Internship defense at LAAS
 Title: Extracting Information from Moments: Nonnegativity Certification, Polynomial Systems Resolution and Generalized Christoffel-Darboux Kernels
 LAAS CNRS, MAC team, advisors: Jean-Bernard Lasserre, Victor Magron

MAI Ngoc Hoang Anh

LAAS

July 1, 2019

Outline

Nonnegativity certificates for polynomials on non-compact sets

Systems of polynomial equations: A new algorithm converting stationary points which are not global minima to singularities

Polynomial systems: A new algorithm adding sphere inequalities constraints

Christoffel functions: Extracting information from moments combined with Newton's method

Nonnegativity certificates for polynomials on non-compact sets

Sum of squares (SOS) and Semidefinite programming (SDP)

$\mathbb{R}[x]$: the set of all polynomials $f=v_{d}^{T} c$ where

- $v_{d}:=\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}_{d}^{n}}$ (vector of monomials),
- $c \in \mathbb{R}^{s(d)}$ (vector of coefficients) with

$$
s(d):=\binom{n+d}{d}
$$

Sum of squares (SOS) and Semidefinite programming (SDP)

$\mathbb{R}[x]$: the set of all polynomials $f=v_{d}^{\top} c$ where

- $v_{d}:=\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}_{d}^{n}}$ (vector of monomials),
- $c \in \mathbb{R}^{s(d)}$ (vector of coefficients) with

$$
s(d):=\binom{n+d}{d}
$$

Let $g_{i}, h_{j} \in \mathbb{R}[x]$.

Basis semialgebraic set

$S(g, h):=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, h_{j}(x)=0\right\}$.

Sum of squares (SOS) and Semidefinite programming (SDP)

$\mathbb{R}[x]$: the set of all polynomials $f=v_{d}^{\top} c$ where

- $v_{d}:=\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}_{d}^{n}}$ (vector of monomials),
- $c \in \mathbb{R}^{s(d)}$ (vector of coefficients) with

$$
s(d):=\binom{n+d}{d}
$$

Let $g_{i}, h_{j} \in \mathbb{R}[x]$.

Basis semialgebraic set

$S(g, h):=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, h_{j}(x)=0\right\}$.

Sum of squares (SOS) and Semidefinite programming (SDP)

$\mathbb{R}[x]$: the set of all polynomials $f=v_{d}^{\top} c$ where

- $v_{d}:=\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}_{d}^{n}}$ (vector of monomials),
- $c \in \mathbb{R}^{s(d)}$ (vector of coefficients) with

$$
s(d):=\binom{n+d}{d}
$$

Let $g_{i}, h_{j} \in \mathbb{R}[x]$.

Basis semialgebraic set

$S(g, h):=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0, h_{j}(x)=0\right\}$.

SOS

$$
f=f_{1}^{2}+\ldots+f_{m}^{2}, \text { where } f_{1}, \ldots, f_{m} \in \mathbb{R}[x] .
$$

Sum of squares (SOS) and Semidefinite programming (SDP)

$\mathbb{R}[x]$: the set of all polynomials $f=v_{d}^{T} c$ where

- $v_{d}:=\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}_{d}^{n}}$ (vector of monomials),
- $c \in \mathbb{R}^{s(d)}$ (vector of coefficients) with

$$
s(d):=\binom{n+d}{d}
$$

SOS

$f=f_{1}^{2}+\ldots+f_{m}^{2}$, where $f_{1}, \ldots, f_{m} \in \mathbb{R}[x]$.
$\Sigma[x]$: the the set of all SOSs.

SDP

$$
\begin{array}{cl}
\min _{X \in \mathbb{S}^{N}} & \langle C, X\rangle_{\mathbb{S}^{N}} \\
\text { s.t. } & \left\langle A_{k}, X\right\rangle_{\mathbb{S}^{N}}=b_{k}, \quad k=1, \ldots, l \\
& X \succeq 0
\end{array}
$$

Sum of squares (SOS) and Semidefinite programming (SDP)

$\mathbb{R}[x]$: the set of all polynomials $f=v_{d}^{T} c$ where

- $v_{d}:=\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}_{d}^{n}}$ (vector of monomials),
- $c \in \mathbb{R}^{s(d)}$ (vector of coefficients) with

$$
s(d):=\binom{n+d}{d}
$$

SOS

$f=f_{1}^{2}+\ldots+f_{m}^{2}$, where $f_{1}, \ldots, f_{m} \in \mathbb{R}[x]$.
$\Sigma[x]$: the the set of all SOSs.

SDP

$$
\min _{X \in \mathbb{S}^{N}}\langle C, X\rangle_{\mathbb{S}^{N}}
$$

s.t. $\quad\left\langle A_{k}, X\right\rangle_{\mathbb{S}^{N}}=b_{k}, \quad k=1, \ldots, l$ $X \succeq 0$

Relation between SOS and SDP

f is $\mathrm{SOS} \Leftrightarrow \exists G \succeq 0: f=v_{d}^{T} G v_{d}$.

Sum of squares (SOS) and Semidefinite programming (SDP)

$\mathbb{R}[x]$: the set of all polynomials $f=v_{d}^{T} c$ where
$>v_{d}:=\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}_{d}^{n}}$ (vector of monomials),

- $c \in \mathbb{R}^{s(d)}$ (vector of coefficients) with

$$
s(d):=\binom{n+d}{d}
$$

SOS

$f=f_{1}^{2}+\ldots+f_{m}^{2}$, where $f_{1}, \ldots, f_{m} \in \mathbb{R}[x]$.
$\Sigma[x]$: the the set of all SOSs.

SDP

$$
\min _{X \in \mathbb{S}^{N}}\langle C, X\rangle_{\mathbb{S}^{N}}
$$

s.t. $\quad\left\langle A_{k}, X\right\rangle_{\mathbb{S}^{N}}=b_{k}, \quad k=1, \ldots, l$ $X \succeq 0$

Relation between SOS and SDP

f is $\mathrm{SOS} \Leftrightarrow \exists G \succeq 0: f=v_{d}^{T} G v_{d}$.
$\mathbb{R}[x]_{d}$: the set of all polynomial of degree at most d
$\Sigma[x]_{d}$: the set of all SOS of degree at most $2 d$.

Representation theorems

Issue

How to certify that a polynomial p is nonnegative on $S(g, h)$ with $g_{0}=1$?

Representation theorems

Issue

How to certify that a polynomial p is nonnegative on $S(g, h)$ with $g_{0}=1$?

Representation theorems

Issue

How to certify that a polynomial p is nonnegative on $S(g, h)$ with $g_{0}=1$?

$Q(g, h)$: (quadratic module) the set of all

$$
\sum_{i=0}^{m} \sigma_{i} g_{i}+\sum_{j=1}^{l} \phi_{j} h_{j}
$$

where $\sigma_{i} \in \Sigma[x]$ and $\phi_{j} \in \mathbb{R}[x]$.

Representation theorems

Issue

How to certify that a polynomial p is nonnegative on $S(g, h)$ with $g_{0}=1$?

$Q(g, h)$: (quadratic module) the set of all

$$
\sum_{i=0}^{m} \sigma_{i} g_{i}+\sum_{j=1}^{l} \phi_{j} h_{j}
$$

where $\sigma_{i} \in \Sigma[x]$ and $\phi_{j} \in \mathbb{R}[x]$.

Putinar's Positivstellensatz for compact $S(g, h)$ (with Archimedian condition: $L-|x|^{2} \in Q(g, h)$)
$p>0$ on $S(g, h) \Rightarrow p \in Q(g, h)$.

Representation theorems

Issue

How to certify that a polynomial p is nonnegative on $S(g, h)$ with $g_{0}=1$?

Putinar's Positivstellensatz for compact $S(g, h)$ (with Archimedian condition: $L-|x|^{2} \in Q(g, h)$)
$p>0$ on $S(g, h) \Rightarrow p \in Q(g, h)$.
$\theta:=1+|x|^{2}$.

$Q(g, h)$: (quadratic module) the set of all

$$
\sum_{i=0}^{m} \sigma_{i} g_{i}+\sum_{j=1}^{l} \phi_{j} h_{j}
$$

where $\sigma_{i} \in \Sigma[x]$ and $\phi_{j} \in \mathbb{R}[x]$.

Representation theorems

Issue

How to certify that a polynomial p is nonnegative on $S(g, h)$ with $g_{0}=1$?

$Q(g, h)$: (quadratic module) the set of all

$$
\sum_{i=0}^{m} \sigma_{i} g_{i}+\sum_{j=1}^{l} \phi_{j} h_{j}
$$

where $\sigma_{i} \in \Sigma[x]$ and $\phi_{j} \in \mathbb{R}[x]$.

Putinar's Positivstellensatz for compact $S(g, h)$ (with Archimedian condition: $L-|x|^{2} \in Q(g, h)$)
$p>0$ on $S(g, h) \Rightarrow p \in Q(g, h)$.
$\theta:=1+|x|^{2}$.

Result for non-compact $S(g, h)$ (without

 Archimedian condition)$$
\begin{aligned}
& p \geq 0 \text { on } S(g, h) \Rightarrow \forall \varepsilon>0, \exists K_{\varepsilon} \in \mathbb{N}: \\
& \left(p+\varepsilon \theta^{1+\lceil\operatorname{deg}(p) / 2\rceil)}\right) \theta^{K_{\varepsilon}} \in Q(g, h) .
\end{aligned}
$$

Representation theorems

Issue

How to certify that a polynomial p is nonnegative on $S(g, h)$ with $g_{0}=1$?

$Q(g, h)$: (quadratic module) the set of all

$$
\sum_{i=0}^{m} \sigma_{i} g_{i}+\sum_{j=1}^{l} \phi_{j} h_{j}
$$

where $\sigma_{i} \in \Sigma[x]$ and $\phi_{j} \in \mathbb{R}[x]$.

Putinar's Positivstellensatz for compact $S(g, h)$ (with Archimedian condition: $L-|x|^{2} \in Q(g, h)$)
$p>0$ on $S(g, h) \Rightarrow p \in Q(g, h)$.
$\theta:=1+|x|^{2}$.

Result for non-compact $S(g, h)$ (without

 Archimedian condition)$p \geq 0$ on $S(g, h) \Rightarrow \forall \varepsilon>0, \exists K_{\varepsilon} \in \mathbb{N}$:
$\left(p+\varepsilon \theta^{1+\lceil\operatorname{deg}(p) / 2\rceil}\right) \theta^{K_{\varepsilon}} \in Q(g, h)$.
When $S(g, h)=\mathbb{R}^{n}$:

Representation theorems

Issue

How to certify that a polynomial p is nonnegative on $S(g, h)$ with $g_{0}=1$?

$Q(g, h)$: (quadratic module) the set of all

$$
\sum_{i=0}^{m} \sigma_{i} g_{i}+\sum_{j=1}^{l} \phi_{j} h_{j}
$$

where $\sigma_{i} \in \Sigma[x]$ and $\phi_{j} \in \mathbb{R}[x]$.

Putinar's Positivstellensatz for compact $S(g, h)$ (with Archimedian condition: $L-|x|^{2} \in Q(g, h)$)
$p>0$ on $S(g, h) \Rightarrow p \in Q(g, h)$.
$\theta:=1+|x|^{2}$.

Result for non-compact $S(g, h)$ (without

 Archimedian condition)$$
\begin{aligned}
& p \geq 0 \text { on } S(g, h) \Rightarrow \forall \varepsilon>0, \exists K_{\varepsilon} \in \mathbb{N}: \\
& \left(p+\varepsilon \theta^{1+\lceil\operatorname{deg}(p) / 2\rceil)} \theta^{K_{\varepsilon}} \in Q(g, h) .\right.
\end{aligned}
$$

When $S(g, h)=\mathbb{R}^{n}$:

$$
\begin{aligned}
& \text { Reznick's representation (with assumption } p \text { is } \\
& \text { homogeneous) } \\
& p>0 \text { on } \mathbb{R}^{n} \backslash\{0\} \Rightarrow \exists K \in \mathbb{N}:|x|^{2 K} p \in \Sigma[x] .
\end{aligned}
$$

Representation theorems

Issue

How to certify that a polynomial p is nonnegative on $S(g, h)$ with $g_{0}=1$?

$Q(g, h)$: (quadratic module) the set of all

$$
\sum_{i=0}^{m} \sigma_{i} g_{i}+\sum_{j=1}^{l} \phi_{j} h_{j}
$$

where $\sigma_{i} \in \Sigma[x]$ and $\phi_{j} \in \mathbb{R}[x]$.

