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Introduction

Main Target

Given a state-dependent switching system, we want to provide
sufficient conditions for the asymptotic stability, via locally Lipschitz
(and in particular max-min) Lyapunov functions.

Reference Paper: Max-Min Lyapunov Functions for Switching Differential
Inclusion. Matteo Della Rossa, Aneel Tanwani, Luca Zaccarian, 57th IEEE-
Conference on Decision and Control (CDC 2018), Dec 2018, Miami, United
States.

Extended version: Max-Min Lyapunov Functions for Switched Systems and
the Related Differential Inclusions. Submitted for publication.

If you don’t want to read, for the next 18 months I’m in the bureau E47.
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Systems Class

Let us consider
F = {f1, . . . , fK} ⊂ C1(Rn,Rn) and a
switching signal σ : Rn → {1, . . . ,K}.

State Dependent Switching System

ẋ = fσ(x)(x)

Remarks:

Discontinuous differential equations, but

C1 in the regions where the signal σ is
constant.

A1z

A2z
z

σ(x) = 1

σ(x) = 2

x1

x2

“Flower” example: Linear switching system, but non convex
trajectories/reachable sets. Existence and uniqueness of solution.
Existence/Uniqueness in the general case ?
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Existence and Uniqueness

We do not have existence/uniqueness of Caratheodory solutions in general.

Non existence

ẋ(t) =

{
1, if x ≤ 0,

−1, if x > 0.

No solution starting at x0 = 0.
Non uniqueness

ẋ(t) =

{
−1, if x ≤ 0,

1, if x > 0.

Two solutions starting at x0 = 0.

−2 −1 1 2

−1

1

x0

x1

x2
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Filippov Regularization

We need a proper regularization of the system, in order to ensure existence.

Filippov Regularization of Switching Systems

ẋ ∈ F sw(x) := co{fi(x) | i ∈ J(x)}
where J(x) := {j | ∀ ε > 0,∃ ξ ∈ Bε(x) s.t. σ(ξ) = j}.

Hypothesis on the switching signal:
σ(x) = j on a set Dj , j = 1, . . . ,K, such that

Dj := {x ∈ Rn |Sj(x) > 0;Sj : Rn → R is analytic} ∧ connected,⋃
j

Dj = Rn, and Di ∩Dj = ∅, i 6= j.

The mapping F sw : Rn ⇒ Rn, the Filippov/Krasovskii regularization, is upper
semicontinuous, with non empty, compact and convex values.
⇒ Existence of complete solutions but

no uniqueness nor continuity w.r.t initial conditions.
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Why non-smooth Lyapunov Functions?

We want to study the stabilty of switching system using non-smooth Lyapunov
functions.

Under our conditions the existence of a smooth Lyapunov functions is necessary
and sufficient for asymptotic stability of a compact set.
On the other hand, in many situations:

A nonsmooth function V may be easier to describe and construct;

The piecewise structure “fits well” with our problem;

Example/Spoiler: It will be easy to
“imagine” (construct) a non-smooth
Lyapunov function for the flower system.
(In red the level set).
A smooth one exists but it is not so easy
to construct.

X1

X2

x1

x2
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Notions of Derivative

Problem: Non smooth function ⇒ The gradient is not defined!

Let us consider a locally Lipschitz function V : Rn → R,

V is almost everywhere differentiable (Rademacher Theorem);

Clarke’s gradient:

∂V (x) = co

{
lim
k→∞

∇V (xk) |xk → x, xk /∈ N ∪ S
}

if V is differentiable at x, ∂V (x) = {∇V (x)},
Directional Derivative: Given x ∈ Rn and a direction w ∈ Rn,

V ′(x,w) ∈ {〈p, w〉 | p ∈ ∂V (x)}
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Derivative with respect to a differential inclusion

Let us consider a differential inclusion F : Rn ⇒ Rn,
Clarke’s derivative: V̇F (x) := {〈p, f〉 | p ∈ ∂V (x), f ∈ F (x) }.
Lie’s derivative: V̇ F (x) := {a ∈ R | ∃f ∈ F (x) : a = 〈p, f〉, ∀p ∈ ∂V (x)}.
They are compact intervals.

In general: V̇ F (x) ⊂ V̇F (x)
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Stability Conditions

Theorem (Lie derivative based condition)

Given a locally Lipschitz and regular function V : Rn → R. If ∃ a class K function
γ, and a scalar δ > 0, such that, for every x with |x| < δ,

max V̇ F (x) ≤ −γ(|x|),

then the origin of ẋ ∈ F (x) is (locally) asymp. stable.

Proof Sketch:

Main Step: It holds for almost every t ≥ 0 that

d

dt
V (ϕ(t)) ∈ V̇ F (ϕ(t))

By assumption, V̇ F (ϕ(t)) ≤ −γ(|ϕ(t)|), and one can derive local and global
versions.

