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Outline

Nonnegativity certificates for polynomials on non-compact sets

Systems of polynomial equations: A new algorithm converting stationary points which
are not global minima to singularities

Polynomial systems: A new algorithm adding sphere inequalities constraints

Christoffel functions: Extracting information from moments combined with Newton’s
method
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Nonnegativity certificates for polynomials on non-compact
sets
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Sum of squares (SOS) and Semidefinite programming (SDP)

R [x ] : the set of all polynomials f = vT
d c where

I vd := (xα)α∈Nn
d

(vector of monomials),

I c ∈ Rs(d) (vector of coefficients) with

s (d) :=

 n + d

d

.

Let gi , hj ∈ R [x ].

Basis semialgebraic set

S (g, h) :=
{

x ∈ Rn : gi (x) ≥ 0, hj (x) = 0
}

.

SOS
f = f 2

1 + ...+ f 2
m, where f1, ..., fm ∈ R [x ].

Σ [x ] : the the set of all SOSs.

SDP

min
X∈SN

〈C,X〉SN

s.t. 〈Ak ,X〉SN = bk , k = 1, . . . , l

X � 0

Relation between SOS and SDP
f is SOS⇔ ∃G � 0 : f = vT

d Gvd .

R [x ]d : the set of all polynomial of degree at
most d
Σ [x ]d : the set of all SOS of degree at most 2d .
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Representation theorems

Issue
How to certify that a polynomial p is
nonnegative on S (g, h) with g0 = 1?

Q (g, h) : (quadratic module) the set of all

m∑
i=0

σi gi +
l∑

j=1

φj hj

where σi ∈ Σ [x ] and φj ∈ R [x ].

Putinar’s Positivstellensatz for compact S (g, h)

(with Archimedian condition: L− |x |2 ∈ Q (g, h))

p > 0 on S (g, h)⇒ p ∈ Q (g, h) .

θ := 1 + |x |2.

Result for non-compact S (g, h) (without
Archimedian condition)

p ≥ 0 on S (g, h)⇒ ∀ε > 0, ∃Kε ∈ N :(
p + εθ1+ddeg(p)/2e) θKε ∈ Q (g, h) .

When S (g, h) = Rn:

Reznick’s representation (with assumption p is
homogeneous)

p > 0 on Rn\ {0} ⇒ ∃K ∈ N : |x |2K p ∈ Σ [x ] .

Result for global nonnegativity (without
homogeneous assumption)

p ≥ 0 on Rn ⇒ ∀ε > 0, ∃Kε ∈ N :(
p + εθdeg(p)/2) θKε ∈ Σ [x ] .
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Lasserre’s SOS approach for polynomial optimization problems (POPs)

J.-B Lasserre.
Global optimization with polynomials and
the problem of moments.
In SIAM Journal on optimization, 2001.

I Consider POP

f∗ = inf
x∈S(g,h)

f (x) .

with S (g, h) satisfying Archimedian
condition.

I It is equivalent to the problem
f∗ = sup {λ ∈ R : f − λ > 0 on S (g, h)}.

I By using Putinar’s representation,
f∗ = sup {λ ∈ R : f − λ ∈ Q (g, h)}.

I Set vi := ddeg (gi ) /2e and
uj :=

⌈
deg

(
hj
)
/2
⌉
.

I Q (g, h)d : (truncated quadratic module)
the set of all

m∑
i=0

σi gi +
l∑

j=1

φj hj

where σi ∈ Σ [x ]d−vi
and φj ∈ R [x ]d−uj

.

Lasserre’s hierarchy

Consider the hierarchy of SDPs for every k ∈ N

ρk = sup
{
λ ∈ R : f − λ ∈ Q(g, h)k

}
.

Then ρk ↑ f∗ as k →∞.
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Lasserre’s moment approach for POPs

Let µ be finite Borel measure.

Moments
yα =

∫
xαdµ, α ∈ Nn.

