}, x_1, x_2\right).$$
(19)

Let
$$z = \tau(x)$$
. Then

$$\begin{cases} \dot{x} = Jx + bu \\ y = |x|^2 \\ x(0) \in \mathbb{R}^2 \end{cases} \quad \begin{cases} \dot{z} = A(u)z + Bu \\ y = Cz \\ z(0) \in \{z \in \mathbb{R}^3 \mid 2z_1 = z_2^2 + z_3^2\} =: \mathcal{P} \end{cases}$$
(20)
with

$$A(u) = \begin{pmatrix} 0 & 0 & u \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ and } C = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}.$$

Lucas Brivadis

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Idea: Immersion into a bilinear dissipative system with linear output

$$\tau(x_1, x_2) = \left(\frac{x_1^2 + x_2^2}{2}, x_1, x_2\right).$$
(19)

Let
$$z = \tau(x)$$
. Then

$$\begin{cases}
\dot{x} = Jx + bu \\
y = |x|^2 \\
x(0) \in \mathbb{R}^2
\end{cases} \quad \begin{cases}
\dot{z} = A(u)z + Bu \\
y = Cz \\
z(0) \in \{z \in \mathbb{R}^3 \mid 2z_1 = z_2^2 + z_3^2\} =: \mathcal{P}
\end{cases}$$
(20)

with

$$A(u) = \begin{pmatrix} 0 & 0 & u \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}.$$

Lucas Brivadis

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Observer system:

$$\begin{cases} \dot{\varepsilon} = (A(u) - K(u)C)\varepsilon\\ \dot{z} = A(u)\dot{z} + Bu - K(u)C\varepsilon. \end{cases}$$
(21)

with
$$\mathcal{K}(u) = \begin{pmatrix} \alpha \\ 0 \\ u \end{pmatrix}$$
 and $\alpha > 0$. Then,

$$\mathcal{A}(u) - \mathcal{K}(u)C = \underbrace{\begin{pmatrix} 0 & 0 & u \\ 0 & 0 & -1 \\ -u & 1 & 0 \end{pmatrix}}_{\text{dissipative}} - \underbrace{\alpha C^* C}_{\text{Luenberger correction term}}$$
(22)

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Observer system:

$$\begin{cases} \dot{\varepsilon} = (A(u) - K(u)C)\varepsilon\\ \dot{z} = A(u)\hat{z} + Bu - K(u)C\varepsilon. \end{cases}$$
(21)

with
$$K(u) = \begin{pmatrix} \alpha \\ 0 \\ u \end{pmatrix}$$
 and $\alpha > 0$. Then,

$$A(u) - K(u)C = \underbrace{\begin{pmatrix} 0 & 0 & u \\ 0 & 0 & -1 \\ -u & 1 & 0 \end{pmatrix}}_{\text{dissipative}} - \underbrace{\alpha C^*C}_{\text{Luenberger correction term}}$$
(22)

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Sketch of the proof:

1. Add a perturbation to the feedback:

$$\lambda_{\delta}(z) = -2z_3 + \delta z_1. \tag{23}$$

2. If $(\varepsilon_0, \hat{z}_0) \neq (0, 0)$, then $u = \lambda_{\delta}(\hat{z})$ makes the system observable in time T for any T > 0.

Proof: Compute the first derivatives of $C\omega$ where $\dot{\omega} = A(u)\omega$ and $\omega_0 \neq 0$.

- If the trajectories is bounded, then ε → 0.
 Proof: Otherwise, R > |ε| > r > 0 since |ε| is non increasing.
 Then, the input is persistent, thus ε → 0 (see Celle et al. 1989).
 Then 2 → 0. Proof: Choose δ small enough.
- 4. Trajectories are bounded. Proof: Choose α large enou

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Sketch of the proof:

1. Add a perturbation to the feedback:

$$\lambda_{\delta}(z) = -2z_3 + \delta z_1. \tag{23}$$

2. If $(\varepsilon_0, \hat{z}_0) \neq (0, 0)$, then $u = \lambda_{\delta}(\hat{z})$ makes the system observable in time T for any T > 0.

Proof: Compute the first derivatives of $C\omega$ where $\dot{\omega} = A(u)\omega$ and $\omega_0 \neq 0$.

