Locally Lipschitz Lyapunov Functions for Switching Differential Inclusions

Matteo Della Rossa, Aneel Tanwani and Luca Zaccarian

LAAS - CNRS, Toulouse, France

Séminaires des doctorants MAC, Troisième Épisode (28 Mars 2019) Un grand merci au comité d'organisation = Matteo Tacchi

Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
•	000	0000	0000000		O
Introc	luction				

Main Target

Given a state-dependent switching system, we want to provide sufficient conditions for the asymptotic stability, via locally Lipschitz (and in particular max-min) Lyapunov functions.

Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
•	000	0000	0000000		O
Introc	luction				

Main Target

Given a state-dependent switching system, we want to provide sufficient conditions for the asymptotic stability, via locally Lipschitz (and in particular max-min) Lyapunov functions.

- Reference Paper: *Max-Min Lyapunov Functions for Switching Differential Inclusion*. Matteo Della Rossa, Aneel Tanwani, Luca Zaccarian, 57th IEEE-Conference on Decision and Control (CDC 2018), Dec 2018, Miami, United States.
- Extended version: *Max-Min Lyapunov Functions for Switched Systems and the Related Differential Inclusions.* Submitted for publication.
- If you don't want to read, for the next 18 months I'm in the bureau E47.

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Syste	ms Class				

Let us consider $\mathcal{F} = \{f_1, \dots, f_K\} \subset \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$ and a switching signal $\sigma : \mathbb{R}^n \to \{1, \dots, K\}$.

State Dependent Switching System

 $\dot{x} = f_{\sigma(x)}(x)$

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Syste	ms Class				

Let us consider $\mathcal{F} = \{f_1, \dots, f_K\} \subset \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$ and a switching signal $\sigma : \mathbb{R}^n \to \{1, \dots, K\}$.

State Dependent Switching System

 $\dot{x} = f_{\sigma(x)}(x)$

Remarks:

- Discontinuous differential equations, but
- \mathcal{C}^1 in the regions where the signal σ is constant.

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Syste	ms Class				

Let us consider $\mathcal{F} = \{f_1, \dots, f_K\} \subset \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$ and a switching signal $\sigma : \mathbb{R}^n \to \{1, \dots, K\}.$

State Dependent Switching System

 $\dot{x} = f_{\sigma(x)}(x)$

Remarks:

- Discontinuous differential equations, but
- \mathcal{C}^1 in the regions where the signal σ is constant.

"Flower" example: Linear switching system, but non convex trajectories/reachable sets. Existence and uniqueness of solution. Existence/Uniqueness in the general case ?

Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Existe	ence and Unique	eness			

We do not have existence/uniqueness of Caratheodory solutions in general.

Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Existe	ence and Unique	eness			

We *do not* have existence/uniqueness of Caratheodory solutions in general. **Non existence**

$$\dot{x}(t) = \begin{cases} 1, & \text{if } x \le 0, \\ -1, & \text{if } x > 0. \end{cases}$$

No solution starting at $x_0 = 0$.

Fxiste	ence and Unique	eness			
	000	0000	0000000	000	
Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion

We *do not* have existence/uniqueness of Caratheodory solutions in general. **Non existence**

$$\dot{x}(t) = \begin{cases} 1, & \text{if } x \le 0, \\ -1, & \text{if } x > 0. \end{cases}$$

No solution starting at $x_0 = 0$. Non uniqueness

$$\dot{x}(t) = \begin{cases} -1, & \text{if } x \le 0, \\ 1, & \text{if } x > 0. \end{cases}$$

Two solutions starting at $x_0 = 0$.

Introduction O	State Dependent Switching System	Non-Smooth Analysis Tools 0000	Max-Min Functions	Linear Differential Inclusion	Conclusion O
Filipp	ov Regularizatio	on			

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Filipp	ov Regularizatio	on			

Filippov Regularization of Switching Systems

 $\dot{x} \in F^{\mathrm{sw}}(x) := \overline{\mathrm{co}}\{f_i(x) \,|\, i \in J(x)\}$

where $J(x) := \{ j \mid \forall \varepsilon > 0, \exists \xi \in \mathbb{B}_{\varepsilon}(x) \text{ s.t. } \sigma(\xi) = j \}.$

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Filipp	ov Regularizatio	on			

Filippov Regularization of Switching Systems

 $\dot{x} \in F^{\mathrm{sw}}(x) := \overline{\mathrm{co}}\{f_i(x) \mid i \in J(x)\}$

where $J(x) := \{ j \mid \forall \varepsilon > 0, \exists \xi \in \mathbb{B}_{\varepsilon}(x) \text{ s.t. } \sigma(\xi) = j \}.$

Hypothesis on the switching signal: $\sigma(x) = j$ on a set D_j , j = 1, ..., K, such that