Moment matrix
Md (y) =

(
yα+β

)
α+β∈Nn

d
.

Localizing matrix

Md (gy) =(∑
γ

gγyγ+α+β

)
α,β∈Nn

d

.

Riesz linear functional
Ly : R [x ]→ R

Ly (f ) :=
∑
α fαyα.

M (S (g, h)): the set of all finite
Borel measures supported on
S (g, h).

I Equivalent problem over measure
f∗ = inf

µ∈M(S(g,h))

∫
fdµ.

I One has
f∗ = inf Ly (f )

s.t. y ∈ R∞ has representing measure in M (S (g, h)) .

I We obtain
f∗ = inf

y∈R∞
Ly (f )

s.t. Mk−vi (gi y) � 0, ∀k ∈ N,

Mk−uj

(
hj y
)

= 0, ∀k ∈ N.

Lasserre’s hierarchy

For every k ∈ N
τk = inf

y∈Rs(2k)
Ly (f )

s.t. Mk−vi (gi y) � 0,

Mk−uj

(
hj y
)

= 0.
is the dual of the previous SOS problem with value ρk .
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Application for polynomial optimization over non-compact semialgebraic
sets

I Consider POP

f∗ = inf
x∈S(g,h)

f (x) .

attained at x∗.
I Set d := 1 + ddeg (f ) /2e.

A new Lasserre’s hierarchy

Let ε̄ > 0 be fixed. Consider the hierarchy of
semidefinite programs for every k ∈ N

ρk = sup
{
λ ∈ R : θk

(
f + ε̄θd − λ

)
∈ Q(g, h)k+d

}
.

Then ∃K ∈ N : ∀k ≥ K , ρk ∈
[
f∗, f∗ + εθ(x∗)d

]
.

The dual of the problem of value ρk

τk = inf Ly
(
θk (f + ε̄θd))

s.t. Mk+d−vi (gi y) � 0,

Mk+d−uj

(
hj y
)

= 0,

Ly
(
θk) = 1.

For unconstrained case: S (g, h) := Rn,
d := deg (f ) /2 and Q(g, h)k+d := Σ [x ]k+d .

Algorithm

Begin with k = 0 and do:

1. Solve SDP to get ρk .

2. If S (g ∪ {ρk − f} , h) = ∅, set
k := k + 1 and do again step 1.
If S (g ∪ {ρk − f} , h) 6= ∅, take a point
x̄ ∈ S (g ∪ {ρk − f} , h) and stop.
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Systems of polynomial equations: A new algorithm
converting stationary points which are not global minima to

singularities
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Convergence theorem

Problem
Find a real solution of system of polynomial
equations

fi (x) = 0, i = 1, ...,m.

P Aubry, F Rouillier, M Safey El Din.
Real solving for positive dimensional
systems.
Journal of Symbolic Computation,
2002.

AJ Sommese, J Verschelde, CW
Wampler.
Introduction to numerical algebraic
geometry.
Solving polynomial equations, 2005.

B Mourrain, P Trebuchet.
Generalized normal forms and
polynomial system solving.
Proceedings of the 2005 international
symposium on Symbolic and
algebraic computation, 2005.

Remark
Previous methods depend on the degrees of fi .

I Set ϕ := f 2
1 + ...+ f 2

m. Assume that n ≥ 2 and
the set of stationary points of ϕ,
{x ∈ Rn : ∇ϕ (x) = 0}, is a zero dimensional.

I For every ε > 0, let lε : Rn → R ∪ {±∞}
defined by

lε (x) =



ϕ (x) log (δεψ (x) + 1) exp
( ε

2
|x |2
)

if ∇ϕ (x) 6= 0;

0 if ∇ϕ (x) = 0 and ϕ (x) = 0;

∞ if ∇ϕ (x) = 0 and ϕ (x) > 0

where
ψ (x) = 2|∇ϕ (x)|−2, ∀x ∈ Rn : ∇ϕ (x) 6= 0.
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Convergence theorem

Lemma

1. lε ≥ 0 on Rn and lε (x) = 0⇔ ϕ (x) = 0 .