Matteo Della Rossa (LAAS – CNRS, France) Locally Lipschitz Lyapunov Functions 28/03/2019 9 / 20
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Function Class

[Angeli-Philippe-Athanasopoulos-Jungers ’17]

Max-Min Function

Given Vi ∈ C1(Rn,R), i = 1, . . . ,K, let

VMm(x) := max
j∈{1,...,J}

{
min
k∈Sj

{Vk(x)}
}
,

where Sj ⊂ {1, . . . ,K}.
(Possibly) non-convex level sets

Locally Lipschitz, and hence
differentiable almost everywhere

“Active Index Set” for V is αV : Rn ⇒ {1, · · · ,K},

αV (x) :=

{
` | ∀ neighborhood U ofx, ∃ an open V ⊂ U

s.t. V (z) = V`(z),∀z ∈ V

}
Matteo Della Rossa (LAAS – CNRS, France) Locally Lipschitz Lyapunov Functions 28/03/2019 10 / 20
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Max-Min and Level Sets

Given V : Rn → R and c ∈ R we define the level set

EV (c) := {x ∈ Rn : V (x) ≤ c}.

Max Function:
VM(x) := max{V1(x), . . . VK(x)} ⇒ EVM

(c) = EV1(c) ∩ · · · ∩ EVK
(c).

Min Function:
Vm(x) := min{V1(x), . . . VK(x)} ⇒ EVm

(c) = EV1
(c) ∪ · · · ∪ EVK

(c).

Max-Min Function:

VMm(x) := max
j∈{1,...,J}

{
min
k∈Sj

{Vk(x)}
}
⇒ EVMm

(c) =

J⋂
j=1

( ⋃
k∈Sj

EVk
(c)
)
.
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Stability conditions for Max-Min Functions

Given V ∈Mm(V1, . . . , VK), the following equality holds

∂V (x) = co{∇V`(x) | ` ∈ αV (x)}. (1)

In particular, given F : Rn ⇒ Rn, we have

V̇ F (x) = {a ∈ R | ∃f ∈ F (x) : a = 〈∇V`(x), f〉, ∀` ∈ αV (x)}. (2)

Corollary (Lie conditions for Max-Min Functions)

Given K positive-definite functions V1, . . . , VK ∈ C1(Rn,R), let
V ∈Mm(V1, . . . , VK). If ∃ a class K function γ, and a scalar δ > 0, such that,
for every x with |x| < δ,

max V̇ F (x) ≤ −γ(|x|),
then the origin of ẋ ∈ F (x) is (locally) asymp. stable.
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Geometric Interpretation of V̇ F (x)

Consider V ∈Mm(V1, . . . , VK) and an x ∈ Rn such that αV (x) = {`1, . . . , `p}.
We have x ∈ S := {y ∈ Rn |V`1(y) = · · · = V`p(y)}, a discontinuity surface of
the function V .

Geometry of V̇ F (x)

If x is a regular point of the discontinuity surface S, then

V̇ F (x) = {〈∇V`(x), f〉 | ∀` ∈ αV (x), ∀f ∈ TS(x) ∩ F (x)}.

If the discontinuity surfaces of V and fσ coincide, f ∈ TS(x) represent a sliding
direction.
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Revisiting the Flower Example

−2 2

−2

2

A1z

A2z

∇V1(z)

∇V2(z)

w

z

X1

X2

x1

x2

System class: ẋ = Aσ(x)(x), with σ : R2 → {1, 2}

σ(x) = i on Xi, a cone.

Lyapunov function: x 7→ V (x) := min{x>P1x, x
>P2x},
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Revisiting the Flower Example
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Proving Stability
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PiAi +A>i Pi < 0, for i ∈ {1, 2} that implies 〈∇V (x), Aix〉 < 0 for all
x ∈ int(Xi) ,

In the discontinuity point we have V̇ F (x) = ∅, nothing has to be checked.

The Clarke’s conditions are not satisfied.
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A Nonlinear Example, Sliding Modes

ẋ =

{
f1(x) := A1x+ bg̃(x) if x>Qx < 0,

f2(x) := A2x+ bg̃(x) if x>Qx > 0,

Stability analysis:

Step 1: For some P1, P2, P2 − P1 = 4Q,

V (x) = min{x>P1x, x
>P2x}.