 $D_j := \{ x \in \mathbb{R}^n \, | \, S_j(x) > 0; S_j : \mathbb{R}^n \to \mathbb{R} \text{ is analytic} \} \land \text{connected},$

$$\bigcup_{j} \overline{D_j} = \mathbb{R}^n, \quad \text{and} \quad D_i \cap D_j = \emptyset, \ i \neq j.$$

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Filipp	ov Regularizatio	on			

Filippov Regularization of Switching Systems

 $\dot{x} \in F^{\mathrm{sw}}(x) := \overline{\mathrm{co}}\{f_i(x) \mid i \in J(x)\}$

where $J(x) := \{ j \mid \forall \varepsilon > 0, \exists \xi \in \mathbb{B}_{\varepsilon}(x) \text{ s.t. } \sigma(\xi) = j \}.$

Hypothesis on the switching signal: $\sigma(x) = j$ on a set D_j , j = 1, ..., K, such that

 $D_j := \{ x \in \mathbb{R}^n \, | \, S_j(x) > 0; S_j : \mathbb{R}^n \to \mathbb{R} \text{ is analytic} \} \land \text{connected},$

$$\bigcup_{j} \overline{D_j} = \mathbb{R}^n, \quad \text{and} \quad D_i \cap D_j = \emptyset, \ i \neq j.$$

The mapping $F^{sw} : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$, the Filippov/Krasovskii regularization, is upper semicontinuous, with non empty, compact and convex values.

- \Rightarrow Existence of complete solutions **but**
 - no uniqueness nor continuity w.r.t initial conditions.

Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	000000	000	
Why	non-smooth Lva	apunov Func	tions?		

Why	non-smooth Ly	anunov Func	tions?		
		● 000			
Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion

Under our conditions the existence of a <u>smooth</u> Lyapunov functions is **necessary and sufficient** for asymptotic stability of a compact set.

Why r	non-smooth Lva	anunov Func	tions?		
	000	0000	0000000	000	
Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion

Under our conditions the existence of a <u>smooth</u> Lyapunov functions is **necessary and sufficient** for asymptotic stability of a compact set.

On the other hand, in many situations:

• A nonsmooth function V may be easier to describe and construct;

Why i	non-smooth l	vanunov Euno	tions?		
	000	0000	0000000	000	
Introduction	State Dependent Switching Syste	Mon-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion

Under our conditions the existence of a <u>smooth</u> Lyapunov functions is **necessary and sufficient** for asymptotic stability of a compact set.

On the other hand, in many situations:

- A nonsmooth function V may be easier to describe and construct;
- The piecewise structure "fits well" with our problem;

Example/Spoiler: It will be easy to "imagine" (construct) a non-smooth Lyapunov function for the flower system. (In red the level set).

A smooth one exists but it is not so easy to construct.

Introduction O	State Dependent Switching System	Non-Smooth Analysis Tools ○●○○	Max-Min Functions	Linear Differential Inclusion	Conclusion O
Notio	ns of Derivative	2			

Problem: Non smooth function \Rightarrow The gradient is not defined!

	State Dependent Switching System	Non-Smooth Analysis Tools O●OO	Max-Min Functions	Linear Differential Inclusion	Conclusion O
Notio	ns of Derivative	9			

	State Dependent Switching System	Non-Smooth Analysis Tools ○●○○	Max-Min Functions 0000000	Linear Differential Inclusion	Conclusion O
Notio	ns of Derivative	2			

• V is almost everywhere differentiable (Rademacher Theorem);

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Notio	ns of Derivative	5			

- V is almost everywhere differentiable (Rademacher Theorem);
- Clarke's gradient:

$$\partial V(x) = \overline{\operatorname{co}}\left\{\lim_{k \to \infty} \nabla V(x_k) \,|\, x_k \to x, \, x_k \notin \mathcal{N} \cup \mathcal{S}\right\}$$

• if V is differentiable at x, $\partial V(x) = \{\nabla V(x)\}$,

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Notio	ns of Derivative	5			

- V is almost everywhere differentiable (Rademacher Theorem);
- Clarke's gradient:

$$\partial V(x) = \overline{\operatorname{co}} \left\{ \lim_{k \to \infty} \nabla V(x_k) \, | \, x_k \to x, \, x_k \notin \mathcal{N} \cup \mathcal{S} \right\}$$

- if V is differentiable at x, $\partial V(x) = \{\nabla V(x)\}$,
- Directional Derivative: Given $x \in \mathbb{R}^n$ and a direction $w \in \mathbb{R}^n$,

 $V'(x,w) \in \{ \langle p, w \rangle \mid p \in \partial V(x) \}$

Let us consider a differential inclusion $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$, **Clarke's derivative:** $\dot{V}_F(x) := \{ \langle p, f \rangle \mid p \in \partial V(x), f \in F(x) \}$. Lie's derivative: $\dot{\overline{V}}_F(x) := \{ a \in \mathbb{R} \mid \exists f \in F(x) : a = \langle p, f \rangle, \forall p \in \partial V(x) \}$.