2. W := {x ∈ n : ∇ϕ (x) = 0, ϕ (x) > 0} is
the set of all stationary points which are
not global minima of min {ϕ (x) : x ∈ Rn}.

3. lε ∈ C1 (Rn\W ).

4. lim
|x|→∞

lε (x) =∞ and lim
x→a∈W

lε (x) =∞.

Remark
The properties of lε rely on the different rates
between polynomials, logarithm function and
exponential function.

Theorem
Let (εk )k∈N ⊂ R∗+ such that εk ↓ 0 as k →∞.
Let M > 0. For every k ∈ N, denote lk := lεk
and denote

Jk (x) := lk (x)− log (M − l0 (x)) , x ∈ Rn.

Let (xk )k∈N ⊂ Rn\W such that l0 (xk ) ≤ M and
∇Jk (xk ) = 0.
Then (xk )k∈ is a bounded sequence and every
convergent subsequence of (xk )k∈N converges
to a global minimum of min {ϕ (x) : x ∈ Rn}.
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Building algorithm

Algorithm

Let z0 ∈n such that ∇ϕ (z0) 6= 0. Let τ ∈ (0, 1)
be small. Set M = l0 (z0) + 1. Set k = 0 and
do the following steps:

1. Find a local minimum z of unconstrained
problem min

x∈Rn
J (x), where

J (x) =

 Jk (x) if l0 (x) 6= M;

∞ if l0 (x) = M,

by quasi-Newton method with initial point
z0. Go to step 2.

2. If ϕ (z) ≤ τ , stop. Otherwise, set
k := k + 1 and go to step 1.

Example

Economics problem x2
k + x1 (x2 + ...+ x6)− 2x1xk − 4x2

1 = 0,

k = 1, ..., 6.

An approximation of solution:

(2.5876, 2.5340, 2.6294, 2.6373, 2.5098, 2.6261) .

Computing time: 0.603346 seconds.

Remark
This algorithm does not depend on the degree
of fi .
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Polynomial systems: A new algorithm adding sphere
inequalities constraints
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Adding sphere inequalities constraints (ASIC)

Challenge

Find an approximate real point in S (g, h) if it is
nonempty?

Assume that S (g, h) 6= ∅.
Let (at )t=0,1,...,n ⊂ Rn such that at − a0, t = 1, ..., n
are linear independent.

r0 = d (a0,S (g, h)) ;

rt = d
(

at ,S (g, h) ∩ B (a0, r0) ∩ ... ∩ B (at−1, rt−1)
)
,

t = 1, ..., n.

Lemma
S (g, h)∩B (a0, r0)∩...∩B (an, rn) = {x∗}
and x∗ = A−1b with
A =

(
a1 − a0 ... an − a0

)
and

b = − 1
2


r2
1 − r2

0 − |a1|2 + |a0|2

...

r2
n − r2

0 − |an|2 + |a0|2

.

ϕρa := ρ− |x − a|2 for a ∈ Rn and ρ ≥ 0.
Then

r2
0 = min

x∈S(g,h)
|x − a0|2;

r2
t = min

x∈S

(
g∪
{
ϕ

r2
0

a0
,...,ϕ

r2
t−1

at−1

}
,h

) |x − at |2,

t = 1, ..., n.
Idea: Use the Lasserre’s hierarchy to find
approximations of rt .
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Numerical scheme of radius

Let ε̄ > 0 be fixed. For every α = (α0, ..., αn) ∈ Nn+1,

ρ0 (α0) := sup
{
λ : θα0

(
|x − a0|2 + ε̄θ − λ

)
∈ Q(g, h)α0+1

}
ρt (α0, .., αt ) := sup

{
λ : |x − at |2 − λ ∈ Q

(
g ∪

{
ϕ
ρ0(α0)
a0

, ..., ϕ
ρt−1(α0,..,αt−1)
at−1

}
, h
)
αt +1

}
t = 1, ..., n.