Step 2: Stability condition in the interior
of the domain

Step 3: Analyze the surface S1 by finding
the right convex combination

Step 4: Analyze the surface S2 and
analyze dominant terms near origin

S2 S1

x2

x1

S2 S1
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Linear Case with Arbitrary Switching

System dynamics (LDI): ẋ ∈ co
{
Aix | i ∈ {1, . . . ,M}

}
Base functions: K quadratic forms P1, . . . , PK
Ordering: For ρ = (j1, . . . , jK) ∈ SK (symmetric group of order K)

Cρ :=
{
x ∈ Rn | x>Pj1x < · · · < x>PjKx

}
,

Corollary (Sufficient Condition using Clarke’s gradient)

Let V ∈Mm{V1, . . . , VK}. If, for each i ∈ {1, . . . ,M}, and for each
ρ = (j1, . . . , jK) ∈ SK , there exist τj1 , . . . , τjK−1

≥ 0 such that

A>i P` + P`Ai +

K−1∑
k=1

τjk(Pjk+1
− Pjk) < 0, ` = αV (Cρ),

then V is a radially unbounded Lyapunov function and (LDI) is GAS.

Since |SK | = K! finding a max-min V requires solving M ·K! inequalities,
which involve M(K − 1)K! non-negative scalars and K symmetric
positive-definite matrices.
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A Case-Study with Three Quadratics

Base functions: {x>P1x, x
>P2x, x

>P3x}
Common Lyapunov function: V = max{min{Pi}};
Min of 3 quadratics: V = max{min{P1, P2, P3}};
Max of 3 quadratics: V = max{min{P1},min{P2},min{P3}};
Quasi-max functions: V = max {min{P1},min{P2, P3}};
Quasi-min functions: V = max {min{P1, P3},min{P2, P3}};
Mid-of-quadratics: V = max {min{P1, P2},min{P2, P3}min{P1, P3}}.
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A Case-Study with Three Quadratics

Base functions: {x>P1x, x
>P2x, x

>P3x}

BMIs for Quasi-Max Function

V = max {min{P1},min{P2, P3}}
For each i ∈ {1, . . . ,M}, find the scalars τ12, τ13, τ21, τ23, τ31, τ32 ≥ 0, and
τ̃12, τ̃13, τ̃21, τ̃23, τ̃31, τ̃32 ≥ 0 such that

A>i P2 + P2Ai + τ21(P2 − P1) + τ32(P3 − P2) < 0, over C123

A>i P3 + P3Ai + τ31(P3 − P1) + τ23(P2 − P3) < 0, over C132

A>i P1 + P1Ai + τ̃31(P1 − P3) + τ̃21(P2 − P1) < 0, over C312

A>i P1 + P1Ai + τ12(P1 − P2) + τ̃31(P3 − P1) < 0, over C213

A>i P1 + P1Ai + τ̃32(P3 − P2) + τ13(P1 − P3) < 0, over C231

A>i P1 + P1Ai + τ̃23(P2 − P3) + τ̃12(P1 − P2) < 0, over C321.
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∃ λ̃ ≥ 0 s.t. A>i P1 + P1Ai + λ̃(P1 − P2) < 0, over (C213 ∪ C231 ∪ C321)
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A Case-Study with Three Quadratics

Base functions: {x>P1x, x
>P2x, x

>P3x}

BMIs for Mid of 3 Quadratics

V = max {min{P1, P2},min{P2, P3},min{P3, P1}}
For each i ∈ {1, . . . ,M}, find the scalars τ12, τ13, τ21, τ23, τ31, τ32 ≥ 0, and
τ̃12, τ̃13, τ̃21, τ̃23, τ̃31, τ̃32 ≥ 0 such that
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A>i P1 + P1Ai + τ12(P1 − P2) + τ̃31(P3 − P1) < 0, over C213

A>i P3 + P3Ai + τ̃32(P3 − P2) + τ13(P1 − P3) < 0, over C231

A>i P2 + P2Ai + τ̃23(P2 − P3) + τ̃12(P1 − P2) < 0, over C321
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Example with max of quadratics

Arbitrary switching system with two modes:

ẋ(t) ∈ co{A1x(t), A2(a)x(t)},

where a > 0, and A1 =

[
−1 −1
1 −1

]
, A2(a) =

[
−1 −a
1/a −1

]
In [Dayawansa-Martin ’99]: ∃ a common quadratic Lyapunov function for
1 < a < 3 +

√
8, but the system is GUES for 3 +

√
8 < a / 10

In [Goebl et. al ’06]: Max of 7 quadratics gives a up to 10.1081

Our approach: consistent but more classes of Lyapunov functions

CLF Max of 2 Min of 2

amax 3 +
√
8 8.10 6.78

Quasi-max Quasi-min Max of 3
amax 8.32 8.02 8.89
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Conclusion

Summary:

A class of locally Lipschitz functions for switched systems

Different notions of derivatives

Lie derivative is less conservative but more demanding computationally

Clarke gradient based conditions are conservative but relatively less
demanding

Max-Min functions as ”intuitive” subclass of locally Lipschitz functions.

BMIs are not easy to solve

Thank you !!

Questions ??
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