- If the trajectories is bounded, then ε → 0.
 Proof: Otherwise, R > |ε| > r > 0 since |ε| is non increasing.
 Then, the input is persistent, thus ε → 0 (see Celle et al. 1989)
 Then 2 → 0. Proof: Choose δ small enough.
- 4. Trajectories are bounded.

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Sketch of the proof:

1. Add a perturbation to the feedback:

$$\lambda_{\delta}(z) = -2z_3 + \delta z_1. \tag{23}$$

If (ε₀, ẑ₀) ≠ (0,0), then u = λ_δ(ẑ) makes the system observable in time T for any T > 0.
 Proof: Compute the first derivatives of Cω where ω̇ = A(u)ω and

$$\omega_0 \neq 0.$$

- If the trajectories is bounded, then ε → 0.
 Proof: Otherwise, R > |ε| > r > 0 since |ε| is non increasing.
 Then, the input is persistent, thus ε → 0 (see Celle et al. 1989)
 Then 2 → 0. Proof: Choose δ small enough.
- 4. Trajectories are bounded.

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Sketch of the proof:

1. Add a perturbation to the feedback:

$$\lambda_{\delta}(z) = -2z_3 + \delta z_1. \tag{23}$$

If (ε₀, ẑ₀) ≠ (0,0), then u = λ_δ(ẑ) makes the system observable in time T for any T > 0.
 Proof: Compute the first derivatives of Cω where ω̇ = A(u)ω and

$$\omega_0 \neq 0.$$

3. If the trajectories is bounded, then $\varepsilon \to 0$.

Proof: Otherwise, $R > |\varepsilon| > r > 0$ since $|\varepsilon|$ is **non increasing**. Then, the input is **persistent**, thus $\varepsilon \to 0$ (see Celle et al. 1989). Then $\hat{z} \to 0$. Proof: Choose δ small enough.

4. Trajectories are bounded.

Immersion into a dissipative system

Sketch of the proof:

1. Add a perturbation to the feedback:

$$\lambda_{\delta}(z) = -2z_3 + \delta z_1. \tag{23}$$

2. If $(\varepsilon_0, \hat{z}_0) \neq (0, 0)$, then $u = \lambda_{\delta}(\hat{z})$ makes the system observable in time T for any T > 0. Proof: Compute the first derivatives of $C\omega$ where $\dot{\omega} = A(u)\omega$ and

$$\omega_0 \neq 0.$$

- If the trajectories is bounded, then ε → 0.
 Proof: Otherwise, R > |ε| > r > 0 since |ε| is non increasing.
 Then, the input is persistent, thus ε → 0 (see Celle et al. 1989).
 Then 2 → 0. Proof: Choose δ small enough.
- 4. Trajectories are bounded.

Immersion into a dissipative system

Sketch of the proof:

1. Add a perturbation to the feedback:

$$\lambda_{\delta}(z) = -2z_3 + \delta z_1. \tag{23}$$

2. If $(\varepsilon_0, \hat{z}_0) \neq (0, 0)$, then $u = \lambda_{\delta}(\hat{z})$ makes the system observable in time T for any T > 0. Proof: Compute the first derivatives of $C\omega$ where $\dot{\omega} = A(u)\omega$ and

$$\omega_0 \neq 0.$$

- If the trajectories is bounded, then ε → 0.
 Proof: Otherwise, R > |ε| > r > 0 since |ε| is non increasing.
 Then, the input is persistent, thus ε → 0 (see Celle et al. 1989).
 Then 2 → 0. Proof: Choose δ small enough.
- 4. Trajectories are bounded.

Immersion into a dissipative system

Sketch of the proof:

1. Add a perturbation to the feedback:

$$\lambda_{\delta}(z) = -2z_3 + \delta z_1. \tag{23}$$

If (ε₀, ẑ₀) ≠ (0,0), then u = λ_δ(ẑ) makes the system observable in time T for any T > 0.
 Proof: Compute the first derivatives of Cω where ω̇ = A(u)ω and

 $\omega_0 \neq 0.$

- If the trajectories is bounded, then ε → 0.
 Proof: Otherwise, R > |ε| > r > 0 since |ε| is non increasing.
 Then, the input is persistent, thus ε → 0 (see Celle et al. 1989).
 Then 2 → 0. Proof: Choose δ small enough.
- 4. Trajectories are bounded.