Putinar's Positivstellensatz for compact $S(g, h)$ (with Archimedian condition: $L-|x|^{2} \in Q(g, h)$)
$p>0$ on $S(g, h) \Rightarrow p \in Q(g, h)$.
$\theta:=1+|x|^{2}$.

Result for non-compact $S(g, h)$ (without Archimedian condition)

$$
\begin{aligned}
& p \geq 0 \text { on } S(g, h) \Rightarrow \forall \varepsilon>0, \exists K_{\varepsilon} \in \mathbb{N}: \\
& \left(p+\varepsilon \theta^{1+\lceil\operatorname{deg}(p) / 2\rceil}\right) \theta^{K_{\varepsilon}} \in Q(g, h) .
\end{aligned}
$$

When $S(g, h)=\mathbb{R}^{n}$:

> Reznick's representation (with assumption p is homogeneous)
> $p>0$ on $\mathbb{R}^{n} \backslash\{0\} \Rightarrow \exists K \in \mathbb{N}:|x|^{2 K} p \in \Sigma[x]$.

Result for global nonnegativity (without homogeneous assumption)
$p \geq 0$ on $\mathbb{R}^{n} \Rightarrow \forall \varepsilon>0, \exists K_{\varepsilon} \in \mathbb{N}$:
$\left(p+\varepsilon \theta^{\operatorname{deg}(p) / 2}\right) \theta^{K_{\varepsilon}} \in \Sigma[x]$.

Lasserre's SOS approach for polynomial optimization problems (POPs)

J.-B Lasserre.

Global optimization with polynomials and the problem of moments.
In SIAM Journal on optimization, 2001.

Lasserre's SOS approach for polynomial optimization problems (POPs)

J.-B Lasserre.

Global optimization with polynomials and the problem of moments.
In SIAM Journal on optimization, 2001.

- Consider POP

$$
f^{*}=\inf _{x \in S(g, h)} f(x)
$$

with $S(g, h)$ satisfying Archimedian condition.

Lasserre's SOS approach for polynomial optimization problems (POPs)

荀
J.-B Lasserre.

Global optimization with polynomials and the problem of moments.
In SIAM Journal on optimization, 2001.

- Consider POP

$$
f^{*}=\inf _{x \in S(g, h)} f(x)
$$

with $S(g, h)$ satisfying Archimedian condition.

- It is equivalent to the problem

$$
f^{*}=\sup \{\lambda \in \mathbb{R}: f-\lambda>0 \text { on } S(g, h)\} .
$$

Lasserre's SOS approach for polynomial optimization problems (POPs)

荀
J.-B Lasserre.

Global optimization with polynomials and the problem of moments.
In SIAM Journal on optimization, 2001.

- Consider POP

$$
f^{*}=\inf _{x \in S(g, h)} f(x)
$$

with $S(g, h)$ satisfying Archimedian condition.

- It is equivalent to the problem

$$
f^{*}=\sup \{\lambda \in \mathbb{R}: f-\lambda>0 \text { on } S(g, h)\} .
$$

- By using Putinar's representation,

$$
f^{*}=\sup \{\lambda \in \mathbb{R}: f-\lambda \in Q(g, h)\}
$$

Lasserre's SOS approach for polynomial optimization problems (POPs)

- Set $v_{i}:=\left\lceil\operatorname{deg}\left(g_{i}\right) / 2\right\rceil$ and
J.-B Lasserre. $u_{j}:=\left\lceil\operatorname{deg}\left(h_{j}\right) / 2\right\rceil$.
Global optimization with polynomials and the problem of moments.
In SIAM Journal on optimization, 2001.
- Consider POP

$$
f^{*}=\inf _{x \in S(g, h)} f(x)
$$

with $S(g, h)$ satisfying Archimedian condition.

- It is equivalent to the problem

$$
f^{*}=\sup \{\lambda \in \mathbb{R}: f-\lambda>0 \text { on } S(g, h)\} .
$$

- By using Putinar's representation, $f^{*}=\sup \{\lambda \in \mathbb{R}: f-\lambda \in Q(g, h)\}$.

Lasserre's SOS approach for polynomial optimization problems (POPs)

J.-B Lasserre.

Global optimization with polynomials and the problem of moments.
In SIAM Journal on optimization, 2001.

- Consider POP

$$
f^{*}=\inf _{x \in S(g, h)} f(x)
$$

with $S(g, h)$ satisfying Archimedian condition.

- It is equivalent to the problem $f^{*}=\sup \{\lambda \in \mathbb{R}: f-\lambda>0$ on $S(g, h)\}$.
- By using Putinar's representation, $f^{*}=\sup \{\lambda \in \mathbb{R}: f-\lambda \in Q(g, h)\}$.
- Set $v_{i}:=\left\lceil\operatorname{deg}\left(g_{i}\right) / 2\right\rceil$ and

$$
u_{j}:=\left\lceil\operatorname{deg}\left(h_{j}\right) / 2\right\rceil .
$$

- $Q(g, h)_{d}$: (truncated quadratic module) the set of all

$$
\sum_{i=0}^{m} \sigma_{i} g_{i}+\sum_{j=1}^{l} \phi_{j} h_{j}
$$

$$
\text { where } \sigma_{i} \in \Sigma[x]_{d-v_{i}} \text { and } \phi_{j} \in \mathbb{R}[x]_{d-u_{j}} \text {. }
$$

Lasserre's SOS approach for polynomial optimization problems (POPs)

J.-B Lasserre.

Global optimization with polynomials and the problem of moments.
In SIAM Journal on optimization, 2001.

- Consider POP

$$
f^{*}=\inf _{x \in S(g, h)} f(x)
$$

with $S(g, h)$ satisfying Archimedian condition.

- It is equivalent to the problem $f^{*}=\sup \{\lambda \in \mathbb{R}: f-\lambda>0$ on $S(g, h)\}$.
- By using Putinar's representation, $f^{*}=\sup \{\lambda \in \mathbb{R}: f-\lambda \in Q(g, h)\}$.
- Set $v_{i}:=\left\lceil\operatorname{deg}\left(g_{i}\right) / 2\right\rceil$ and

$$
u_{j}:=\left\lceil\operatorname{deg}\left(h_{j}\right) / 2\right\rceil .
$$

- $Q(g, h)_{d}:($ truncated quadratic module) the set of all

$$
\sum_{i=0}^{m} \sigma_{i} g_{i}+\sum_{j=1}^{l} \phi_{j} h_{j}
$$

$$
\text { where } \sigma_{i} \in \Sigma[x]_{d-v_{i}} \text { and } \phi_{j} \in \mathbb{R}[x]_{d-u_{j}} \text {. }
$$

Lasserre's hierarchy

Consider the hierarchy of SDPs for every $k \in \mathbb{N}$

$$
\rho_{k}=\sup \left\{\lambda \in \mathbb{R}: f-\lambda \in Q(g, h)_{k}\right\} .
$$

Then $\rho_{k} \uparrow f^{*}$ as $k \rightarrow \infty$.

Lasserre's moment approach for POPs

Let μ be finite Borel measure.

Lasserre's moment approach for POPs

Let μ be finite Borel measure.

Moments

$y_{\alpha}=\int x^{\alpha} d \mu, \alpha \in \mathbb{N}^{n}$.

Lasserre's moment approach for POPs

Let μ be finite Borel measure.

Moments

$y_{\alpha}=\int x^{\alpha} d \mu, \alpha \in \mathbb{N}^{n}$

Moment matrix
$M_{d}(y)=\left(y_{\alpha+\beta}\right)_{\alpha+\beta \in \mathbb{N}_{d}^{n}}$

Lasserre's moment approach for POPs

Let μ be finite Borel measure.

Moments

$y_{\alpha}=\int x^{\alpha} d \mu, \alpha \in \mathbb{N}^{n}$.

Moment matrix

$$
M_{d}(y)=\left(y_{\alpha+\beta}\right)_{\alpha+\beta \in \mathbb{N}_{d}^{n}}
$$

Localizing matrix

$M_{d}(g y)=$
$\left(\sum_{\gamma} g_{\gamma} y_{\gamma+\alpha+\beta}\right)_{\alpha, \beta \in \mathbb{N}_{d}^{n}}$.

Lasserre's moment approach for POPs

Let μ be finite Borel measure.

Moments

$y_{\alpha}=\int x^{\alpha} d \mu, \alpha \in \mathbb{N}^{n}$.

Moment matrix

$$
M_{d}(y)=\left(y_{\alpha+\beta}\right)_{\alpha+\beta \in \mathbb{N}_{d}^{n}}
$$

Localizing matrix

$$
\begin{aligned}
& M_{d}(g y)= \\
& \left(\sum_{\gamma} g_{\gamma} y_{\gamma+\alpha+\beta}\right)_{\alpha, \beta \in \mathbb{N}_{d}^{n}}
\end{aligned}
$$

Riesz linear functional

$L_{y}: \mathbb{R}[x] \rightarrow \mathbb{R}$
$L_{y}(f):=\sum_{\alpha} f_{\alpha} y_{\alpha}$.

Lasserre's moment approach for POPs

Let μ be finite Borel measure.

Moments

$y_{\alpha}=\int x^{\alpha} d \mu, \alpha \in \mathbb{N}^{n}$.

Moment matrix

$M_{d}(y)=\left(y_{\alpha+\beta}\right)_{\alpha+\beta \in \mathbb{N}_{d}^{n}}$.

Localizing matrix

$$
\begin{aligned}
& M_{d}(g y)= \\
& \left(\sum_{\gamma} g_{\gamma} y_{\gamma+\alpha+\beta}\right)_{\alpha, \beta \in \mathbb{N}_{d}^{n}} .
\end{aligned}
$$

Riesz linear functional

$L_{y}: \mathbb{R}[x] \rightarrow \mathbb{R}$
$L_{y}(f):=\sum_{\alpha} f_{\alpha} y_{\alpha}$.
$M(S(g, h))$: the set of all finite Borel measures supported on $S(g, h)$.

Lasserre's moment approach for POPs

Let μ be finite Borel measure.

Moments

$y_{\alpha}=\int x^{\alpha} d \mu, \alpha \in \mathbb{N}^{n}$.

Moment matrix

$M_{d}(y)=\left(y_{\alpha+\beta}\right)_{\alpha+\beta \in \mathbb{N}_{d}^{n}}$.

Localizing matrix

$M_{d}(g y)=$
$\left(\sum_{\gamma} g_{\gamma} y_{\gamma+\alpha+\beta}\right)_{\alpha, \beta \in \mathbb{N}_{d}^{n}}$.

Riesz linear functional

$L_{y}: \mathbb{R}[x] \rightarrow \mathbb{R}$
$L_{y}(f):=\sum_{\alpha} f_{\alpha} y_{\alpha}$.
$M(S(g, h))$: the set of all finite Borel measures supported on $S(g, h)$.

- Equivalent problem over measure $f^{*}=\inf _{\mu \in M(S(g, h))} \int f d \mu$.

Lasserre's moment approach for POPs

Let μ be finite Borel measure.

Moments

$y_{\alpha}=\int x^{\alpha} d \mu, \alpha \in \mathbb{N}^{n}$.

Moment matrix

$M_{d}(y)=\left(y_{\alpha+\beta}\right)_{\alpha+\beta \in \mathbb{N}_{d}^{n}}$.

Localizing matrix

$M_{d}(g y)=$
$\left(\sum_{\gamma} g_{\gamma} y_{\gamma+\alpha+\beta}\right)_{\alpha, \beta \in \mathbb{N}_{d}^{n}}$.

Riesz linear functional

$L_{y}: \mathbb{R}[x] \rightarrow \mathbb{R}$
$L_{y}(f):=\sum_{\alpha} f_{\alpha} y_{\alpha}$.
$M(S(g, h))$: the set of all finite Borel measures supported on $S(g, h)$.

- Equivalent problem over measure $f^{*}=\inf _{\mu \in M(S(g, h))} \int f d \mu$.
- One has

$$
f^{*}=\inf L_{y}(f)
$$

s.t. $y \in \mathbb{R}^{\infty}$ has representing measure in $M(S(g, h)$

Lasserre's moment approach for POPs

Let μ be finite Borel measure.

Moments

$y_{\alpha}=\int x^{\alpha} d \mu, \alpha \in \mathbb{N}^{n}$.