They are compact intervals.

In general: $\dot{\overline{V}}_F(x) \subset \dot{V}_F(x)$

Let us consider a differential inclusion $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$, **Clarke's derivative:** $\dot{V}_F(x) := \{ \langle p, f \rangle \mid p \in \partial V(x), f \in F(x) \}$. Lie's derivative: $\dot{\overline{V}}_F(x) := \{ a \in \mathbb{R} \mid \exists f \in F(x) : a = \langle p, f \rangle, \forall p \in \partial V(x) \}$.

They are compact intervals.

In general: $\dot{\overline{V}}_F(x) \subset \dot{V}_F(x)$

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Stabil	ity Conditions				

Theorem (Lie derivative based condition)

Given a locally Lipschitz and regular function $V : \mathbb{R}^n \to \mathbb{R}$. If \exists a class \mathcal{K} function γ , and a scalar $\delta > 0$, such that, for every x with $|x| < \delta$,

 $\max \frac{\dot{\overline{V}}_F}{V_F}(x) \le -\gamma(|x|),$

then the origin of $\dot{x} \in F(x)$ is (locally) asymp. stable.

Proof Sketch:

• Main Step: It holds for almost every $t \ge 0$ that

$$\frac{d}{dt}V(\varphi(t))\in \dot{\overline{V}}_F(\varphi(t))$$

• By assumption, $\dot{\overline{V}}_F(\varphi(t)) \leq -\gamma(|\varphi(t)|)$, and one can derive local and global versions.

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	000000	000	
Funct	ion Class				

[Angeli-Philippe-Athanasopoulos-Jungers '17]

Max-Min Function

Given
$$V_i \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$$
, $i = 1, \dots, K$, let

$$V_{\mathbf{Mm}}(x) := \max_{j \in \{1, \dots, J\}} \left\{ \min_{k \in S_j} \{V_k(x)\} \right\},\$$

where $S_j \subset \{1, \ldots, K\}$.

- (Possibly) non-convex level sets
- Locally Lipschitz, and hence differentiable <u>almost</u> everywhere

"Active Index Set" for V is $\alpha_V : \mathbb{R}^n \rightrightarrows \{1, \cdots, K\}$,

$$\alpha_{V}(x) := \left\{ \begin{array}{l} \ell \mid \forall \text{ neighborhood } \mathcal{U} \text{ of } x, \exists \text{ an open } \mathcal{V} \subset \mathcal{U} \\ \text{ s.t. } V(z) = V_{\ell}(z), \forall z \in \mathcal{V} \end{array} \right\}$$

Matteo Della Rossa (LAAS – CNRS, France)

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
0	000	0000	000000	000	0
Max-	Min and Level S	Sets			

Given $V:\mathbb{R}^n\to\mathbb{R}$ and $c\in\mathbb{R}$ we define the level set

 $\mathcal{E}_V(c) := \{ x \in \mathbb{R}^n : V(x) \le c \}.$

Max Function:

 $V_{\mathbb{M}}(x) := \max\{V_1(x), \dots, V_K(x)\} \Rightarrow \mathcal{E}_{V_{\mathbb{M}}}(c) = \mathcal{E}_{V_1}(c) \cap \dots \cap \mathcal{E}_{V_K}(c).$ **Min Function:** $V_{\mathbb{M}}(x) := \min\{V_1(x), \dots, V_K(x)\} \Rightarrow \mathcal{E}_{V_{\mathbb{M}}}(c) = \mathcal{E}_{V_1}(c) \cup \dots \cup \mathcal{E}_{V_K}(c).$

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	000000	000	
Max-N	Vin and Level S	Sets			

Given $V:\mathbb{R}^n\to\mathbb{R}$ and $c\in\mathbb{R}$ we define the level set

 $\mathcal{E}_V(c) := \{ x \in \mathbb{R}^n : V(x) \le c \}.$

Max Function:

 $V_{\mathsf{M}}(x) := \max\{V_1(x), \dots, V_K(x)\} \Rightarrow \mathcal{E}_{V_{\mathsf{M}}}(c) = \mathcal{E}_{V_1}(c) \cap \dots \cap \mathcal{E}_{V_K}(c).$ **Min Function:** $V_{\mathsf{m}}(x) := \min\{V_1(x), \dots, V_K(x)\} \Rightarrow \mathcal{E}_{V_{\mathsf{m}}}(c) = \mathcal{E}_{V_1}(c) \cup \dots \cup \mathcal{E}_{V_K}(c).$ **Max-Min Function:**

$$V_{\mathbf{Mm}}(x) := \max_{j \in \{1,\dots,J\}} \left\{ \min_{k \in S_j} \{V_k(x)\} \right\} \Rightarrow \mathcal{E}_{V_{\mathbf{Mm}}}(c) = \bigcap_{j=1}^J \left(\bigcup_{k \in S_j} \mathcal{E}_{V_k}(c) \right).$$