Proof: Choose α large enough

Immersion into a dissipative system

Sketch of the proof:

1. Add a perturbation to the feedback:

$$\lambda_{\delta}(z) = -2z_3 + \delta z_1. \tag{23}$$

If (ε₀, ẑ₀) ≠ (0,0), then u = λ_δ(ẑ) makes the system observable in time T for any T > 0.
 Proof: Compute the first derivatives of Cut where û = A(u)u and

Proof: Compute the first derivatives of $C\omega$ where $\dot{\omega} = A(u)\omega$ and $\omega_0 \neq 0$.

- 3. If the trajectories is bounded, then $\varepsilon \to 0$. Proof: Otherwise, $R > |\varepsilon| > r > 0$ since $|\varepsilon|$ is **non increasing**. Then, the input is **persistent**, thus $\varepsilon \to 0$ (see Celle et al. 1989). Then $\hat{z} \to 0$. Proof: Choose δ small enough.
- 4. Trajectories are bounded.

Immersion into a dissipative system

Sketch of the proof:

1. Add a perturbation to the feedback:

$$\lambda_{\delta}(z) = -2z_3 + \delta z_1. \tag{23}$$

If (ε₀, ẑ₀) ≠ (0,0), then u = λ_δ(ẑ) makes the system observable in time T for any T > 0.
 Proof: Compute the first derivatives of C = μ(u) + and

Proof: Compute the first derivatives of $C\omega$ where $\dot{\omega} = A(u)\omega$ and $\omega_0 \neq 0$.

- 3. If the trajectories is bounded, then $\varepsilon \to 0$. Proof: Otherwise, $R > |\varepsilon| > r > 0$ since $|\varepsilon|$ is **non increasing**. Then, the input is **persistent**, thus $\varepsilon \to 0$ (see Celle et al. 1989). Then $\hat{z} \to 0$. Proof: Choose δ small enough.
- 4. Trajectories are bounded.

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Proposition 4.

Let U be a compact subset of \mathbb{R}^6 . There exist $\delta_0 > 0$, $\alpha_0 > 0$ such that for all $\delta \in (\delta_0, +\infty)$ and all $\alpha \in (0, \alpha_0)$, (0, 0) is an asymptotically stable equilibrium point of the system

$$\begin{cases} \dot{\varepsilon} = (A(\lambda_{\delta}(\hat{z})) - K(\lambda_{\delta}(\hat{z}))C)\varepsilon \\ \dot{\hat{z}} = A(\lambda_{\delta}(\hat{z}))\hat{z} + Bu - K(\lambda_{\delta}(\hat{z}))C\varepsilon. \end{cases}$$
(24)

with initial condition $(\varepsilon_0, \hat{z}_0) \in U$ such that $\hat{z}_0 - \varepsilon_0 \in \mathcal{P}$.

Towards a generalization?

How to immerse a system into a dissipative system?

According to Celle et al. 1989, under "reasonable" hypotheses, a control affine system can be immersed into an infinite-dimensional dissipative bilinear system.

Lucas Brivadis

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Proposition 4.

Let U be a compact subset of \mathbb{R}^6 . There exist $\delta_0 > 0$, $\alpha_0 > 0$ such that for all $\delta \in (\delta_0, +\infty)$ and all $\alpha \in (0, \alpha_0)$, (0, 0) is an asymptotically stable equilibrium point of the system

$$\begin{cases} \dot{\varepsilon} = (A(\lambda_{\delta}(\hat{z})) - K(\lambda_{\delta}(\hat{z}))C)\varepsilon \\ \dot{\hat{z}} = A(\lambda_{\delta}(\hat{z}))\hat{z} + Bu - K(\lambda_{\delta}(\hat{z}))C\varepsilon. \end{cases}$$
(24)

with initial condition $(\varepsilon_0, \hat{z}_0) \in U$ such that $\hat{z}_0 - \varepsilon_0 \in \mathcal{P}$.

Towards a generalization?

How to immerse a system into a dissipative system?