Moment matrix

$M_{d}(y)=\left(y_{\alpha+\beta}\right)_{\alpha+\beta \in \mathbb{N}_{d}^{n}}$.

Localizing matrix

$M_{d}(g y)=$
$\left(\sum_{\gamma} g_{\gamma} y_{\gamma+\alpha+\beta}\right)_{\alpha, \beta \in \mathbb{N}_{d}^{n}}$.

Riesz linear functional

$L_{y}: \mathbb{R}[x] \rightarrow \mathbb{R}$
$L_{y}(f):=\sum_{\alpha} f_{\alpha} y_{\alpha}$.
$M(S(g, h))$: the set of all finite Borel measures supported on $S(g, h)$.

- Equivalent problem over measure

$$
f^{*}=\inf _{\mu \in M(S(g, h))} \int f d \mu .
$$

- One has

$$
f^{*}=\inf L_{y}(f)
$$

s.t. $y \in \mathbb{R}^{\infty}$ has representing measure in $M(S(g, h)$

- We obtain

$$
\begin{array}{cc}
f^{*}=\inf _{y \in \mathbb{R}^{\infty}} & L_{y}(f) \\
\text { s.t. } & M_{k-v_{i}}\left(g_{i} y\right) \succeq 0, \forall k \in \mathbb{N}, \\
& M_{k-u_{j}}\left(h_{j} y\right)=0, \forall k \in \mathbb{N} .
\end{array}
$$

Lasserre's moment approach for POPs

Let μ be finite Borel measure.

Moments

$y_{\alpha}=\int x^{\alpha} d \mu, \alpha \in \mathbb{N}^{n}$.

Moment matrix

$M_{d}(y)=\left(y_{\alpha+\beta}\right)_{\alpha+\beta \in \mathbb{N}_{d}^{n}}$.

Localizing matrix

$M_{d}(g y)=$
$\left(\sum_{\gamma} g_{\gamma} y_{\gamma+\alpha+\beta}\right)_{\alpha, \beta \in \mathbb{N}_{d}^{n}}$.

Riesz linear functional

$L_{y}: \mathbb{R}[x] \rightarrow \mathbb{R}$
$L_{y}(f):=\sum_{\alpha} f_{\alpha} y_{\alpha}$.
$M(S(g, h))$: the set of all finite Borel measures supported on $S(g, h)$.

- Equivalent problem over measure

$$
f^{*}=\inf _{\mu \in M(S(g, h))} \int f d \mu .
$$

- One has

$$
f^{*}=\inf L_{y}(f)
$$

s.t. $y \in \mathbb{R}^{\infty}$ has representing measure in $M(S(g, h)$

- We obtain

$$
\begin{array}{cc}
f^{*}=\inf _{y \in \mathbb{R}^{\infty}} & L_{y}(f) \\
\text { s.t. } & M_{k-v_{i}}\left(g_{i} y\right) \succeq 0, \forall k \in \mathbb{N}, \\
& M_{k-u_{j}}\left(h_{j} y\right)=0, \forall k \in \mathbb{N} .
\end{array}
$$

Lasserre's hierarchy

For every $k \in \mathbb{N}$

$$
\begin{array}{cc}
\tau_{k}=\inf _{y \in \mathbb{R}^{s(2 k)}} & L_{y}(f) \\
\text { s.t. } & M_{k-v_{i}}\left(g_{i} y\right) \succeq 0, \\
& M_{k-u_{j}}\left(h_{j} y\right)=0 .
\end{array}
$$

is the dual of the previous SOS problem with value ρ_{k}.

Application for polynomial optimization over non-compact semialgebraic sets

- Consider POP

$$
f^{*}=\inf _{x \in S(g, h)} f(x)
$$

attained at x^{*}.

- Consider POP

$$
f^{*}=\inf _{x \in S(g, h)} f(x)
$$

attained at x^{*}.

- Set $d:=1+\lceil\operatorname{deg}(f) / 2\rceil$.
- Consider POP

$$
f^{*}=\inf _{x \in S(g, h)} f(x)
$$

attained at x^{*}.

- Set $d:=1+\lceil\operatorname{deg}(f) / 2\rceil$.

Application for polynomial optimization over non-compact semialgebraic sets

- Consider POP

$$
f^{*}=\inf _{x \in S(g, h)} f(x)
$$

attained at x^{*}.

- Set $d:=1+\lceil\operatorname{deg}(f) / 2\rceil$.

A new Lasserre's hierarchy

Let $\bar{\varepsilon}>0$ be fixed. Consider the hierarchy of semidefinite programs for every $k \in \mathbb{N}$
$\rho_{k}=\sup \left\{\lambda \in \mathbb{R}: \theta^{k}\left(f+\bar{\varepsilon} \theta^{d}-\lambda\right) \in Q(g, h)_{k+d}\right\}$.
Then $\exists K \in N: \forall k \geq K, \rho_{k} \in\left[f^{*}, f^{*}+\varepsilon \theta\left(x^{*}\right)^{d}\right]$.

Application for polynomial optimization over non-compact semialgebraic sets

The dual of the problem of value ρ_{k}

$$
\begin{aligned}
\tau_{k}=\inf & L_{y}\left(\theta^{k}\left(f+\bar{\varepsilon} \theta^{d}\right)\right) \\
\text { s.t. } & M_{k+d-v_{i}}\left(g_{i} y\right) \succeq 0, \\
& M_{k+d-u_{j}}\left(h_{j} y\right)=0, \\
& L_{y}\left(\theta^{k}\right)=1
\end{aligned}
$$

A new Lasserre's hierarchy

Let $\bar{\varepsilon}>0$ be fixed. Consider the hierarchy of semidefinite programs for every $k \in \mathbb{N}$
$\rho_{k}=\sup \left\{\lambda \in \mathbb{R}: \theta^{k}\left(f+\bar{\varepsilon} \theta^{d}-\lambda\right) \in Q(g, h)_{k+d}\right\}$.
Then $\exists K \in N: \forall k \geq K, \rho_{k} \in\left[f^{*}, f^{*}+\varepsilon \theta\left(x^{*}\right)^{d}\right]$.

Application for polynomial optimization over non-compact semialgebraic sets

The dual of the problem of value ρ_{k}

- Consider POP

$$
f^{*}=\inf _{x \in S(g, h)} f(x)
$$

attained at x^{*}.

- Set $d:=1+\lceil\operatorname{deg}(f) / 2\rceil$.

A new Lasserre's hierarchy

$$
\begin{aligned}
\tau_{k}=\inf & L_{y}\left(\theta^{k}\left(f+\bar{\varepsilon} \theta^{d}\right)\right) \\
\text { s.t. } & M_{k+d-v_{i}}\left(g_{i} y\right) \succeq 0, \\
& M_{k+d-u_{j}}\left(h_{j} y\right)=0, \\
& L_{y}\left(\theta^{k}\right)=1 .
\end{aligned}
$$

For unconstrained case: $S(g, h):=\mathbb{R}^{n}$, $d:=\operatorname{deg}(f) / 2$ and $Q(g, h)_{k+d}:=\Sigma[x]_{k+d}$.

Let $\bar{\varepsilon}>0$ be fixed. Consider the hierarchy of semidefinite programs for every $k \in \mathbb{N}$

$$
\rho_{k}=\sup \left\{\lambda \in \mathbb{R}: \theta^{k}\left(f+\bar{\varepsilon} \theta^{d}-\lambda\right) \in Q(g, h)_{k+d}\right\} .
$$

Then $\exists K \in N: \forall k \geq K, \rho_{k} \in\left[f^{*}, f^{*}+\varepsilon \theta\left(x^{*}\right)^{d}\right]$.

Application for polynomial optimization over non-compact semialgebraic

 sets
The dual of the problem of value ρ_{k}

- Consider POP

$$
f^{*}=\inf _{x \in S(g, h)} f(x) .
$$

attained at x^{*}.

- Set $d:=1+\lceil\operatorname{deg}(f) / 2\rceil$.

A new Lasserre's hierarchy

Let $\bar{\varepsilon}>0$ be fixed. Consider the hierarchy of semidefinite programs for every $k \in \mathbb{N}$
$\rho_{k}=\sup \left\{\lambda \in \mathbb{R}: \theta^{k}\left(f+\bar{\varepsilon} \theta^{d}-\lambda\right) \in Q(g, h)_{k+d}\right\}$.
Then $\exists K \in N: \forall k \geq K, \rho_{k} \in\left[f^{*}, f^{*}+\varepsilon \theta\left(x^{*}\right)^{d}\right]$.

$$
\begin{aligned}
\tau_{k}=\inf & L_{y}\left(\theta^{k}\left(f+\bar{\varepsilon} \theta^{d}\right)\right) \\
\text { s.t. } & M_{k+d-v_{i}}\left(g_{i} y\right) \succeq 0, \\
& M_{k+d-u_{j}}\left(h_{j} y\right)=0, \\
& L_{y}\left(\theta^{k}\right)=1
\end{aligned}
$$

For unconstrained case: $S(g, h):=\mathbb{R}^{n}$, $d:=\operatorname{deg}(f) / 2$ and $Q(g, h)_{k+d}:=\Sigma[x]_{k+d}$.

Algorithm

Begin with $k=0$ and do:

1. Solve SDP to get ρ_{k}.
2. If $S\left(g \cup\left\{\rho_{k}-f\right\}, h\right)=\emptyset$, set $k:=k+1$ and do again step 1. If $S\left(g \cup\left\{\rho_{k}-f\right\}, h\right) \neq \emptyset$, take a point $\bar{x} \in S\left(g \cup\left\{\rho_{k}-f\right\}, h\right)$ and stop.

Systems of polynomial equations: A new algorithm converting stationary points which are not global minima to singularities

Convergence theorem

Convergence theorem

Problem

Find a real solution of system of polynomial equations

$$
f_{i}(x)=0, i=1, \ldots, m
$$

Convergence theorem

Problem

Find a real solution of system of polynomial equations

$$
f_{i}(x)=0, i=1, \ldots, m
$$

远
P Aubry，F Rouillier，M Safey El Din． Real solving for positive dimensional systems．
Journal of Symbolic Computation， 2002.

AJ Sommese，J Verschelde，CW
Wampler．
Introduction to numerical algebraic geometry．
Solving polynomial equations， 2005.
國 B Mourrain，P Trebuchet．
Generalized normal forms and polynomial system solving．
Proceedings of the 2005 international
symposium on Symbolic and
algebraic computation， 2005.

Convergence theorem

Problem

Find a real solution of system of polynomial equations

$$
f_{i}(x)=0, i=1, \ldots, m
$$

Remark

Previous methods depend on the degrees of f_{i}.

园P Aubry, F Rouillier, M Safey El Din. Real solving for positive dimensional systems.
Journal of Symbolic Computation, 2002.

AJ Sommese, J Verschelde, CW
Wampler.
Introduction to numerical algebraic geometry.
Solving polynomial equations, 2005.
B
B Mourrain, P Trebuchet.
Generalized normal forms and polynomial system solving.
Proceedings of the 2005 international
symposium on Symbolic and
algebraic computation, 2005.

Convergence theorem

Problem

Find a real solution of system of polynomial equations

$$
f_{i}(x)=0, i=1, \ldots, m
$$

TP Aubry, F Rouillier, M Safey El Din. Real solving for positive dimensional systems.
Journal of Symbolic Computation, 2002.

AJ Sommese, J Verschelde, CW Wampler.
Introduction to numerical algebraic geometry.
Solving polynomial equations, 2005.
B
B Mourrain, P Trebuchet.
Generalized normal forms and polynomial system solving.
Proceedings of the 2005 international
symposium on Symbolic and
algebraic computation, 2005.

Remark

Previous methods depend on the degrees of f_{i}.

- Set $\varphi:=f_{1}^{2}+\ldots+f_{m}^{2}$. Assume that $n \geq 2$ and the set of stationary points of φ, $\left\{x \in \mathbb{R}^{n}: \nabla \varphi(x)=0\right\}$, is a zero dimensional.

Convergence theorem

Problem

Find a real solution of system of polynomial equations

$$
f_{i}(x)=0, i=1, \ldots, m
$$

P Aubry, F Rouillier, M Safey El Din. Real solving for positive dimensional systems.
Journal of Symbolic Computation, 2002.