Theorem
There exists a function δ : R∗+ → R+ such that
δ (ε) ↓ 0 as ε ↓ 0 which satisfies
∃Λ ∈ Nn+1 : ρt (Λ0, ..,Λt ) ∈

[
r2
t − δ (ε̄) , r2

t + δ (ε̄)
]
,

t = 0, ..., n.

Lemma
If rank (Md (y)) = 1 (with y0 = 1), then y has
representing (1-atomic) measure supported on
x∗ =

(
ye1 , ...., yen

)
where ei is natural basis of Rn.

ASIC algorithm

For every α ∈ Nn+1, set t = 0 and do:

1. Solve the dual of SDP to get
ρt (α0, .., αt ) and Md (y).
If t = 1 or t ≤ n − 1 and
rank (Md (y)) > 1, set t = t + 1 and
do again step 1.
If 2 ≤ t ≤ n − 1 and
rank (Md (y)) = 1, go to step 2.
If t = n, go to step 3.

2. Extract x̄ from first moment submatrix
of Md (y) and stop.

3. Solve x̄ = A−1b̄ with b̄ is formed from
b by replacing r2

t by ρt (α0, .., αt ) and
stop.
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Recall previous method obtaining optimizer(s) of POP by flat-extension
condition

M Laurent.
Revisiting two theorems of Curto and Fialkow on
moment matrices.
Proceedings of the American Mathematical Society,
2005.

D Henrion, JB Lasserre.
Detecting global optimality and extracting solutions in
GloptiPoly.
Positive polynomials in control - Springer, 2005.

Lemma
Assume solution y of SPD relaxation of optimal value τk
satisfies the flat-extension condition

rank (Mk (y)) = rank (Mk−1 (y)) .

Then τk = f∗ there exist λ1, . . . , λr ∈ and x∗1 , . . . , x
∗
r ∈ Rn

such that y has the representing r -atomic measure

µ =
r∑

i=1

λiδx∗i
.

Moreover, supp (µ) =
{

x∗i : i = 1, ..., r
}
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Advantages of ASIC algorithm and Numerical experiments

Remark
It is the promising algorithm because of the following
advantages:

1. solving the systems of high dimensional varieties by
using hierachy SDP relaxations.

2. giving an approximate real solution of the polynomial
system at every relaxation. We can use this
approximation as initial point for Newton method when
the system is square.

3. applying in obtaining an approximation of a
minimizer of POP at every the new Lasserre’s
hierarchy relaxation via solving the system
S (g ∪ {ρk − f} , h).

4. replacing the extraction of the flat-extension
condition in the case that the flat-extension condition is
not satisfied (since the set of minimizers is high
dimension varieties or the order relaxation k is too high
to reach τk = f∗).

5. obtaining an approximation of a minimizer at the low
order relaxations is suitable for middle-scale POP
(d , n ≤ 20).

Solving Dietmaier’s system of 12
variable, 12 equations and total
degree 2

This algorithm takes ∼ 4 seconds
while GloptiPoly takes ∼ 64
seconds.

Extracting a minimizer of
unconstrained minimization
problem for Mozkin polynomial
f = x2

1 x2
2

(
x2

1 + x2
2 − 1

)
ρ1 = −0.037037049511779 with
approximation of minimizer: 0.577878471539354

0.576441444303031
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Christoffel functions: Extracting information from moments
combined with Newton’s method
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Chistoffel function and related works

Let µ be finite Borel measure.

Christoffel function for Md (µ) � 0

Λµ,d (x) :=
[
vd (x)T Md (µ)−1vd (x)

]−1
, ∀x ∈ Rn

JB Lasserre and E Pauwels.
The empirical Christoffel function with applications
in data analysis.
In Advances in Computational Mathematics,
Springer, 2019.