Stabil	ity conditions f	or Max Min	Eunction		0
Stabil	ity conditions f	or Max Min	Eunction	_	
Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion

Given $V \in \mathbf{Mm}(V_1, \ldots, V_K)$, the following equality holds

$$\partial V(x) = \overline{\operatorname{co}}\{\nabla V_{\ell}(x) \,|\, \ell \in \alpha_V(x)\}.$$
(1)

In particular, given $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$, we have

$$\overline{V}_F(x) = \{ a \in \mathbb{R} \,|\, \exists f \in F(x) : a = \langle \nabla V_\ell(x), f \rangle, \, \forall \ell \in \alpha_V(x) \}.$$
(2)

Corollary (Lie conditions for Max-Min Functions)

Given *K* positive-definite functions $V_1, \ldots, V_K \in C^1(\mathbb{R}^n, \mathbb{R})$, let $V \in \mathbf{Mm}(V_1, \ldots, V_K)$. If \exists a class \mathcal{K} function γ , and a scalar $\delta > 0$, such that, for every x with $|x| < \delta$,

 $\max \overline{V}_F(x) \le -\gamma(|x|),$

then the origin of $\dot{x} \in F(x)$ is (locally) asymp. stable.

Introduction O	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions 000●000	Linear Differential Inclusion	Conclusion O
Geom	etric Interpreta	tion of $\dot{\overline{V}}_F(z)$	r)		

Consider $V \in \mathbf{Mm}(V_1, \ldots, V_K)$ and an $x \in \mathbb{R}^n$ such that $\alpha_V(x) = \{\ell_1, \ldots, \ell_p\}$. We have $x \in S := \{y \in \mathbb{R}^n | V_{\ell_1}(y) = \cdots = V_{\ell_p}(y)\}$, a discontinuity surface of the function V.

Introduction O	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions 000●000	Linear Differential Inclusion	Conclusion O
Geom	etric Interpreta	tion of $\dot{\overline{V}}_F(z)$	(r)		

Consider $V \in \mathbf{Mm}(V_1, \ldots, V_K)$ and an $x \in \mathbb{R}^n$ such that $\alpha_V(x) = \{\ell_1, \ldots, \ell_p\}$. We have $x \in S := \{y \in \mathbb{R}^n | V_{\ell_1}(y) = \cdots = V_{\ell_p}(y)\}$, a discontinuity surface of the function V.

Geometry of $\overline{V}_F(x)$

If x is a regular point of the discontinuity surface \mathcal{S} , then

 $\dot{\overline{V}}_F(x) = \{ \langle \nabla V_\ell(x), f \rangle \mid \forall \ell \in \alpha_V(x), \ \forall f \in T_{\mathcal{S}}(x) \cap F(x) \}.$

If the discontinuity surfaces of V and f_{σ} coincide, $f \in T_{\mathcal{S}}(x)$ represent a sliding direction.

Deviat		Evenente			
0	000	0000	0000000	000	0
Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion

Revisiting the Flower Example

• System class: $\dot{x} = A_{\sigma(x)}(x)$, with $\sigma : \mathbb{R}^2 \to \{1, 2\}$

Deviat	the state of the second	Evenenie			
0	000	0000	0000000	000	0
Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion

Revisiting the Flower Example

• System class: $\dot{x} = A_{\sigma(x)}(x)$, with $\sigma : \mathbb{R}^2 \to \{1, 2\}$ • $\sigma(x) = i$ on X_i , a cone.

Deviat		Evenente			
0	000	0000	0000000	000	0
Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion

Revisiting the Flower Example

- System class: $\dot{x} = A_{\sigma(x)}(x)$, with $\sigma : \mathbb{R}^2 \to \{1, 2\}$
- $\sigma(x) = i$ on X_i , a cone.
- Lyapunov function: $x \mapsto V(x) := \min\{x^\top P_1 x, x^\top P_2 x\},\$

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Provi	ng Stability				

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Provi	ng Stability				

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Provi	ng Stability				

Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Provir	ng Stability				

• $P_iA_i+A_i^\top P_i<0,$ for $i\in\{1,2\}$ that implies $\langle\nabla V(x),A_ix\rangle<0$ for all $x\in {\rm int}(X_i)$,

Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Provi	ng Stability				

- $P_iA_i + A_i^\top P_i < 0$, for $i \in \{1,2\}$ that implies $\langle \nabla V(x), A_i x \rangle < 0$ for all $x \in int(X_i)$,
- In the discontinuity point we have $\overline{V}_F(x) = \emptyset$, nothing has to be checked.

Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion
	000	0000	0000000	000	
Provi	ng Stability				

- $P_iA_i+A_i^\top P_i<0,$ for $i\in\{1,2\}$ that implies $\langle\nabla V(x),A_ix\rangle<0$ for all $x\in {\rm int}(X_i)$,
- In the discontinuity point we have $\dot{\overline{V}}_F(x)=\emptyset,$ nothing has to be checked.
- The Clarke's conditions are not satisfied.

Introduction O	State Dependent Switching System	Non-Smooth Analysis Tools 0000	Max-Min Functions	Linear Differential Inclusion	Conclusion O
A No	nlinear Example	e, Sliding Mo	odes		

$$\dot{x} = \begin{cases} f_1(x) := A_1 x + b \widetilde{g}(x) & \text{if } x^\top Q x < 0, \\ f_2(x) := A_2 x + b \widetilde{g}(x) & \text{if } x^\top Q x > 0, \end{cases}$$

Step 1: For some P_1 , P_2 , $P_2 - P_1 = 4Q$,

$$V(x) = \min\{x^{\top} P_1 x, x^{\top} P_2 x\}.$$

A Nor	linear Example	Sliding Mc	odes		
	000	0000	000000	000	
Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion

$$\dot{x} = \begin{cases} f_1(x) := A_1 x + b \widetilde{g}(x) & \text{if } x^\top Q x < 0, \\ f_2(x) := A_2 x + b \widetilde{g}(x) & \text{if } x^\top Q x > 0, \end{cases}$$

Step 1: For some P_1 , P_2 , $P_2 - P_1 = 4Q$,

$$V(x) = \min\{x^{\top} P_1 x, x^{\top} P_2 x\}.$$

Step 2: Stability condition in the interior of the domain

	nlinear Example	Sliding Mc	odes		
	000	0000	000000	000	
Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion

$$\dot{x} = \begin{cases} f_1(x) := A_1 x + b \widetilde{g}(x) & \text{if } x^\top Q x < 0, \\ f_2(x) := A_2 x + b \widetilde{g}(x) & \text{if } x^\top Q x > 0, \end{cases}$$

Step 1: For some P_1 , P_2 , $P_2 - P_1 = 4Q$,

 $V(x) = \min\{x^{\top} P_1 x, x^{\top} P_2 x\}.$

- Step 2: Stability condition in the interior of the domain
- Step 3: Analyze the surface S_1 by finding the right convex combination

	nlinear Example	Sliding Mc	odes		
	000	0000	000000	000	
Introduction	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion

$$\dot{x} = \begin{cases} f_1(x) := A_1 x + b \widetilde{g}(x) & \text{if } x^\top Q x < 0, \\ f_2(x) := A_2 x + b \widetilde{g}(x) & \text{if } x^\top Q x > 0, \end{cases}$$

Step 1: For some P_1 , P_2 , $P_2 - P_1 = 4Q$,

 $V(x) = \min\{x^{\top} P_1 x, x^{\top} P_2 x\}.$

- Step 2: Stability condition in the interior of the domain
- Step 3: Analyze the surface S_1 by finding the right convex combination
- Step 4: Analyze the surface \mathcal{S}_2 and analyze dominant terms near origin

System dynamics (LDI): $\dot{x} \in \overline{\operatorname{co}} \{A_i x \mid i \in \{1, \dots, M\}\}\$ Base functions: K quadratic forms P_1, \dots, P_K Ordering: For $\rho = (j_1, \dots, j_K) \in \mathbb{S}_K$ (symmetric group of order K)

$$C_{\rho} := \left\{ x \in \mathbb{R}^n \mid x^{\top} P_{j_1} x < \dots < x^{\top} P_{j_K} x \right\},\,$$

System dynamics (LDI): $\dot{x} \in \overline{co} \{A_i x \mid i \in \{1, \dots, M\}\}$ Base functions: K quadratic forms P_1, \dots, P_K Ordering: For $\rho = (j_1, \dots, j_K) \in \mathbb{S}_K$ (symmetric group of order K)

$$C_{\rho} := \left\{ x \in \mathbb{R}^n \mid x^\top P_{j_1} x < \dots < x^\top P_{j_K} x \right\},\,$$

Corollary (Sufficient Condition using Clarke's gradient)

Let $V \in \mathbf{Mm}\{V_1, \ldots, V_K\}$. If, for each $i \in \{1, \ldots, M\}$, and for each $\rho = (j_1, \ldots, j_K) \in \mathbb{S}_K$, there exist $\tau_{j_1}, \ldots, \tau_{j_{K-1}} \ge 0$ such that

$$A_i^{\top} P_{\ell} + P_{\ell} A_i + \sum_{k=1}^{K-1} \tau_{j_k} (P_{j_{k+1}} - P_{j_k}) < 0, \quad \ell = \alpha_V (C_{\rho}),$$

then V is a radially unbounded Lyapunov function and (LDI) is GAS.