T- AJ Sommese, J Verschelde, CW Wampler.
Introduction to numerical algebraic geometry.
Solving polynomial equations, 2005.
R B Mourrain, P Trebuchet.
Generalized normal forms and polynomial system solving.
Proceedings of the 2005 international symposium on Symbolic and
algebraic computation, 2005.

Remark

Previous methods depend on the degrees of f_{i}.

- Set $\varphi:=f_{1}^{2}+\ldots+f_{m}^{2}$. Assume that $n \geq 2$ and the set of stationary points of φ, $\left\{x \in \mathbb{R}^{n}: \nabla \varphi(x)=0\right\}$, is a zero dimensional.
- For every $\varepsilon>0$, let $I_{\varepsilon}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ defined by
where

$$
\psi(x)=2|\nabla \varphi(x)|^{-2}, \forall x \in \mathbb{R}^{n}: \nabla \varphi(x) \neq 0
$$

Convergence theorem

Lemma

1. $I_{\varepsilon} \geq 0$ on \mathbb{R}^{n} and $I_{\varepsilon}(x)=0 \Leftrightarrow \varphi(x)=0$.
2. $W:=\left\{x \in{ }^{n}: \nabla \varphi(x)=0, \varphi(x)>0\right\}$ is the set of all stationary points which are not global minima of $\min \left\{\varphi(x): x \in \mathbb{R}^{n}\right\}$.
3. $I_{\varepsilon} \in C^{1}\left(\mathbb{R}^{n} \backslash W\right)$.
4. $\lim _{|x| \rightarrow \infty} I_{\varepsilon}(x)=\infty$ and $\lim _{x \rightarrow a \in W} I_{\varepsilon}(x)=\infty$.

Convergence theorem

Lemma

1. $I_{\varepsilon} \geq 0$ on \mathbb{R}^{n} and $I_{\varepsilon}(x)=0 \Leftrightarrow \varphi(x)=0$.
2. $W:=\left\{x \in{ }^{n}: \nabla \varphi(x)=0, \varphi(x)>0\right\}$ is the set of all stationary points which are not global minima of $\min \left\{\varphi(x): x \in \mathbb{R}^{n}\right\}$.
3. $I_{\varepsilon} \in C^{1}\left(\mathbb{R}^{n} \backslash W\right)$.
4. $\lim _{|x| \rightarrow \infty} I_{\varepsilon}(x)=\infty$ and $\lim _{x \rightarrow a \in W} I_{\varepsilon}(x)=\infty$.

Convergence theorem

Lemma

1. $I_{\varepsilon} \geq 0$ on \mathbb{R}^{n} and $I_{\varepsilon}(x)=0 \Leftrightarrow \varphi(x)=0$.
2. $W:=\left\{x \in{ }^{n}: \nabla \varphi(x)=0, \varphi(x)>0\right\}$ is the set of all stationary points which are not global minima of $\min \left\{\varphi(x): x \in \mathbb{R}^{n}\right\}$.
3. $I_{\varepsilon} \in C^{1}\left(\mathbb{R}^{n} \backslash W\right)$.
4. $\lim _{|x| \rightarrow \infty} I_{\varepsilon}(x)=\infty$ and $\lim _{x \rightarrow a \in W} I_{\varepsilon}(x)=\infty$.

Remark

The properties of I_{ε} rely on the different rates between polynomials, logarithm function and exponential function.

Convergence theorem

Lemma

1. $I_{\varepsilon} \geq 0$ on \mathbb{R}^{n} and $I_{\varepsilon}(x)=0 \Leftrightarrow \varphi(x)=0$.
2. $W:=\left\{x \in{ }^{n}: \nabla \varphi(x)=0, \varphi(x)>0\right\}$ is the set of all stationary points which are not global minima of $\min \left\{\varphi(x): x \in \mathbb{R}^{n}\right\}$.
3. $\varepsilon_{\varepsilon} \in C^{1}\left(\mathbb{R}^{n} \backslash W\right)$.
4. $\lim _{|x| \rightarrow \infty} I_{\varepsilon}(x)=\infty$ and $\lim _{x \rightarrow a \in W} I_{\varepsilon}(x)=\infty$.

Remark

The properties of I_{ε} rely on the different rates between polynomials, logarithm function and exponential function.

Theorem

Let $\left(\varepsilon_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{R}_{+}^{*}$ such that $\varepsilon_{k} \downarrow 0$ as $k \rightarrow \infty$. Let $M>0$. For every $k \in \mathbb{N}$, denote $I_{k}:=I_{\varepsilon_{k}}$ and denote

$$
J_{k}(x):=I_{k}(x)-\log \left(M-I_{0}(x)\right), x \in \mathbb{R}^{n} .
$$

Let $\left(x_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{R}^{n} \backslash W$ such that $l_{0}\left(x_{k}\right) \leq M$ and $\nabla J_{k}\left(x_{k}\right)=0$.

Convergence theorem

Lemma

1. $I_{\varepsilon} \geq 0$ on \mathbb{R}^{n} and $I_{\varepsilon}(x)=0 \Leftrightarrow \varphi(x)=0$.
2. $W:=\left\{x \in^{n}: \nabla \varphi(x)=0, \varphi(x)>0\right\}$ is the set of all stationary points which are not global minima of $\min \left\{\varphi(x): x \in \mathbb{R}^{n}\right\}$.
3. $I_{\varepsilon} \in C^{1}\left(\mathbb{R}^{n} \backslash W\right)$.
4. $\lim _{|x| \rightarrow \infty} I_{\varepsilon}(x)=\infty$ and $\lim _{x \rightarrow a \in W} I_{\varepsilon}(x)=\infty$.

Remark

The properties of I_{ε} rely on the different rates between polynomials, logarithm function and exponential function.

Theorem

Let $\left(\varepsilon_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{R}_{+}^{*}$ such that $\varepsilon_{k} \downarrow 0$ as $k \rightarrow \infty$. Let $M>0$. For every $k \in \mathbb{N}$, denote $I_{k}:=I_{\varepsilon_{k}}$ and denote

$$
J_{k}(x):=I_{k}(x)-\log \left(M-I_{0}(x)\right), x \in \mathbb{R}^{n} .
$$

Let $\left(x_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{R}^{n} \backslash W$ such that $l_{0}\left(x_{k}\right) \leq M$ and $\nabla J_{k}\left(x_{k}\right)=0$.
Then $\left(x_{k}\right)_{k \in}$ is a bounded sequence and every convergent subsequence of $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges to a global minimum of $\min \left\{\varphi(x): x \in \mathbb{R}^{n}\right\}$.

Building algorithm

Building algorithm

Algorithm

Let $z_{0} \in^{n}$ such that $\nabla \varphi\left(z_{0}\right) \neq 0$. Let $\tau \in(0,1)$ be small. Set $M=l_{0}\left(z_{0}\right)+1$. Set $k=0$ and do the following steps:

Building algorithm

Algorithm

Let $z_{0} \in^{n}$ such that $\nabla \varphi\left(z_{0}\right) \neq 0$. Let $\tau \in(0,1)$ be small. Set $M=l_{0}\left(z_{0}\right)+1$. Set $k=0$ and do the following steps:

1. Find a local minimum z of unconstrained problem $\min _{x \in \mathbb{R}^{n}} J(x)$, where
$J(x)= \begin{cases}J_{k}(x) & \text { if } I_{0}(x) \neq M ; \\ \infty & \text { if } I_{0}(x)=M,\end{cases}$
by quasi-Newton method with initial point z_{0}. Go to step 2.

Building algorithm

Algorithm

Let $z_{0} \in^{n}$ such that $\nabla \varphi\left(z_{0}\right) \neq 0$. Let $\tau \in(0,1)$ be small. Set $M=l_{0}\left(z_{0}\right)+1$. Set $k=0$ and do the following steps:

1. Find a local minimum z of unconstrained problem $\min _{x \in \mathbb{R}^{n}} J(x)$, where
$J(x)= \begin{cases}J_{k}(x) & \text { if } I_{0}(x) \neq M ; \\ \infty & \text { if } I_{0}(x)=M,\end{cases}$
by quasi-Newton method with initial point z_{0}. Go to step 2.
2. If $\varphi(z) \leq \tau$, stop. Otherwise, set
$k:=k+1$ and go to step 1.

Building algorithm

Algorithm

Let $z_{0} \in^{n}$ such that $\nabla \varphi\left(z_{0}\right) \neq 0$. Let $\tau \in(0,1)$ be small. Set $M=I_{0}\left(z_{0}\right)+1$. Set $k=0$ and do the following steps:

1. Find a local minimum z of unconstrained problem $\min _{x \in \mathbb{R}^{n}} J(x)$, where

Example

Economics problem
$\left\{\begin{array}{r}x_{k}^{2}+x_{1}\left(x_{2}+\ldots+x_{6}\right)-2 x_{1} x_{k}-4 x_{1}^{2}=0, \\ k=1, \ldots, 6 .\end{array}\right.$
An approximation of solution:
$J(x)= \begin{cases}J_{k}(x) & \text { if } I_{0}(x) \neq M ; \\ \infty & \text { if } I_{0}(x)=M,\end{cases}$
$(2.5876,2.5340,2.6294,2.6373,2.5098,2.6261)$.
Computing time: 0.603346 seconds.
by quasi-Newton method with initial point z_{0}. Go to step 2.
2. If $\varphi(z) \leq \tau$, stop. Otherwise, set $k:=k+1$ and go to step 1 .

Building algorithm

Algorithm

Let $z_{0} \in^{n}$ such that $\nabla \varphi\left(z_{0}\right) \neq 0$. Let $\tau \in(0,1)$ be small. Set $M=I_{0}\left(z_{0}\right)+1$. Set $k=0$ and do the following steps:

1. Find a local minimum z of unconstrained problem $\min _{x \in \mathbb{R}^{n}} J(x)$, where

Example

Economics problem

$$
\left\{\begin{array}{r}
x_{k}^{2}+x_{1}\left(x_{2}+\ldots+x_{6}\right)-2 x_{1} x_{k}-4 x_{1}^{2}=0 \\
k=1, \ldots, 6
\end{array}\right.
$$

An approximation of solution:

$$
J(x)= \begin{cases}J_{k}(x) & \text { if } I_{0}(x) \neq M \\ \infty & \text { if } I_{0}(x)=M\end{cases}
$$

(2.5876, 2.5340, 2.6294, 2.6373, 2.5098, 2.6261).

Computing time: 0.603346 seconds.

Remark

This algorithm does not depend on the degree of f_{i}.

Polynomial systems: A new algorithm adding sphere inequalities constraints

Adding sphere inequalities constraints (ASIC)

Adding sphere inequalities constraints (ASIC)

Challenge

Find an approximate real point in $S(g, h)$ if it is nonempty?

Adding sphere inequalities constraints (ASIC)

Challenge

Find an approximate real point in $S(g, h)$ if it is nonempty?

Assume that $S(g, h) \neq \emptyset$.

Adding sphere inequalities constraints (ASIC)

Challenge

Find an approximate real point in $S(g, h)$ if it is nonempty?

Assume that $S(g, h) \neq \emptyset$. Let $\left(a_{t}\right)_{t=0,1, \ldots, n} \subset \mathbb{R}^{n}$ such that $a_{t}-a_{0}, t=1, \ldots, n$ are linear independent.

Adding sphere inequalities constraints (ASIC)

Challenge

Find an approximate real point in $S(g, h)$ if it is nonempty?

Assume that $S(g, h) \neq \emptyset$. Let $\left(a_{t}\right)_{t=0,1, \ldots, n} \subset \mathbb{R}^{n}$ such that $a_{t}-a_{0}, t=1, \ldots, n$ are linear independent.

$$
\begin{aligned}
& r_{0}=d\left(a_{0}, S(g, h)\right) ; \\
& r_{t}=d\left(a_{t}, S(g, h) \cap \overline{B\left(a_{0}, r_{0}\right)} \cap \ldots \cap \overline{B\left(a_{t-1}, r_{t-1}\right)}\right), \\
& \\
& \quad t=1, \ldots, n .
\end{aligned}
$$

Adding sphere inequalities constraints (ASIC)

Challenge

Find an approximate real point in $S(g, h)$ if it is nonempty?