According to Celle et al. 1989, under "reasonable" hypotheses, a control affine system can be immersed into an infinite-dimensional dissipative bilinear system.

Lucas Brivadis

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Proposition 4.

Let U be a compact subset of \mathbb{R}^6 . There exist $\delta_0 > 0$, $\alpha_0 > 0$ such that for all $\delta \in (\delta_0, +\infty)$ and all $\alpha \in (0, \alpha_0)$, (0, 0) is an asymptotically stable equilibrium point of the system

$$\begin{cases} \dot{\varepsilon} = (A(\lambda_{\delta}(\hat{z})) - K(\lambda_{\delta}(\hat{z}))C)\varepsilon \\ \dot{\hat{z}} = A(\lambda_{\delta}(\hat{z}))\hat{z} + Bu - K(\lambda_{\delta}(\hat{z}))C\varepsilon. \end{cases}$$
(24)

with initial condition $(\varepsilon_0, \hat{z}_0) \in U$ such that $\hat{z}_0 - \varepsilon_0 \in \mathcal{P}$.

Towards a generalization?

How to immerse a system into a dissipative system?

According to Celle et al. 1989, under "reasonable" hypotheses, a control affine system can be immersed into an infinite-dimensional dissipative bilinear system.

Lucas Brivadis

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into a dissipative system

Proposition 4.

Let U be a compact subset of \mathbb{R}^6 . There exist $\delta_0 > 0$, $\alpha_0 > 0$ such that for all $\delta \in (\delta_0, +\infty)$ and all $\alpha \in (0, \alpha_0)$, (0, 0) is an asymptotically stable equilibrium point of the system

$$\begin{cases} \dot{\varepsilon} = (A(\lambda_{\delta}(\hat{z})) - K(\lambda_{\delta}(\hat{z}))C)\varepsilon \\ \dot{\hat{z}} = A(\lambda_{\delta}(\hat{z}))\hat{z} + Bu - K(\lambda_{\delta}(\hat{z}))C\varepsilon. \end{cases}$$
(24)

with initial condition $(\varepsilon_0, \hat{z}_0) \in U$ such that $\hat{z}_0 - \varepsilon_0 \in \mathcal{P}$.

Towards a generalization?

How to immerse a system into a dissipative system?

According to Celle et al. 1989, under "reasonable" hypotheses, a control affine system can be immersed into an infinite-dimensional dissipative bilinear system.

Lucas Brivadis

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into an infinite-dimensional dissipative system

Immersion into an infinite-dimensional dissipative bilinear system:

$$\tau(x): \theta \in \mathbb{S}^1 \mapsto \exp\left(i\mu(x_1\cos(\theta) + x_2\sin(\theta))\right).$$
(25)

Let $z = \tau(x)$. Then

$$\begin{cases} \dot{x} = Jx + bu \\ y = |x| \\ x(0) \in \mathbb{R}^2 \end{cases} \qquad \begin{cases} \dot{z} = A(u)z \\ J_0(\mu y) = Cz \\ z_0 \in Im \tau \subset L^2(\mathbb{S}^1) \end{cases}$$
(26)

with

$$A(u) = -\frac{\partial}{\partial \theta} + iu\sin(\theta), \qquad C = \langle \cdot, 1 \rangle_{L^2(\mathbb{S}^1)}$$

and J_0 the Bessel function of order 0.

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into an infinite-dimensional dissipative system

Immersion into an infinite-dimensional dissipative bilinear system:

$$\tau(x): \theta \in \mathbb{S}^1 \mapsto \exp\left(i\mu(x_1\cos(\theta) + x_2\sin(\theta))\right).$$
(25)

Let $z = \tau(x)$. Then

$$\begin{cases} \dot{x} = Jx + bu \\ y = |x| \\ x(0) \in \mathbb{R}^2 \end{cases} \qquad \begin{cases} \dot{z} = A(u)z \\ J_0(\mu y) = Cz \\ z_0 \in Im \tau \subset L^2(\mathbb{S}^1) \end{cases}$$
(26)

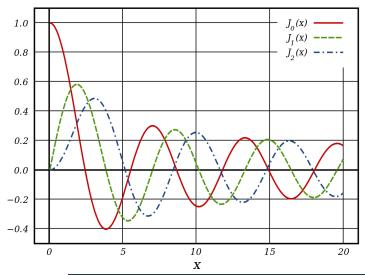
with

$$A(u) = -\frac{\partial}{\partial \theta} + iu\sin(\theta), \qquad C = \langle \cdot, 1 \rangle_{L^2(\mathbb{S}^1)}$$

and J_0 the Bessel function of order 0.