System dynamics (LDI): $\dot{x} \in \overline{co} \{A_i x \mid i \in \{1, \dots, M\}\}$ Base functions: K quadratic forms P_1, \dots, P_K Ordering: For $\rho = (j_1, \dots, j_K) \in \mathbb{S}_K$ (symmetric group of order K)

$$C_{\rho} := \left\{ x \in \mathbb{R}^n \mid x^\top P_{j_1} x < \dots < x^\top P_{j_K} x \right\},\,$$

Corollary (Sufficient Condition using Clarke's gradient)

Let $V \in \mathbf{Mm}\{V_1, \ldots, V_K\}$. If, for each $i \in \{1, \ldots, M\}$, and for each $\rho = (j_1, \ldots, j_K) \in \mathbb{S}_K$, there exist $\tau_{j_1}, \ldots, \tau_{j_{K-1}} \ge 0$ such that

$$A_i^{\top} P_{\ell} + P_{\ell} A_i + \sum_{k=1}^{K-1} \tau_{j_k} (P_{j_{k+1}} - P_{j_k}) < 0, \quad \ell = \alpha_V(C_{\rho}),$$

then V is a radially unbounded Lyapunov function and (LDI) is GAS.

• Since $|\mathbb{S}_K| = K!$ finding a max-min V requires solving $M \cdot K!$ inequalities, which involve M(K-1)K! non-negative scalars and K symmetric positive-definite matrices.

Matteo Della Rossa (LAAS – CNRS, France)

O	000	0000	0000000	O
A Cas	e-Study with T	hree Quadra	tics	

- Common Lyapunov function: $V = \max{\min{\{P_i\}}};$
- Min of 3 quadratics: $V = \max\{\min\{P_1, P_2, P_3\}\};$
- Max of 3 quadratics: $V = \max\{\min\{P_1\}, \min\{P_2\}, \min\{P_3\}\};$
- Quasi-max functions: $V = \max{\{\min\{P_1\}, \min\{P_2, P_3\}\}};$
- Quasi-min functions: $V = \max \{\min\{P_1, P_3\}, \min\{P_2, P_3\}\};$
- Mid-of-quadratics: $V = \max \{\min\{P_1, P_2\}, \min\{P_2, P_3\} \min\{P_1, P_3\}\}.$

Introduction O	State Dependent Switching System	Non-Smooth Analysis Tools 0000	Max-Min Functions 0000000	Linear Differential Inclusion	Conclusion O
A Cas	e-Study with T	hree Quadra	atics		

BMIs for Quasi-Max Function

 $V = \max\{\min\{P_1\}, \min\{P_2, P_3\}\}\$

For each $i \in \{1, \ldots, M\}$, find the scalars $\tau_{12}, \tau_{13}, \tau_{21}, \tau_{23}, \tau_{31}, \tau_{32} \ge 0$, and $\tilde{\tau}_{12}, \tilde{\tau}_{13}, \tilde{\tau}_{21}, \tilde{\tau}_{23}, \tilde{\tau}_{31}, \tilde{\tau}_{32} \ge 0$ such that

- $A_i^{\top} P_2 + P_2 A_i + \tau_{21} (P_2 P_1) + \tau_{32} (P_3 P_2) < 0$, over C_{123}
- $A_i^\top P_3 + P_3 A_i + \tau_{31} (P_3 P_1) + \tau_{23} (P_2 P_3) < 0$, over C_{132}
- $A_i^\top P_1 + P_1 A_i + \tilde{\tau}_{31}(P_1 P_3) + \tilde{\tau}_{21}(P_2 P_1) < 0$, over C_{312}
- $A_i^\top P_1 + P_1 A_i + \tau_{12} (P_1 P_2) + \tilde{\tau}_{31} (P_3 P_1) < 0$, over C_{213}
- $A_i^\top P_1 + P_1 A_i + \tilde{\tau}_{32}(P_3 P_2) + \tau_{13}(P_1 P_3) < 0$, over C_{231}
- $A_i^{\top} P_1 + P_1 A_i + \tilde{\tau}_{23} (P_2 P_3) + \tilde{\tau}_{12} (P_1 P_2) < 0$, over C_{321} .