Assume that $S(g, h) \neq \emptyset$. Let $\left(a_{t}\right)_{t=0,1, \ldots, n} \subset \mathbb{R}^{n}$ such that $a_{t}-a_{0}, t=1, \ldots, n$ are linear independent.

$$
\begin{aligned}
& r_{0}=d\left(a_{0}, S(g, h)\right) \\
& r_{t}=d\left(a_{t}, S(g, h) \cap \overline{B\left(a_{0}, r_{0}\right)} \cap \ldots \cap \overline{B\left(a_{t-1}, r_{t-1}\right)}\right), \\
& \\
& \quad t=1, \ldots, n .
\end{aligned}
$$

Adding sphere inequalities constraints (ASIC)

Challenge

Find an approximate real point in $S(g, h)$ if it is nonempty?

Assume that $S(g, h) \neq \emptyset$. Let $\left(a_{t}\right)_{t=0,1, \ldots, n} \subset \mathbb{R}^{n}$ such that $a_{t}-a_{0}, t=1, \ldots, n$ are linear independent.

Lemma

$$
S(g, h) \cap \overline{B\left(a_{0}, r_{0}\right)} \cap \ldots \cap \overline{B\left(a_{n}, r_{n}\right)}=\left\{x^{*}\right\}
$$

$$
\begin{aligned}
& \text { and } x^{*}=A^{-1} b \text { with } \\
& A=\left(\begin{array}{ccc}
a_{1}-a_{0} & \ldots & a_{n}-a_{0}
\end{array}\right) \text { and }
\end{aligned}
$$

$$
r_{0}=d\left(a_{0}, S(g, h)\right)
$$

$$
r_{t}=d\left(a_{t}, S(g, h) \cap \overline{B\left(a_{0}, r_{0}\right)} \cap \ldots \cap \overline{B\left(a_{t-1}, r_{t-1}\right)}\right), \quad b=-\frac{1}{2}
$$

$$
t=1, \ldots, n
$$

$$
\left(\begin{array}{c}
r_{1}^{2}-r_{0}^{2}-\left|a_{1}\right|^{2}+\left|a_{0}\right|^{2} \\
\ldots \\
r_{n}^{2}-r_{0}^{2}-\left|a_{n}\right|^{2}+\left|a_{0}\right|^{2}
\end{array}\right)
$$

Adding sphere inequalities constraints (ASIC)

Challenge

Find an approximate real point in $S(g, h)$ if it is nonempty?

Assume that $S(g, h) \neq \emptyset$. Let $\left(a_{t}\right)_{t=0,1, \ldots, n} \subset \mathbb{R}^{n}$ such that $a_{t}-a_{0}, t=1, \ldots, n$ are linear independent.

Lemma

$$
S(g, h) \cap \overline{B\left(a_{0}, r_{0}\right)} \cap \ldots \cap \overline{B\left(a_{n}, r_{n}\right)}=\left\{x^{*}\right\}
$$

$$
r_{0}=d\left(a_{0}, S(g, h)\right)
$$

$$
r_{t}=d\left(a_{t}, S(g, h) \cap \overline{B\left(a_{0}, r_{0}\right)} \cap \ldots \cap \overline{B\left(a_{t-1}, r_{t-1}\right)}\right),
$$

$$
t=1, \ldots, n
$$

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
a_{1}-a_{0} & \ldots \\
a_{n}-a_{0}
\end{array}\right) \text { and } \\
& b=-\frac{1}{2}\left(\begin{array}{c}
r_{1}^{2}-r_{0}^{2}-\left|a_{1}\right|^{2}+\left|a_{0}\right|^{2} \\
\ldots \\
r_{n}^{2}-r_{0}^{2}-\left|a_{n}\right|^{2}+\left|a_{0}\right|^{2}
\end{array}\right)
\end{aligned}
$$

$$
\varphi_{a}^{\rho}:=\rho-|x-a|^{2} \text { for } a \in \mathbb{R}^{n} \text { and } \rho \geq 0
$$

Adding sphere inequalities constraints (ASIC)

Challenge

Find an approximate real point in $S(g, h)$ if it is nonempty?

Assume that $S(g, h) \neq \emptyset$.
Let $\left(a_{t}\right)_{t=0,1, \ldots, n} \subset \mathbb{R}^{n}$ such that $a_{t}-a_{0}, t=1, \ldots, n$ are linear independent.

$$
\begin{aligned}
& r_{0}=d\left(a_{0}, S(g, h)\right) ; \\
& r_{t}=d\left(a_{t}, S(g, h) \cap \overline{B\left(a_{0}, r_{0}\right)} \cap \ldots \cap \overline{B\left(a_{t-1}, r_{t-1}\right)}\right), \quad b=-\frac{1}{2} \\
& \quad t=1, \ldots, n .
\end{aligned}
$$

Lemma

$$
S(g, h) \cap \overline{B\left(a_{0}, r_{0}\right)} \cap \ldots \cap \overline{B\left(a_{n}, r_{n}\right)}=\left\{x^{*}\right\}
$$

$$
A=\left(\begin{array}{ccc}
a_{1}-a_{0} & \ldots & a_{n}-a_{0}
\end{array}\right) \text { and }
$$

$$
b=-\frac{1}{2}\left(\begin{array}{c}
r_{1}^{2}-r_{0}^{2}-\left|a_{1}\right|^{2}+\left|a_{0}\right|^{2} \\
\ldots \\
r_{n}^{2}-r_{0}^{2}-\left|a_{n}\right|^{2}+\left|a_{0}\right|^{2}
\end{array}\right) .
$$

$$
\varphi_{a}^{\rho}:=\rho-|x-a|^{2} \text { for } a \in \mathbb{R}^{n} \text { and } \rho \geq 0 .
$$

Then

$$
\begin{aligned}
& r_{0}^{2}=\min _{x \in S(g, h)}\left|x-a_{0}\right|^{2} ; \\
& r_{t}^{2}=\min _{x \in S\left(g \cup\left\{\varphi_{a_{0}^{2}}^{r_{0}^{2}}, \ldots, \varphi_{a_{t-1}}^{r_{t-1}^{2}}\right\}, h\right)} \quad\left|x-a_{t}\right|^{2} \\
& \quad t=1, \ldots, n .
\end{aligned}
$$

Adding sphere inequalities constraints (ASIC)

Challenge

Find an approximate real point in $S(g, h)$ if it is nonempty?

Assume that $S(g, h) \neq \emptyset$.
Let $\left(a_{t}\right)_{t=0,1, \ldots, n} \subset \mathbb{R}^{n}$ such that $a_{t}-a_{0}, t=1, \ldots, n$ are linear independent.

$$
\begin{aligned}
& r_{0}=d\left(a_{0}, S(g, h)\right) ; \\
& r_{t}=d\left(a_{t}, S(g, h) \cap \overline{B\left(a_{0}, r_{0}\right)} \cap \ldots \cap \overline{B\left(a_{t-1}, r_{t-1}\right)}\right), \\
& \\
& \quad t=1, \ldots, n .
\end{aligned}
$$

Lemma
$S(g, h) \cap \overline{B\left(a_{0}, r_{0}\right)} \cap \ldots \cap \overline{B\left(a_{n}, r_{n}\right)}=\left\{x^{*}\right\}$

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
\text { and } x^{*}=A^{-1} b \text { with } \\
b=-\frac{1}{2}\left(\begin{array}{c}
a_{0}
\end{array} \quad \ldots\right. & a_{n}-a_{0}
\end{array}\right) \text { and } \\
& \left.\begin{array}{c}
r_{1}^{2}-r_{0}^{2}-\left|a_{1}\right|^{2}+\left|a_{0}\right|^{2} \\
r_{n}^{2}-r_{0}^{2}-\left|a_{n}\right|^{2}+\left|a_{0}\right|^{2}
\end{array}\right) .
\end{aligned}
$$

$$
\varphi_{a}^{\rho}:=\rho-|x-a|^{2} \text { for } a \in \mathbb{R}^{n} \text { and } \rho \geq 0
$$

Then

$$
\begin{aligned}
& r_{0}^{2}=\min _{x \in S(g, h)}\left|x-a_{0}\right|^{2} ; \\
& r_{t}^{2}=\min _{x \in S\left(g \cup\left\{\begin{array}{c}
\left.r_{a_{0}^{2}}^{2}, \ldots, \varphi_{a_{t-1}}^{r_{t-1}^{2}}\right\}
\end{array}\right\}, h\right)} \quad\left|x-a_{t}\right|^{2}, \\
& \quad t=1, \ldots, n .
\end{aligned}
$$

Idea: Use the Lasserre's hierarchy to find approximations of r_{t}.

Numerical scheme of radius

Numerical scheme of radius

Let $\bar{\varepsilon}>0$ be fixed. For every $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n+1}$,

Numerical scheme of radius

Let $\bar{\varepsilon}>0$ be fixed. For every $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n+1}$,

$$
\rho_{0}\left(\alpha_{0}\right):=\sup \left\{\lambda: \theta^{\alpha_{0}}\left(\left|x-a_{0}\right|^{2}+\bar{\varepsilon} \theta-\lambda\right) \in Q(g, h)_{\alpha_{0}+1}\right\}
$$

$$
\rho_{t}\left(\alpha_{0}, . ., \alpha_{t}\right):=\sup \left\{\lambda:\left|x-a_{t}\right|^{2}-\lambda \in Q\left(g \cup\left\{\varphi_{a_{0}}^{\rho_{0}\left(\alpha_{0}\right)}, \ldots, \varphi_{\mathrm{a}_{t-1}}^{\rho_{t-1}\left(\alpha_{0}, . ., \alpha_{t-1}\right)}\right\}, h\right)_{\alpha_{t}+1}\right\}
$$

$$
t=1, \ldots, n
$$

Numerical scheme of radius

Let $\bar{\varepsilon}>0$ be fixed. For every $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n+1}$,

$$
\rho_{0}\left(\alpha_{0}\right):=\sup \left\{\lambda: \theta^{\alpha_{0}}\left(\left|x-a_{0}\right|^{2}+\bar{\varepsilon} \theta-\lambda\right) \in Q(g, h)_{\alpha_{0}+1}\right\}
$$

$$
\rho_{t}\left(\alpha_{0}, . ., \alpha_{t}\right):=\sup \left\{\lambda:\left|x-a_{t}\right|^{2}-\lambda \in Q\left(g \cup\left\{\varphi_{a_{0}}^{\rho_{0}\left(\alpha_{0}\right)}, \ldots, \varphi_{\mathrm{a}_{t-1}}^{\rho_{t-1}\left(\alpha_{0}, . ., \alpha_{t-1}\right)}\right\}, h\right)_{\alpha_{t}+1}\right\}
$$

$$
t=1, \ldots, n
$$

Theorem

There exists a function $\delta: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}$such that $\delta(\varepsilon) \downarrow 0$ as $\varepsilon \downarrow 0$ which satisfies

Numerical scheme of radius

Let $\bar{\varepsilon}>0$ be fixed. For every $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n+1}$,

$$
\rho_{0}\left(\alpha_{0}\right):=\sup \left\{\lambda: \theta^{\alpha_{0}}\left(\left|x-a_{0}\right|^{2}+\bar{\varepsilon} \theta-\lambda\right) \in Q(g, h)_{\alpha_{0}+1}\right\}
$$

$$
\rho_{t}\left(\alpha_{0}, . ., \alpha_{t}\right):=\sup \left\{\lambda:\left|x-a_{t}\right|^{2}-\lambda \in Q\left(g \cup\left\{\varphi_{a_{0}}^{\rho_{0}\left(\alpha_{0}\right)}, \ldots, \varphi_{\mathrm{a}_{t-1}}^{\rho_{t-1}\left(\alpha_{0}, . ., \alpha_{t-1}\right)}\right\}, h\right)_{\alpha_{t}+1}\right\}
$$

$$
t=1, \ldots, n
$$

Theorem

There exists a function $\delta: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}$such that $\delta(\varepsilon) \downarrow 0$ as $\varepsilon \downarrow 0$ which satisfies
$\exists \Lambda \in \mathbb{N}^{n+1}: \rho_{t}\left(\Lambda_{0}, . ., \Lambda_{t}\right) \in\left[r_{t}^{2}-\delta(\bar{\varepsilon}), r_{t}^{2}+\delta(\bar{\varepsilon})\right]$,
$t=0, \ldots, n$.