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into an infinite-dimensional dissipative system



An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into an infinite-dimensional dissipative system

Infinite-dimensional observer system:

with A(u) skew-adjoint for all u.

This system has been investigated in Celle et al. 1989.

Main differences with the finite dimensional case:

- Find a pseudo-inverse of τ;
- Weak convergence of ε .

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into an infinite-dimensional dissipative system

Infinite-dimensional observer system:

$$\begin{cases} \dot{\hat{z}} = A(u)\hat{z} - C^*C\varepsilon\\ \dot{\varepsilon} = (A(u) - C^*C)\varepsilon. \end{cases}$$
(27)

with A(u) skew-adjoint for all u.

This system has been investigated in Celle et al. 1989.

Main differences with the finite dimensional case:

- Find a pseudo-inverse of τ ;
- Weak convergence of ε .

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into an infinite-dimensional dissipative system

Infinite-dimensional observer system:

$$\begin{cases} \dot{\hat{z}} = A(u)\hat{z} - C^*C\varepsilon\\ \dot{\varepsilon} = (A(u) - C^*C)\varepsilon. \end{cases}$$
(27)

with A(u) skew-adjoint for all u.

This system has been investigated in Celle et al. 1989.

Main differences with the finite dimensional case:

- Find a pseudo-inverse of τ ;
- Weak convergence of ε .

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into an infinite-dimensional dissipative system

Infinite-dimensional observer system:

$$\begin{cases} \dot{\hat{z}} = A(u)\hat{z} - C^*C\varepsilon\\ \dot{\varepsilon} = (A(u) - C^*C)\varepsilon. \end{cases}$$
(27)

with A(u) skew-adjoint for all u.

This system has been investigated in Celle et al. 1989.

Main differences with the finite dimensional case:

- Find a pseudo-inverse of τ ;
- Weak convergence of ε .

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into an infinite-dimensional dissipative system

Infinite-dimensional observer system:

$$\begin{cases} \dot{\hat{z}} = A(u)\hat{z} - C^*C\varepsilon\\ \dot{\varepsilon} = (A(u) - C^*C)\varepsilon. \end{cases}$$
(27)

with A(u) skew-adjoint for all u.

This system has been investigated in Celle et al. 1989.

Main differences with the finite dimensional case:

- Find a pseudo-inverse of τ ;
- Weak convergence of ε .

An example Immersion into a dissipative system Immersion into an infinite-dimensional dissipative system

Immersion into an infinite-dimensional dissipative system

Infinite-dimensional observer system:

$$\begin{cases} \dot{\hat{z}} = A(u)\hat{z} - C^*C\varepsilon\\ \dot{\varepsilon} = (A(u) - C^*C)\varepsilon. \end{cases}$$
(27)

with A(u) skew-adjoint for all u.

This system has been investigated in Celle et al. 1989.

Main differences with the finite dimensional case:

- Find a pseudo-inverse of τ ;
- Weak convergence of ε .

Concluding remark: The next step is a generalization of the result, first to other examples, then to a class of systems.

Lucas Brivadis

Conclusion

Conclusion

- 1. L. Brivadis, J.-P. Gauthier, L. Sacchelli and U. Serres, Avoiding observability singularities in output feedback control-affine systems, Submitted to SIAM Journal on Control and Optimization, Preprint available on Hal.
- L. Brivadis, V. Andrieu, J.-P. Gauthier, L. Sacchelli and U. Serres, Output feedback stabilization of non-uniformly observable dissipative systems, In preparation.
- L. Brivadis, V. Andrieu, U. Serres and J.-P. Gauthier, Luenberger observers for infinite-dimensional systems and application to a crystallization process, In preparation.