Introduction O	State Dependent Switching System	Non-Smooth Analysis Tools 0000	Max-Min Functions	Linear Differential Inclusion	Conclusion O
A Cas	e-Study with T	hree Quadra	atics		

BMIs for Quasi-Max Function

 $V = \max\{\min\{P_1\}, \min\{P_2, P_3\}\}\$

For each $i \in \{1, \ldots, M\}$, find the scalars $\tau_{12}, \tau_{13}, \tau_{21}, \tau_{23}, \tau_{31}, \tau_{32} \ge 0$, and $\tilde{\tau}_{12}, \tilde{\tau}_{13}, \tilde{\tau}_{21}, \tilde{\tau}_{23}, \tilde{\tau}_{31}, \tilde{\tau}_{32} \ge 0$ such that

- $A_i^{\top} P_2 + P_2 A_i + \tau_{21} (P_2 P_1) + \tau_{32} (P_3 P_2) < 0$, over C_{123}
- $A_i^\top P_3 + P_3 A_i + \tau_{31} (P_3 P_1) + \tau_{23} (P_2 P_3) < 0$, over C_{132}
- $A_i^\top P_1 + P_1 A_i + \tilde{\tau}_{31} (P_1 P_3) + \tilde{\tau}_{21} (P_2 P_1) < 0$, over C_{312}
- $A_i^\top P_1 + P_1 A_i + \tau_{12} (P_1 P_2) + \tilde{\tau}_{31} (P_3 P_1) < 0$, over C_{213}
- $A_i^\top P_1 + P_1 A_i + \tilde{\tau}_{32} (P_3 P_2) + \tau_{13} (P_1 P_3) < 0$, over C_{231}
- $A_i^{\top} P_1 + P_1 A_i + \tilde{\tau}_{23} (P_2 P_3) + \tilde{\tau}_{12} (P_1 P_2) < 0$, over C_{321}
- $\exists \ \tilde{\lambda} \ge 0$ s.t. $A_i^\top P_1 + P_1 A_i + \tilde{\lambda}(P_1 P_2) < 0$, over $(C_{213} \cup C_{231} \cup C_{321})$

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion O
A Cas	e-Study with T	hree Quadra	atics		

BMIs for Mid of 3 Quadratics

 $V = \max\{\min\{P_1, P_2\}, \min\{P_2, P_3\}, \min\{P_3, P_1\}\}$

For each $i \in \{1, \ldots, M\}$, find the scalars $\tau_{12}, \tau_{13}, \tau_{21}, \tau_{23}, \tau_{31}, \tau_{32} \ge 0$, and $\tilde{\tau}_{12}, \tilde{\tau}_{13}, \tilde{\tau}_{21}, \tilde{\tau}_{23}, \tilde{\tau}_{31}, \tilde{\tau}_{32} \ge 0$ such that

- $A_i^{\top} P_2 + P_2 A_i + \tau_{21} (P_2 P_1) + \tau_{32} (P_3 P_2) < 0$, over C_{123}
- $A_i^\top P_3 + P_3 A_i + \tau_{31} (P_3 P_1) + \tau_{23} (P_2 P_3) < 0$, over C_{132}
- $A_i^\top P_1 + P_1 A_i + \tilde{\tau}_{31}(P_1 P_3) + \tilde{\tau}_{21}(P_2 P_1) < 0$, over C_{312}
- $A_i^\top P_1 + P_1 A_i + \tau_{12} (P_1 P_2) + \tilde{\tau}_{31} (P_3 P_1) < 0$, over C_{213}
- $A_i^\top P_3 + P_3 A_i + \tilde{\tau}_{32}(P_3 P_2) + \tau_{13}(P_1 P_3) < 0$, over C_{231}
- $A_i^{\top} P_2 + P_2 A_i + \tilde{\tau}_{23} (P_2 P_3) + \tilde{\tau}_{12} (P_1 P_2) < 0$, over C_{321}

	State Dependent Switching System	Non-Smooth Analysis Tools	Max-Min Functions	Linear Differential Inclusion	Conclusion O
A Cas	e-Study with T	hree Quadra	itics		

BMIs for Max of 3 Quadratics

 $V = \max\left\{\min\{P_1\}, \min\{P_2\}, \min\{P_3\}\right\}.$

For each $i \in \{1, ..., M\}$, find the scalars $\tau_{12}, \tau_{13}, \tau_{21}, \tau_{23}, \tau_{31}, \tau_{32} \ge 0$, and $\tilde{\tau}_{12}, \tilde{\tau}_{13}, \tilde{\tau}_{21}, \tilde{\tau}_{23}, \tilde{\tau}_{31}, \tilde{\tau}_{32} \ge 0$ such that

- $A_i^{\top} P_3 + P_3 A_i + \tau_{21} (P_2 P_1) + \tau_{32} (P_3 P_2) < 0$, over C_{123}
- $A_i^\top P_3 + P_3 A_i + \tau_{12} (P_1 P_2) + \tilde{\tau}_{31} (P_3 P_1) < 0$, over C_{213}
- $A_i^{\top} P_2 + P_2 A_i + \tau_{31} (P_3 P_1) + \tau_{23} (P_2 P_3) < 0$, over C_{132}
- $A_i^{\top} P_2 + P_2 A_i + \tilde{\tau}_{31} (P_1 P_3) + \tilde{\tau}_{21} (P_2 P_1) < 0$, over C_{312}
- $A_i^\top P_1 + P_1 A_i + \tilde{\tau}_{32}(P_3 P_2) + \tau_{13}(P_1 P_3) < 0$, over C_{231}
- $A_i^{\top} P_1 + P_1 A_i + \tilde{\tau}_{23} (P_2 P_3) + \tilde{\tau}_{12} (P_1 P_2) < 0$, over C_{321}