Numerical scheme of radius

Let $\bar{\varepsilon}>0$ be fixed. For every $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n+1}$,

$$
\rho_{0}\left(\alpha_{0}\right):=\sup \left\{\lambda: \theta^{\alpha_{0}}\left(\left|x-a_{0}\right|^{2}+\bar{\varepsilon} \theta-\lambda\right) \in Q(g, h)_{\alpha_{0}+1}\right\}
$$

$$
\rho_{t}\left(\alpha_{0}, . ., \alpha_{t}\right):=\sup \left\{\lambda:\left|x-a_{t}\right|^{2}-\lambda \in Q\left(g \cup\left\{\varphi_{a_{0}}^{\rho_{0}\left(\alpha_{0}\right)}, \ldots, \varphi_{a_{t-1}}^{\rho_{t-1}\left(\alpha_{0}, . ., \alpha_{t-1}\right)}\right\}, h\right)_{\alpha_{t}+1}\right\}
$$

$$
t=1, \ldots, n
$$

Theorem

There exists a function $\delta: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}$such that $\delta(\varepsilon) \downarrow 0$ as $\varepsilon \downarrow 0$ which satisfies
$\exists \Lambda \in \mathbb{N}^{n+1}: \rho_{t}\left(\Lambda_{0}, . ., \Lambda_{t}\right) \in\left[r_{t}^{2}-\delta(\bar{\varepsilon}), \begin{array}{r}\left.r_{t}^{2}+\delta(\bar{\varepsilon})\right], \\ t\end{array}=0, \ldots, n\right.$.

Lemma

If rank $\left(M_{d}(y)\right)=1$ (with $y_{0}=1$), then y has representing (1-atomic) measure supported on $x^{*}=\left(y_{e_{1}}, \ldots ., y_{e_{n}}\right)$ where e_{i} is natural basis of \mathbb{R}^{n}.

Numerical scheme of radius

Let $\bar{\varepsilon}>0$ be fixed. For every $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n+1}$,

$$
\begin{aligned}
& \rho_{0}\left(\alpha_{0}\right):=\sup \left\{\lambda: \theta^{\alpha_{0}}\left(\left|x-a_{0}\right|^{2}+\bar{\varepsilon} \theta-\lambda\right) \in Q(g, h)_{\alpha_{0}+1}\right\} \\
& \rho_{t}\left(\alpha_{0}, . ., \alpha_{t}\right):=\sup \left\{\lambda:\left|x-a_{t}\right|^{2}-\lambda \in Q\left(g \cup\left\{\varphi_{a_{0}}^{\rho_{0}\left(\alpha_{0}\right)}, \ldots, \varphi_{a_{t-1}}^{\rho_{t-1}\left(\alpha_{0}, . ., \alpha_{t-1}\right)}\right\}, h\right)_{\alpha_{t}+1}\right\} \\
& t=1, \ldots, n
\end{aligned}
$$

ASIC algorithm

For every $\alpha \in \mathbb{N}^{n+1}$, set $t=0$ and do:

1. Solve the dual of SDP to get

Theorem

There exists a function $\delta: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}$such that $\delta(\varepsilon) \downarrow 0$ as $\varepsilon \downarrow 0$ which satisfies
$\exists \Lambda \in \mathbb{N}^{n+1}: \rho_{t}\left(\Lambda_{0}, . ., \Lambda_{t}\right) \in\left[r_{t}^{2}-\delta(\bar{\varepsilon}), \begin{array}{r}\left.r_{t}^{2}+\delta(\bar{\varepsilon})\right], \\ t\end{array}=0, \ldots, n\right.$.

Lemma

If rank $\left(M_{d}(y)\right)=1$ (with $y_{0}=1$), then y has representing (1-atomic) measure supported on $x^{*}=\left(y_{e_{1}}, \ldots ., y_{e_{n}}\right)$ where e_{i} is natural basis of \mathbb{R}^{n}.
$\rho_{t}\left(\alpha_{0}, . ., \alpha_{t}\right)$ and $M_{d}(y)$.
If $t=1$ or $t \leq n-1$ and
$\operatorname{rank}\left(M_{d}(y)\right)>1$, set $t=t+1$ and do again step 1.
If $2 \leq t \leq n-1$ and
$\operatorname{rank}\left(M_{d}(y)\right)=1$, go to step 2.
If $t=n$, go to step 3 .
2. Extract \bar{x} from first moment submatrix of $M_{d}(y)$ and stop.
3. Solve $\bar{x}=A^{-1} \bar{b}$ with \bar{b} is formed from b by replacing r_{t}^{2} by $\rho_{t}\left(\alpha_{0}, . ., \alpha_{t}\right)$ and stop.

Recall previous method obtaining optimizer(s) of POP by flat-extension condition

Recall previous method obtaining optimizer(s) of POP by flat-extension condition

M Laurent.
Revisiting two theorems of Curto and Fialkow on moment matrices.
Proceedings of the American Mathematical Society, 2005.

D Henrion, JB Lasserre.
Detecting global optimality and extracting solutions in GloptiPoly.
Positive polynomials in control - Springer, 2005.

Recall previous method obtaining optimizer(s) of POP by flat-extension condition

M Laurent.
Revisiting two theorems of Curto and Fialkow on moment matrices.
Proceedings of the American Mathematical Society, 2005.

D Henrion, JB Lasserre.
Detecting global optimality and extracting solutions in GloptiPoly.
Positive polynomials in control - Springer, 2005.

Lemma

Assume solution y of SPD relaxation of optimal value τ_{k} satisfies the flat-extension condition

$$
\operatorname{rank}\left(M_{k}(y)\right)=\operatorname{rank}\left(M_{k-1}(y)\right)
$$

Then $\tau_{k}=f^{*}$ there exist $\lambda_{1}, \ldots, \lambda_{r} \in$ and $x_{1}^{*}, \ldots, x_{r}^{*} \in \mathbb{R}^{n}$ such that y has the representing r-atomic measure

$$
\mu=\sum_{i=1}^{r} \lambda_{i} \delta_{x_{i}^{*}} .
$$

Moreover, $\operatorname{supp}(\mu)=\left\{x_{i}^{*}: i=1, \ldots, r\right\}$, which belongs to the set of all minimizers of $f^{*}=\min \{f(x): x \in S(g, h)\}$.

Recall previous method obtaining optimizer(s) of POP by flat-extension

 conditionI M Laurent.
Revisiting two theorems of Curto and Fialkow on moment matrices.

Proceedings of the American Mathematical Society, 2005.

D Henrion, JB Lasserre.
Detecting global optimality and extracting solutions in GloptiPoly.
Positive polynomials in control - Springer, 2005.

Lemma

Assume solution y of SPD relaxation of optimal value τ_{k} satisfies the flat-extension condition

$$
\operatorname{rank}\left(M_{k}(y)\right)=\operatorname{rank}\left(M_{k-1}(y)\right)
$$

Then $\tau_{k}=f^{*}$ there exist $\lambda_{1}, \ldots, \lambda_{r} \in$ and $x_{1}^{*}, \ldots, x_{r}^{*} \in \mathbb{R}^{n}$ such that y has the representing r-atomic measure

$$
\mu=\sum_{i=1}^{r} \lambda_{i} \delta_{x_{i}^{*}} .
$$

Moreover, $\operatorname{supp}(\mu)=\left\{x_{i}^{*}: i=1, \ldots, r\right\}$, which belongs to the set of all minimizers of $f^{*}=\min \{f(x): x \in S(g, h)\}$.

Algorithm (Henrion, Lasserre)

1. Find the Cholesky factorization $V V^{T}$ of $M_{d}(y)$.
2. Reduce V to an echelon form U.
3. Extract from U the multiplication matrices N_{i}, $i=1, \ldots, n$.
4. Compute $N:=\sum_{i=1}^{n} \lambda_{i} N_{i}$ with randomly generated coefficients λ_{i}, and the Schur decomposition $N=Q T Q^{T}$. Compute
$Q=\left(\begin{array}{llll}q_{1} & q_{2} & \ldots & q_{r}\end{array}\right)$
and $\left(x_{j}^{*}\right)_{i}=q_{j}^{T} N_{i} q_{j}$, for each $i=1, \ldots, n$, and each $j=1, \ldots, r$.

Advantages of ASIC algorithm and Numerical experiments

Advantages of ASIC algorithm and Numerical experiments

Remark

It is the promising algorithm because of the following advantages:

Advantages of ASIC algorithm and Numerical experiments

Remark

It is the promising algorithm because of the following advantages:

1. solving the systems of high dimensional varieties by using hierachy SDP relaxations.

Advantages of ASIC algorithm and Numerical experiments

Remark

It is the promising algorithm because of the following advantages:

1. solving the systems of high dimensional varieties by using hierachy SDP relaxations.
2. giving an approximate real solution of the polynomial system at every relaxation. We can use this approximation as initial point for Newton method when the system is square.

Advantages of ASIC algorithm and Numerical experiments

Remark

It is the promising algorithm because of the following advantages:

1. solving the systems of high dimensional varieties by using hierachy SDP relaxations.
2. giving an approximate real solution of the polynomial system at every relaxation. We can use this approximation as initial point for Newton method when the system is square.
3. applying in obtaining an approximation of a minimizer of POP at every the new Lasserre's hierarchy relaxation via solving the system $S\left(g \cup\left\{\rho_{k}-f\right\}, h\right)$.

Advantages of ASIC algorithm and Numerical experiments

Remark

It is the promising algorithm because of the following advantages:

1. solving the systems of high dimensional varieties by using hierachy SDP relaxations.
2. giving an approximate real solution of the polynomial system at every relaxation. We can use this approximation as initial point for Newton method when the system is square.
3. applying in obtaining an approximation of a minimizer of POP at every the new Lasserre's hierarchy relaxation via solving the system $S\left(g \cup\left\{\rho_{k}-f\right\}, h\right)$.
4. replacing the extraction of the flat-extension condition in the case that the flat-extension condition is not satisfied (since the set of minimizers is high dimension varieties or the order relaxation k is too high to reach $\tau_{k}=f^{*}$).

Advantages of ASIC algorithm and Numerical experiments

Remark

It is the promising algorithm because of the following advantages:

1. solving the systems of high dimensional varieties by using hierachy SDP relaxations.
2. giving an approximate real solution of the polynomial system at every relaxation. We can use this approximation as initial point for Newton method when the system is square.
3. applying in obtaining an approximation of a minimizer of POP at every the new Lasserre's hierarchy relaxation via solving the system $S\left(g \cup\left\{\rho_{k}-f\right\}, h\right)$.
4. replacing the extraction of the flat-extension condition in the case that the flat-extension condition is not satisfied (since the set of minimizers is high dimension varieties or the order relaxation k is too high to reach $\tau_{k}=f^{*}$).
5. obtaining an approximation of a minimizer at the low order relaxations is suitable for middle-scale POP ($d, n \leq 20$).

Advantages of ASIC algorithm and Numerical experiments

Remark

It is the promising algorithm because of the following advantages:

1. solving the systems of high dimensional varieties by using hierachy SDP relaxations.
2. giving an approximate real solution of the polynomial system at every relaxation. We can use this approximation as initial point for Newton method when the system is square.
3. applying in obtaining an approximation of a minimizer of POP at every the new Lasserre's hierarchy relaxation via solving the system $S\left(g \cup\left\{\rho_{k}-f\right\}, h\right)$.
4. replacing the extraction of the flat-extension condition in the case that the flat-extension condition is not satisfied (since the set of minimizers is high dimension varieties or the order relaxation k is too high to reach $\tau_{k}=f^{*}$).
5. obtaining an approximation of a minimizer at the low order relaxations is suitable for middle-scale POP ($d, n \leq 20$).

Solving Dietmaier's system of 12 variable, 12 equations and total degree 2

Advantages of ASIC algorithm and Numerical experiments

Remark

It is the promising algorithm because of the following advantages:

1. solving the systems of high dimensional varieties by using hierachy SDP relaxations.
2. giving an approximate real solution of the polynomial system at every relaxation. We can use this approximation as initial point for Newton method when the system is square.
3. applying in obtaining an approximation of a minimizer of POP at every the new Lasserre's hierarchy relaxation via solving the system $S\left(g \cup\left\{\rho_{k}-f\right\}, h\right)$.
4. replacing the extraction of the flat-extension condition in the case that the flat-extension condition is not satisfied (since the set of minimizers is high dimension varieties or the order relaxation k is too high to reach $\tau_{k}=f^{*}$).
5. obtaining an approximation of a minimizer at the low order relaxations is suitable for middle-scale POP ($d, n \leq 20$).

Solving Dietmaier's system of 12 variable, 12 equations and total degree 2

This algorithm takes ~ 4 seconds while GloptiPoly takes $\sim \mathbf{6 4}$ seconds.