Conclusion

- 1. L. Brivadis, J.-P. Gauthier, L. Sacchelli and U. Serres, Avoiding observability singularities in output feedback control-affine systems, Submitted to SIAM Journal on Control and Optimization, Preprint available on Hal.
- 2. L. Brivadis, V. Andrieu, J.-P. Gauthier, L. Sacchelli and U. Serres, Output feedback stabilization of non-uniformly observable dissipative systems, In preparation.
- L. Brivadis, V. Andrieu, U. Serres and J.-P. Gauthier, Luenberger observers for infinite-dimensional systems and application to a crystallization process, In preparation.

Conclusion

- 1. L. Brivadis, J.-P. Gauthier, L. Sacchelli and U. Serres, Avoiding observability singularities in output feedback control-affine systems, Submitted to SIAM Journal on Control and Optimization, Preprint available on Hal.
- L. Brivadis, V. Andrieu, J.-P. Gauthier, L. Sacchelli and U. Serres, Output feedback stabilization of non-uniformly observable dissipative systems, In preparation.
- L. Brivadis, V. Andrieu, U. Serres and J.-P. Gauthier, Luenberger observers for infinite-dimensional systems and application to a crystallization process, In preparation.

Conclusion

- 1. L. Brivadis, J.-P. Gauthier, L. Sacchelli and U. Serres, Avoiding observability singularities in output feedback control-affine systems, Submitted to SIAM Journal on Control and Optimization, Preprint available on Hal.
- L. Brivadis, V. Andrieu, J.-P. Gauthier, L. Sacchelli and U. Serres, Output feedback stabilization of non-uniformly observable dissipative systems, In preparation.
- 3. L. Brivadis, V. Andrieu, U. Serres and J.-P. Gauthier, Luenberger observers for infinite-dimensional systems and application to a crystallization process, In preparation.

Thank you for your attention

References i

Ahmad N. Atassi and Hassan K. Khalil. "A separation principle for the stabilization of a class of nonlinear systems". In: *IEEE Trans. Automat. Control* 44.9 (1999), pp. 1672–1687. ISSN: 0018-9286. DOI: 10.1109/9.788534. URL: https://doi.org/10.1109/9.788534.

Vincent Andrieu, Elodie Chabanon, et al. *Estimation en ligne de la distribution de taille de cristaux dans un cristallisoir batch.*

Vincent Andrieu and Laurent Praly. "On the Existence of a Kazantzis-Kravaris/Luenberger Observer". In: *SIAM Journal on Control and Optimization* 45.2 (2006), pp. 432–456. DOI: 10.1137/040617066. URL: https://doi.org/10.1137/040617066.

References ii

V. Andrieu and L. Praly. "A unifying point of view on output feedback designs for global asymptotic stabilization". In: *Automatica J. IFAC* 45.8 (2009), pp. 1789–1798. ISSN: 0005-1098. DOI: 10.1016/j.automatica.2009.04.015. URL: https:

//doi.org/10.1016/j.automatica.2009.04.015.

Ralph Abraham and Joel Robbin. *Transversal mappings and flows.* An appendix by Al Kelley. W. A. Benjamin, Inc., New York-Amsterdam, 1967, pp. x+161.

Pauline Bernard et al. "On the triangular canonical form for uniformly observable controlled systems". In: Automatica J. IFAC 85 (2017), pp. 293–300. ISSN: 0005-1098. DOI: 10.1016/j.automatica.2017.07.034. URL: https: //doi.org/10.1016/j.automatica.2017.07.034.

References iii

G. Besançon. Nonlinear Observers and Applications. Lecture Notes in Control and Information Sciences. Springer Berlin Heidelberg, 2007. ISBN: 9783540735038. URL: https://books.google.fr/books?id=QjTjXCT5eoMC.

L. Brivadis et al. "Avoiding observability singularities in output feedback bilinear systems". working paper or preprint. July 2019. URL:

https://hal.archives-ouvertes.fr/hal-02172420.

F. Celle et al. "Synthesis of nonlinear observers: a harmonic-analysis approach". In: *Math. Systems Theory* 22.4 (1989), pp. 291–322. ISSN: 0025-5661. DOI: 10.1007/BF02088304. URL: https://doi.org/10.1007/BF02088304 (cit. on pp. 95–107, 111–116).

References iv

Jean-Michel Coron. *Control and Nonlinearity*. Boston, MA, USA: American Mathematical Society, 2007.