Introduction O	State Dependent Switching System	Non-Smooth Analysis Tools 0000	Max-Min Functions 0000000	Linear Differential Inclusion	Conclusion O
A Cas	e-Study with T	hree Quadra	atics		

BMIs for Max of 3 Quadratics

 $V = \max\left\{\min\{P_1\}, \min\{P_2\}, \min\{P_3\}\right\}.$

For each $i \in \{1, \dots, M\}$, find $\lambda_{12}, \lambda_{13}, \lambda_{21}, \lambda_{23}, \lambda_{31}, \lambda_{32} \ge 0$ such that

- $A_i^\top P_3 + P_3 A_i + \lambda_{31} (P_3 P_1) + \lambda_{32} (P_3 P_2) < 0$, over $C_{123} \cup C_{213}$
- $A_i^{\top} P_2 + P_2 A_i + \lambda_{21} (P_2 P_1) + \tau_{23} (P_2 P_3) < 0$, over $C_{132} \cup C_{312}$
- $A_i^\top P_1 + P_1 A_i + \lambda_{12} (P_1 P_2) + \lambda_{13} (P_1 P_3) < 0$, over $C_{231} \cup C_{321}$

	State Dependent Switching System	Non-Smooth Analysis Tools 0000	Max-Min Functions	Linear Differential Inclusion 00●	Conclusion O
Exam	ple with max of	f quadratics			

Arbitrary switching system with two modes:

 $\dot{x}(t)\in\overline{\operatorname{co}}\{A_1x(t),A_2(a)x(t)\},$

where a > 0, and $A_1 = \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix}$, $A_2(a) = \begin{bmatrix} -1 & -a \\ 1/a & -1 \end{bmatrix}$

- In [Dayawansa-Martin '99]: \exists a common quadratic Lyapunov function for $1 < a < 3 + \sqrt{8}$, but the system is GUES for $3 + \sqrt{8} < a \lessapprox 10$
- In [Goebl et. al '06]: Max of 7 quadratics gives a up to 10.1081
- Our approach: consistent but more classes of Lyapunov functions

	CLF	Max of 2	Min of 2
a_{\max}	$3 + \sqrt{8}$	8.10	6.78
	Quasi-max	Quasi-min	Max of 3

Introduction O	State Dependent Switching System 000	Non-Smooth Analysis Tools 0000	Max-Min Functions	Linear Differential Inclusion	Conclusion •
Concl	usion				

• A class of locally Lipschitz functions for switched systems

Introduction O	State Dependent Switching System	Non-Smooth Analysis Tools 0000	Max-Min Functions 0000000	Linear Differential Inclusion	Conclusion
Concl	usion				

- A class of locally Lipschitz functions for switched systems
- Different notions of derivatives
- Lie derivative is less conservative but more demanding computationally
- Clarke gradient based conditions are conservative but relatively less demanding

Introduction O	State Dependent Switching System	Non-Smooth Analysis Tools 0000	Max-Min Functions	Linear Differential Inclusion	Conclusion •
Concl	usion				

- A class of locally Lipschitz functions for switched systems
- Different notions of derivatives
- Lie derivative is less conservative but more demanding computationally
- Clarke gradient based conditions are conservative but relatively less demanding
- Max-Min functions as "intuitive" subclass of locally Lipschitz functions.

Introduction O	State Dependent Switching System	Non-Smooth Analysis Tools 0000	Max-Min Functions	Linear Differential Inclusion	Conclusion •
Concl	usion				

- A class of locally Lipschitz functions for switched systems
- Different notions of derivatives
- Lie derivative is less conservative but more demanding computationally
- Clarke gradient based conditions are conservative but relatively less demanding
- Max-Min functions as "intuitive" subclass of locally Lipschitz functions.
- BMIs are not easy to solve

Introduction O	State Dependent Switching System	Non-Smooth Analysis Tools 0000	Max-Min Functions 0000000	Linear Differential Inclusion	Conclusion
Concl	usion				

- A class of locally Lipschitz functions for switched systems
- Different notions of derivatives
- Lie derivative is less conservative but more demanding computationally
- Clarke gradient based conditions are conservative but relatively less demanding
- Max-Min functions as "intuitive" subclass of locally Lipschitz functions.
- BMIs are not easy to solve

Thank you !!

Questions ??