Advantages of ASIC algorithm and Numerical experiments

Remark

It is the promising algorithm because of the following advantages:

1. solving the systems of high dimensional varieties by using hierachy SDP relaxations.
2. giving an approximate real solution of the polynomial system at every relaxation. We can use this approximation as initial point for Newton method when the system is square.
3. applying in obtaining an approximation of a minimizer of POP at every the new Lasserre's hierarchy relaxation via solving the system $S\left(g \cup\left\{\rho_{k}-f\right\}, h\right)$.
4. replacing the extraction of the flat-extension condition in the case that the flat-extension condition is not satisfied (since the set of minimizers is high dimension varieties or the order relaxation k is too high to reach $\tau_{k}=f^{*}$).
5. obtaining an approximation of a minimizer at the low order relaxations is suitable for middle-scale POP ($d, n \leq 20$).

Advantages of ASIC algorithm and Numerical experiments

Remark

It is the promising algorithm because of the following advantages:

1. solving the systems of high dimensional varieties by using hierachy SDP relaxations.
2. giving an approximate real solution of the polynomial system at every relaxation. We can use this approximation as initial point for Newton method when the system is square.
3. applying in obtaining an approximation of a minimizer of POP at every the new Lasserre's hierarchy relaxation via solving the system $S\left(g \cup\left\{\rho_{k}-f\right\}, h\right)$.
4. replacing the extraction of the flat-extension condition in the case that the flat-extension condition is not satisfied (since the set of minimizers is high dimension varieties or the order relaxation k is too high to reach $\tau_{k}=f^{*}$).
5. obtaining an approximation of a minimizer at the low order relaxations is suitable for middle-scale POP ($d, n \leq 20$).

Solving Dietmaier's system of 12 variable, 12 equations and total degree 2

This algorithm takes ~ 4 seconds while GloptiPoly takes $\sim \mathbf{6 4}$ seconds.

Extracting a minimizer of

 unconstrained minimization problem for Mozkin polynomial $f=x_{1}^{2} x_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}-1\right)$$\rho_{1}=-0.037037049511779$ with approximation of minimizer:
$\binom{0.577878471539354}{0.576441444303031}$

Christoffel functions: Extracting information from moments combined with Newton's method

Chistoffel function and related works

Chistoffel function and related works

Let μ be finite Borel measure.
Christoffel function for $M_{d}(\mu) \succ 0$
$\Lambda_{\mu, d}(x):=\left[v_{d}(x)^{T} M_{d}(\mu)^{-1} v_{d}(x)\right]^{-1}, \forall x \in \mathbb{R}^{n}$

Chistoffel function and related works

Let μ be finite Borel measure.
Christoffel function for $M_{d}(\mu) \succ 0$
$\Lambda_{\mu, d}(x):=\left[v_{d}(x)^{T} M_{d}(\mu)^{-1} v_{d}(x)\right]^{-1}, \forall x \in \mathbb{R}^{n}$
國 JB Lasserre and E Pauwels.
The empirical Christoffel function with applications in data analysis.
In Advances in Computational Mathematics, Springer, 2019.
T
E Pauwels, M Putinar and JB Lasserre. Data analysis from empirical moments and the Christoffel function
In arXiv preprint arXiv:1810.08480, 2018.

Chistoffel function and related works

Let μ be finite Borel measure.
Christoffel function for $M_{d}(\mu) \succ 0$
$\Lambda_{\mu, d}(x):=\left[v_{d}(x)^{T} M_{d}(\mu)^{-1} v_{d}(x)\right]^{-1}, \forall x \in \mathbb{R}^{n}$
E- JB Lasserre and E Pauwels.
The empirical Christoffel function with applications in data analysis.
In Advances in Computational Mathematics, Springer, 2019.

E Pauwels, M Putinar and JB Lasserre. Data analysis from empirical moments and the Christoffel function
In arXiv preprint arXiv:1810.08480, 2018.
Theorem for the Lebesgue measure μ supported on compact set S with some assumptions of d_{k} and γ_{k} (Lasserre, Pauwels)
For every $k \in \mathbb{N}, S_{k}:=\left\{x \in \mathbb{R}^{n}: \Lambda_{\mu, d_{k}}(x) \geq \gamma_{k}\right\}$.
Then as $k \rightarrow \infty$,
$d_{H}\left(S_{k}, S\right) \rightarrow 0$ and $d_{H}\left(\partial S_{k}, \partial S\right) \rightarrow 0$.

Chistoffel function and related works

Let μ be finite Borel measure.
Christoffel function for $M_{d}(\mu) \succ 0$
$\Lambda_{\mu, d}(x):=\left[v_{d}(x)^{T} M_{d}(\mu)^{-1} v_{d}(x)\right]^{-1}, \forall x \in \mathbb{R}^{n}$
周 JB Lasserre and E Pauwels.
The empirical Christoffel function with applications in data analysis.
In Advances in Computational Mathematics, Springer, 2019.
邫
E Pauwels, M Putinar and JB Lasserre.
Data analysis from empirical moments and the Christoffel function
In arXiv preprint arXiv:1810.08480, 2018.
Theorem for the Lebesgue measure μ supported on compact set S with some assumptions of d_{k} and γ_{k} (Lasserre, Pauwels)
For every $k \in \mathbb{N}, S_{k}:=\left\{x \in \mathbb{R}^{n}: \Lambda_{\mu, d_{k}}(x) \geq \gamma_{k}\right\}$. Then as $k \rightarrow \infty$, $d_{H}\left(S_{k}, S\right) \rightarrow 0$ and $d_{H}\left(\partial S_{k}, \partial S\right) \rightarrow 0$.

S Marx, E Pauwels, T Weisser, D Henrion and J Lasserre.
Tractable semi-algebraic approximation using Christoffel-Darboux kernel. hal.archives-ouvertes.fr, 2019.

Chistoffel function and related works

Let μ be finite Borel measure.
Christoffel function for $M_{d}(\mu) \succ 0$
$\Lambda_{\mu, d}(x):=\left[v_{d}(x)^{T} M_{d}(\mu)^{-1} v_{d}(x)\right]^{-1}, \forall x \in \mathbb{R}^{n}$

- JB Lasserre and E Pauwels.

The empirical Christoffel function with applications in data analysis.
In Advances in Computational Mathematics, Springer, 2019.

E Pauwels, M Putinar and JB Lasserre.
Data analysis from empirical moments and the Christoffel function
In arXiv preprint arXiv:1810.08480, 2018.
Theorem for the Lebesgue measure μ supported on compact set S with some assumptions of d_{k} and γ_{k} (Lasserre, Pauwels)
For every $k \in \mathbb{N}, S_{k}:=\left\{x \in \mathbb{R}^{n}: \Lambda_{\mu, d_{k}}(x) \geq \gamma_{k}\right\}$. Then as $k \rightarrow \infty$, $d_{H}\left(S_{k}, S\right) \rightarrow 0$ and $d_{H}\left(\partial S_{k}, \partial S\right) \rightarrow 0$.

S Marx, E Pauwels, T Weisser, D Henrion and J Lasserre.
Tractable semi-algebraic approximation using Christoffel-Darboux kernel. hal.archives-ouvertes.fr, 2019.

The level sets of the empirical Christoffel functions evaluated on the sphere in \mathbb{R}^{4} by [Pauwels et al. 18]

Chistoffel function and related works

(a) Degree 10 semialgebraic approximations (black) for the discontinuous univariate functions (red) of Examples 65 (left), 66 (middle) and 67 (right)

(b) Degree 4 (left) semialgebraic approximation, and Chebyshev polynomial approximation (right) of the indicator function of a disk

Convergence theorem

Convergence theorem

Problem

Find the support
$\operatorname{supp}(\mu):=\left\{z_{i}\right\} \subset \mathbb{R}^{n}$ and the weights $\left\{\lambda_{i}\right\} \subset \mathbb{R}^{*}$ of signed atomic measure
$\mu:=\sum_{i=1}^{k} \lambda_{i} \delta_{z_{i}}$ from knowledge of
moments of μ.

Convergence theorem

Problem

Find the support
$\operatorname{supp}(\mu):=\left\{z_{i}\right\} \subset \mathbb{R}^{n}$ and the weights $\left\{\lambda_{i}\right\} \subset \mathbb{R}^{*}$ of signed atomic measure
$\mu:=\sum_{i=1}^{k} \lambda_{i} \delta_{z_{i}}$ from knowledge of
moments of μ.
Let $N \in \mathbb{S}_{++}^{s(d)}$. Let $\varepsilon>0$ such that $\varepsilon N+M_{d}(\mu)$ is full rank.

Convergence theorem

Problem

Find the support
$\operatorname{supp}(\mu):=\left\{z_{i}\right\} \subset \mathbb{R}^{n}$ and the weights $\left\{\lambda_{i}\right\} \subset \mathbb{R}^{*}$ of signed atomic measure
$\mu:=\sum_{i=1}^{k} \lambda_{i} \delta_{z_{i}}$ from knowledge of
moments of μ.
Let $N \in \mathbb{S}_{++}^{s(d)}$. Let $\varepsilon>0$ such that $\varepsilon N+M_{d}(\mu)$ is full rank.

Perturbed Christoffel function

$\Lambda_{\mu, d, \varepsilon N}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by for $x \in \mathbb{R}^{n}$
$\wedge_{\mu, d, \varepsilon N}(x)$
$:=\left[v_{d}(x)^{T}\left(\varepsilon N+M_{d}(\mu)\right)^{-1} v_{d}(x)\right]^{-1}$.

Convergence theorem

Theorem

Let $K \subset \mathbb{R}^{n}$ be compact set and $s(d)-r \geq n$. Let $\psi: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}^{*}$ be a function such that

Problem

Find the support
$\operatorname{supp}(\mu):=\left\{z_{i}\right\} \subset \mathbb{R}^{n}$ and the weights $\left\{\lambda_{i}\right\} \subset \mathbb{R}^{*}$ of signed atomic measure $\mu:=\sum_{i=1}^{k} \lambda_{i} \delta_{z_{i}}$ from knowledge of moments of μ.
Let $N \in \mathbb{S}_{++}^{s(d)}$. Let $\varepsilon>0$ such that $\varepsilon N+M_{d}(\mu)$ is full rank.

Perturbed Christoffel function

$\Lambda_{\mu, d, \varepsilon N}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by for $x \in \mathbb{R}^{n}$
$\wedge_{\mu, d, \varepsilon N}(x)$
$:=\left[v_{d}(x)^{T}\left(\varepsilon N+M_{d}(\mu)\right)^{-1} v_{d}(x)\right]^{-1}$.

Convergence theorem

Theorem

Let $K \subset \mathbb{R}^{n}$ be compact set and $s(d)-r \geq n$. Let $\psi: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}^{*}$ be a function such that

$$
\psi(\varepsilon)^{-1} \rightarrow \infty \text { and } \varepsilon \psi(\varepsilon)^{-1} \rightarrow 0 \text { as } \varepsilon \rightarrow 0^{+}
$$

For every $\varepsilon>0$, denote the superlevel set of perturbed Christoffel function by

$$
S_{\varepsilon}:=\left\{x \in \mathbb{R}^{n}: \Lambda_{\mu, d, \varepsilon N}(x) \geq \psi(\varepsilon)\right\} .
$$

Problem

Find the support
$\operatorname{supp}(\mu):=\left\{z_{i}\right\} \subset \mathbb{R}^{n}$ and the weights $\left\{\lambda_{i}\right\} \subset \mathbb{R}^{*}$ of signed atomic measure
$\mu:=\sum_{i=1}^{k} \lambda_{i} \delta_{z_{i}}$ from knowledge of
moments of μ.
Let $N \in \mathbb{S}_{++}^{s(d)}$. Let $\varepsilon>0$ such that $\varepsilon N+M_{d}(\mu)$ is full rank.

Perturbed Christoffel function

$\Lambda_{\mu, d, \varepsilon N}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by for $x \in \mathbb{R}^{n}$
$\wedge_{\mu, d, \varepsilon N}(x)$
$:=\left[v_{d}(x)^{T}\left(\varepsilon N+M_{d}(\mu)\right)^{-1} v_{d}(x)\right]^{-1}$.