Jean-Michel Coron. "On the stabilization of controllable and observable systems by an output feedback law". In: *Math. Control Signals Systems* 7.3 (1994), pp. 187–216. ISSN: 0932-4194. DOI: 10.1007/BF01212269. URL: https://doi.org/10.1007/BF01212269 (cit. on pp. 36–43).

Farzad Esfandiari and Hassan K. Khalil. "Output feedback stabilization of fully linearizable systems". In: *Internat. J. Control* 56.5 (1992), pp. 1007–1037. ISSN: 0020-7179. DOI: 10.1080/00207179208934355. URL: https://doi.org/10.1080/00207179208934355.

References v

1

Klaus-Jochen Engel and Rainer Nagel. *One-Parameter Semigroups for Linear Evolution Equations*. en. Graduate Texts in Mathematics. New York: Springer-Verlag, 2000. ISBN: 978-0-387-98463-6. URL:

//www.springer.com/us/book/9780387984636.

Michel Fliess and Ivan Kupka. "A Finiteness Criterion for Nonlinear Input–Output Differential Systems". In: *Siam Journal on Control and Optimization* 21 (Sept. 1983). DOI: 10.1137/0321044.

Michel Fliess. "Finite-dimensional observation-spaces for nonlinear systems". In: *Feedback control of linear and nonlinear systems (Bielefeld/Rome, 1981)*. Vol. 39. Lect. Notes Control Inf. Sci. Springer, Berlin, 1982, pp. 73–77. DOI: 10.1007/BFb0006820. URL: https://doi.org/10.1007/BFb0006820.

References vi

E. Gagniere et al. "In Situ Monitoring of Cocrystallization Processes - Complementary Use of Sensing Technologies". en. In: Chemical Engineering & Technology 35.6 (June 2012), pp. 1039–1044. ISSN: 1521-4125. DOI: 10.1002/ceat.201100711. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/ ceat.201100711.

J.-P. Gauthier and G. Bornard. "Observability for any *u*(*t*) of a class of nonlinear systems". In: *IEEE Trans. Automat. Control* 26.4 (1981), pp. 922–926. ISSN: 0018-9286. DOI: 10.1109/TAC.1981.1102743. URL: https://doi.org/10.1109/TAC.1981.1102743.

M. Golubitsky and V. Guillemin. *Stable Mappings and Their Singularities*. Graduate texts in mathematics. Springer, 1974. ISBN: 9787506200448. URL:

https://books.google.fr/books?id=DhQJcgAACAAJ.

Gauthier and Kupka. Deterministic observation theory and applications. Cambridge University Press, Cambridge, 2001, pp. x+226. ISBN: 0-521-80593-7. DOI: 10.1017/CB09780511546648. URL: https://doi.org/10.1017/CB09780511546648 (cit. on pp. 22-26).

J.-P. Gauthier and I. Kupka. "A separation principle for bilinear systems with dissipative drift". In: *IEEE Trans. Automat. Control* 37.12 (1992), pp. 1970–1974. ISSN: 0018-9286. DOI: 10.1109/9.182484. URL: https://doi.org/10.1109/9.182484.

References viii

Mark Goresky and Robert MacPherson. *Stratified Morse theory*. Vol. 14. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1988, pp. xiv+272. ISBN: 3-540-17300-5. DOI: 10.1007/978-3-642-71714-7. URL: https://doi.org/10.1007/978-3-642-71714-7.

Nam H. Jo and Jin H. Seo. "Observer design for non-linear systems that are not uniformly observable". In: International Journal of Control 75.5 (2002), pp. 369–380. DOI: 10.1080/00207170110112287. eprint: https://doi.org/10.1080/00207170110112287. URL: https://doi.org/10.1080/00207170110112287.

Birgit Jacob and Hans Zwart. *Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces*. Jan. 2012.

References ix

H. K. Khalil and F. Esfandiari. "Semiglobal stabilization of a class of nonlinear systems using output feedback". In: *IEEE Transactions on Automatic Control* 38.9 (Sept. 1993), pp. 1412–1415. ISSN: 0018-9286. DOI: 10.1109/9.237658.

Nikolaos Kazantzis and Costas Kravaris. "Nonlinear observer design using Lyapunov's auxiliary theorem". In: *Systems & Control Letters* 34.5 (1998), pp. 241–247. ISSN: 0167-6911. DOI:

https://doi.org/10.1016/S0167-6911(98)00017-6. URL: http://www.sciencedirect.com/science/ article/pii/S0167691198000176.

References x

K.A.A. Langueh et al. "Observabilty singularities and observer design: dual immersion approach". In: *IFAC-PapersOnLine* 49.18 (2016). 10th IFAC Symposium on Nonlinear Control Systems NOLCOS 2016, pp. 511–516. ISSN: 2405-8963. DOI: https://doi.org/10.1016/j.ifacol.2016.10.216. URL: http://www.sciencedirect.com/science/ article/pii/S2405896316317967.

Lagache, Serres, and Gauthier. "Exact output stabilization at unobservable points: Analysis via an example". In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC). Dec. 2017, pp. 6744–6749. DOI: 10.1109/CDC.2017.8264676 (cit. on pp. 36–52).

David Luenberger. "Observing the State of a Linear System". In: MIL8 (May 1964), pp. 74–80.

References xi

ī.

Manfredi Maggiore and Kevin M. Passino. "A separation principle for non-UCO systems: the jet engine stall and surge example". In: *IEEE Trans. Automat. Control* 48.7 (2003), pp. 1264–1269. ISSN: 0018-9286. DOI: 10.1109/TAC.2003.814274. URL: https://doi.org/10.1109/TAC.2003.814274.

L. Marconi, L. Praly, and A. Isidori. "Output stabilization via nonlinear Luenberger observers". In: *SIAM J. Control Optim.* 45.6 (2007), pp. 2277–2298. ISSN: 0363-0129. DOI: 10.1137/050642344. URL: https://doi.org/10.1137/050642344.

A Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Vol. 44. Jan. 1983.

References xii

Karim Ramdani, Takeo Takahashi, et al. "A spectral approach for the exact observability of infinite dimensional systems with skew-adjoint generator.". In: *Journal of Functional Analysis* 226 (2005), pp. 193–229. URL: https://hal.archives-ouvertes.fr/hal-00091371.

Karim Ramdani, Marius Tucsnak, and George Weiss. "Recovering the initial state of an infinite-dimensional system using observers". In: Automatica 46.10 (2010), pp. 1616-1625. ISSN: 0005-1098. DOI: https: //doi.org/10.1016/j.automatica.2010.06.032. URL: http://www.sciencedirect.com/science/article/ pii/S0005109810002827.

References xiii

Shim and Teel. "Asymptotic controllability and observability imply semiglobal practical asymptotic stabilizability by sampled-data output feedback". In: *Automatica* 39.3 (2003), pp. 441-454. ISSN: 0005-1098. DOI: https://doi.org/10.1016/S0005-1098(02)00278-9. URL: http://www.sciencedirect.com/science/ article/pii/S0005109802002789 (cit. on pp. 36-43).

A. Teel and L. Praly. "Global stabilizability and observability imply semi-global stabilizability by output feedback". In: *Systems Control Lett.* 22.5 (1994), pp. 313–325. ISSN: 0167-6911. DOI: 10.1016/0167-6911(94)90029-9. URL: https://doi.org/10.1016/0167-6911(94)90029-9 (cit. on pp. 22–26).

References xiv

Andrew Teel and Laurent Praly. "Tools for semiglobal stabilization by partial state and output feedback". In: *SIAM J. Control Optim.* 33.5 (1995), pp. 1443–1488. ISSN: 0363-0129. DOI: 10.1137/S0363012992241430. URL: https://doi.org/10.1137/S0363012992241430.

Marius Tucsnak and George Weiss. *Observation and Control for Operator Semigroups*. Birkhäuser Advanced Texts / Basler Lehrbücher. Birkhäuser Verlag, 2009, p. 483. DOI: 10,1007/978-3-7643-8994-9. URL:

https://hal.archives-ouvertes.fr/hal-00590673.

Basile Uccheddu. "Observer for a batch crystallization process". Theses. Université Claude Bernard - Lyon I, July 2011. URL:

https://tel.archives-ouvertes.fr/tel-00751922.