Convergence theorem

Theorem

Let $K \subset \mathbb{R}^{n}$ be compact set and $s(d)-r \geq n$. Let $\psi: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}^{*}$ be a function such that

Perturbed Christoffel function

$\Lambda_{\mu, d, \varepsilon N}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by for $x \in \mathbb{R}^{n}$

Problem

Find the support
$\operatorname{supp}(\mu):=\left\{z_{i}\right\} \subset \mathbb{R}^{n}$ and the weights $\left\{\lambda_{i}\right\} \subset \mathbb{R}^{*}$ of signed atomic measure $\mu:=\sum_{i=1}^{k} \lambda_{i} \delta_{z_{i}}$ from knowledge of moments of μ.

$$
\begin{aligned}
& \text { Let } N \in \mathbb{S}_{+(+)}^{s(d)} \text {. Let } \varepsilon>0 \text { such that } \\
& \varepsilon N+M_{d}(\mu) \text { is full rank. }
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{\mu, d, \varepsilon N}(x) \\
& :=\left[v_{d}(x)^{T}\left(\varepsilon N+M_{d}(\mu)\right)^{-1} v_{d}(x)\right]^{-1} .
\end{aligned}
$$

$$
\psi(\varepsilon)^{-1} \rightarrow \infty \text { and } \varepsilon \psi(\varepsilon)^{-1} \rightarrow 0 \text { as } \varepsilon \rightarrow 0^{+}
$$

For every $\varepsilon>0$, denote the superlevel set of perturbed Christoffel function by

$$
S_{\varepsilon}:=\left\{x \in \mathbb{R}^{n}: \Lambda_{\mu, d, \varepsilon N}(x) \geq \psi(\varepsilon)\right\} .
$$

Then

Convergence theorem

Theorem

Let $K \subset \mathbb{R}^{n}$ be compact set and $s(d)-r \geq n$. Let $\psi: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}^{*}$ be a function such that

$$
\psi(\varepsilon)^{-1} \rightarrow \infty \text { and } \varepsilon \psi(\varepsilon)^{-1} \rightarrow 0 \text { as } \varepsilon \rightarrow 0^{+}
$$

For every $\varepsilon>0$, denote the superlevel set of perturbed Christoffel function by

$$
S_{\varepsilon}:=\left\{x \in \mathbb{R}^{n}: \Lambda_{\mu, d, \varepsilon N}(x) \geq \psi(\varepsilon)\right\} .
$$

Then

1. $\operatorname{int}\left(S_{\varepsilon}\right) \supset v_{d}^{-1}\left(\operatorname{Im}\left(M_{d}(\mu)\right)\right) \cap K$.

Perturbed Christoffel function

$\Lambda_{\mu, d, \varepsilon N}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by for $x \in \mathbb{R}^{n}$

Problem

Find the support
$\operatorname{supp}(\mu):=\left\{z_{i}\right\} \subset \mathbb{R}^{n}$ and the weights $\left\{\lambda_{i}\right\} \subset \mathbb{R}^{*}$ of signed atomic measure $\mu:=\sum_{i=1}^{k} \lambda_{i} \delta_{z_{i}}$ from knowledge of moments of μ.
Let $N \in \mathbb{S}_{++}^{s(d)}$. Let $\varepsilon>0$ such that $\varepsilon N+M_{d}(\mu)$ is full rank.

$$
\begin{aligned}
& \Lambda_{\mu, d, \varepsilon N}(x) \\
& :=\left[v_{d}(x)^{T}\left(\varepsilon N+M_{d}(\mu)\right)^{-1} v_{d}(x)\right]^{-1} .
\end{aligned}
$$

Convergence theorem

Theorem

Let $K \subset \mathbb{R}^{n}$ be compact set and $s(d)-r \geq n$. Let $\psi: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}^{*}$ be a function such that

$$
\psi(\varepsilon)^{-1} \rightarrow \infty \text { and } \varepsilon \psi(\varepsilon)^{-1} \rightarrow 0 \text { as } \varepsilon \rightarrow 0^{+}
$$

For every $\varepsilon>0$, denote the superlevel set of perturbed Christoffel function by

$$
S_{\varepsilon}:=\left\{x \in \mathbb{R}^{n}: \Lambda_{\mu, d, \varepsilon N}(x) \geq \psi(\varepsilon)\right\} .
$$

Then

$$
\text { 1. } \operatorname{int}\left(S_{\varepsilon}\right) \supset v_{d}^{-1}\left(\operatorname{Im}\left(M_{d}(\mu)\right)\right) \cap K \text {. }
$$

2. $d_{H}\left(S_{\varepsilon} \cap K, v_{d}^{-1}\left(\operatorname{Im}\left(M_{d}(\mu)\right)\right) \cap K\right) \rightarrow 0$ as $\varepsilon \rightarrow$ 0^{+}.
$\Lambda_{\mu, d, \varepsilon N}^{\substack{ \\\mathbb{R}^{n}}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by for $x \in \mathbb{R}^{n}$

Problem

Find the support
$\operatorname{supp}(\mu):=\left\{z_{i}\right\} \subset \mathbb{R}^{n}$ and the weights $\left\{\lambda_{i}\right\} \subset \mathbb{R}^{*}$ of signed atomic measure $\mu:=\sum_{i=1}^{k} \lambda_{i} \delta_{z_{i}}$ from knowledge of moments of μ.
Let $N \in \mathbb{S}_{++}^{s(d)}$. Let $\varepsilon>0$ such that $\varepsilon N+M_{d}(\mu)$ is full rank.

Perturbed Christoffel function

$$
\begin{aligned}
& \Lambda_{\mu, d, \varepsilon N}(x) \\
& :=\left[v_{d}(x)^{T}\left(\varepsilon N+M_{d}(\mu)\right)^{-1} v_{d}(x)\right]^{-1} .
\end{aligned}
$$

Convergence theorem

Theorem

Let $K \subset \mathbb{R}^{n}$ be compact set and $s(d)-r \geq n$. Let

$$
\begin{aligned}
& \Lambda_{\mu, d, \varepsilon N}(x) \\
& :=\left[v_{d}(x)^{T}\left(\varepsilon N+M_{d}(\mu)\right)^{-1} v_{d}(x)\right]^{-1} .
\end{aligned}
$$

Problem

Find the support
$\operatorname{supp}(\mu):=\left\{z_{i}\right\} \subset \mathbb{R}^{n}$ and the weights $\left\{\lambda_{i}\right\} \subset \mathbb{R}^{*}$ of signed atomic measure $\mu:=\sum_{i=1}^{k} \lambda_{i} \delta_{z_{i}}$ from knowledge of moments of μ.
Let $N \in \mathbb{S}_{++}^{s(d)}$. Let $\varepsilon>0$ such that $\varepsilon N+M_{d}(\mu)$ is full rank.

Perturbed Christoffel function

$\Lambda_{\mu, d, \varepsilon N}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by for $x \in \mathbb{R}^{n}$
$\psi: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}^{*}$ be a function such that

$$
\psi(\varepsilon)^{-1} \rightarrow \infty \text { and } \varepsilon \psi(\varepsilon)^{-1} \rightarrow 0 \text { as } \varepsilon \rightarrow 0^{+}
$$

For every $\varepsilon>0$, denote the superlevel set of perturbed Christoffel function by

$$
S_{\varepsilon}:=\left\{x \in \mathbb{R}^{n}: \Lambda_{\mu, d, \varepsilon N}(x) \geq \psi(\varepsilon)\right\}
$$

Then

1. $\operatorname{int}\left(S_{\varepsilon}\right) \supset v_{d}^{-1}\left(\operatorname{Im}\left(M_{d}(\mu)\right)\right) \cap K$.
2. $d_{H}\left(S_{\varepsilon} \cap K, v_{d}^{-1}\left(\operatorname{Im}\left(M_{d}(\mu)\right)\right) \cap K\right) \rightarrow 0$ as $\varepsilon \rightarrow$ 0^{+}.
3. $v_{d}^{-1}\left(\operatorname{Im}\left(M_{d}(\mu)\right)\right) \supset \operatorname{supp}(\mu)$. If $d \geq r$, then $v_{d}^{-1}\left(\operatorname{Im}\left(M_{d}(\mu)\right)\right)=\operatorname{supp}(\mu)$.

Convergence theorem

Theorem

Let $K \subset \mathbb{R}^{n}$ be compact set and $s(d)-r \geq n$. Let $\psi: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}^{*}$ be a function such that

$$
\psi(\varepsilon)^{-1} \rightarrow \infty \text { and } \varepsilon \psi(\varepsilon)^{-1} \rightarrow 0 \text { as } \varepsilon \rightarrow 0^{+}
$$

For every $\varepsilon>0$, denote the superlevel set of perturbed Christoffel function by

$$
S_{\varepsilon}:=\left\{x \in \mathbb{R}^{n}: \Lambda_{\mu, d, \varepsilon N}(x) \geq \psi(\varepsilon)\right\} .
$$

Then

1. $\operatorname{int}\left(S_{\varepsilon}\right) \supset v_{d}^{-1}\left(\operatorname{Im}\left(M_{d}(\mu)\right)\right) \cap K$.
2. $d_{H}\left(S_{\varepsilon} \cap K, v_{d}^{-1}\left(\operatorname{Im}\left(M_{d}(\mu)\right)\right) \cap K\right) \rightarrow 0$ as $\varepsilon \rightarrow$ 0^{+}.
3. $v_{d}^{-1}\left(\operatorname{Im}\left(M_{d}(\mu)\right)\right) \supset \operatorname{supp}(\mu)$. If $d \geq r$, then $v_{d}^{-1}\left(\operatorname{Im}\left(M_{d}(\mu)\right)\right)=\operatorname{supp}(\mu)$.
4. Let $b_{1}, \ldots, b_{s(d)-r}$ be a basis of the linear subspace $\operatorname{Ker}\left(M_{d}(\mu)\right)$. Let

$$
\begin{aligned}
& G(x)=\left(b_{1}^{T} v_{d}(x), \ldots, b_{s(d)-r}^{T} v_{d}(x)\right), \forall x \in \mathbb{R}^{n} \\
& \text { and } F(x)=\left(b_{1}^{T} v_{d}(x), \ldots, b_{n}^{T} v_{d}(x)\right), \forall x \in \mathbb{R}^{n} . \\
& \text { Then } G^{-1}(0)=v_{d}^{-1}\left(\operatorname{Im}\left(M_{d}(\mu)\right)\right) \subset F^{-1}(0)
\end{aligned}
$$

Building algorithm

Building algorithm

Idea of algorithm

Using the superlevel set S_{ε} as the initial points when solving the square system $F(x)=0$ by Newton method.

Building algorithm

Idea of algorithm

Using the superlevel set S_{ε} as the initial points when solving the square system $F(x)=0$ by Newton method.

(c) Case $r=50$ with $\varepsilon=$ (d) Case $r=100$ with $\varepsilon=$ 10^{-12} and $d=9$. 10^{-12} and $d=13$.

All other applications of Christoffel functions (intended PhD topics)

All other applications of Christoffel functions (intended PhD topics)

- Extraction of global optimizers in polynomial optimization problem
- Extraction of real root of polynomial systems.
- Graph approximation of non-polynomial function.
- Approximation of "density" for signed measure
- Applications to D-finite functions.
- Optimal control, occupation measures, PDEs.

All other applications of Christoffel functions (intended PhD topics)

- Extraction of global optimizers in polynomial optimization problem
- Extraction of real root of polynomial systems.
- Graph approximation of non-polynomial function.
- Approximation of "density" for signed measure
- Applications to D-finite functions.
- Optimal control, occupation measures, PDEs.

Graph approximation: Degree 10 polynomial approximation surface in pink of the indicator function of a curve

All other applications of Christoffel functions (intended PhD topics)

- Extraction of global optimizers in polynomial optimization problem
- Extraction of real root of polynomial systems.
- Graph approximation of non-polynomial function.
- Approximation of "density" for signed measure
- Applications to D-finite functions.
- Optimal control, occupation measures, PDEs.

Approximation of cloud by supper level set of perturbed Christoffel function.

Graph approximation: Degree 10 polynomial approximation surface in pink of the indicator function of a curve

All other applications of Christoffel functions (intended PhD topics)

- Extraction of global optimizers in polynomial optimization problem
- Extraction of real root of polynomial systems.
- Graph approximation of non-polynomial function.
- Approximation of "density" for signed measure
- Applications to D-finite functions.
- Optimal control, occupation measures, PDEs.

Approximation of cloud by supper level set of perturbed Christoffel function.

D-finite functions: Plot of the real value of the Airy function.

Thank for your attention!