E Pauwels, M Putinar and JB Lasserre.
Data analysis from empirical moments and the
Christoffel function
In arXiv preprint arXiv:1810.08480, 2018.

Theorem for the Lebesgue measure µ supported on
compact set S with some assumptions of dk and γk
(Lasserre, Pauwels)

For every k ∈ N, Sk :=
{

x ∈ Rn : Λµ,dk (x) ≥ γk
}
.

Then as k →∞,
dH (Sk ,S)→ 0 and dH (∂Sk , ∂S)→ 0.

S Marx, E Pauwels, T Weisser, D
Henrion and J Lasserre.
Tractable semi-algebraic
approximation using
Christoffel-Darboux kernel.
hal.archives-ouvertes.fr, 2019.

The level sets of the empirical Christoffel functions
evaluated on the sphere in R4 by [Pauwels et al. 18]
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Chistoffel function and related works

(a) Degree 10 semialgebraic approximations (black) for the discontinuous univariate functions (red) of Exam-
ples 65 (left), 66 (middle) and 67 (right)

(b) Degree 4 (left) semialgebraic approximation, and Chebyshev polynomial approximation (right) of the
indicator function of a disk

Semialgebraic approximations by [Marx et al. 19]
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Convergence theorem

Problem
Find the support
supp (µ) := {zi} ⊂ Rn and the weights
{λi} ⊂ R∗ of signed atomic measure

µ :=
k∑

i=1
λiδzi from knowledge of

moments of µ.

Let N ∈ Ss(d)
++ . Let ε > 0 such that

εN + Md (µ) is full rank.

Perturbed Christoffel function
Λµ,d,εN : Rn → R defined by for
x ∈ Rn

Λµ,d,εN (x)

:=
[
vd (x)T (εN + Md (µ))−1vd (x)

]−1
.

Theorem
Let K ⊂ Rn be compact set and s (d)− r ≥ n. Let
ψ : R∗+ → R∗+ be a function such that

ψ (ε)−1 →∞ and εψ (ε)−1 → 0 as ε→ 0+.

For every ε > 0, denote the superlevel set of perturbed
Christoffel function by

Sε :=
{

x ∈ Rn : Λµ,d,εN (x) ≥ ψ (ε)
}
.

Then

1. int (Sε) ⊃ v−1
d (Im (Md (µ))) ∩ K .

2. dH

(
Sε ∩ K , v−1

d (Im (Md (µ))) ∩ K
)
→ 0 as ε→

0+.

3. v−1
d (Im (Md (µ))) ⊃ supp (µ). If d ≥ r , then

v−1
d (Im (Md (µ))) = supp (µ).

4. Let b1, ..., bs(d)−r be a basis of the linear subspace
Ker (Md (µ)). Let
G (x) =

(
bT

1 vd (x) , ..., bT
s(d)−r vd (x)

)
, ∀x ∈ Rn

and F (x) =
(
bT

1 vd (x) , ..., bT
n vd (x)

)
, ∀x ∈ Rn.

Then G−1 (0) = v−1
d (Im (Md (µ))) ⊂ F−1 (0).
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Building algorithm

Idea of algorithm

Using the superlevel set Sε as the initial points when solving the square system
F (x) = 0 by Newton method.
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(a) Case r = 5 with ε = 10−7

and d = 3.
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(b) Case r = 10 with ε =
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(c) Case r = 50 with ε =

10−12 and d = 9.
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(d) Case r = 100 with ε =

10−12 and d = 13.

Illustration of the superlevel set of perturbed Christoffel function (red domain) and the approximate atoms (blue x)
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All other applications of Christoffel functions (intended PhD topics)

I Extraction of global optimizers in polynomial
optimization problem

I Extraction of real root of polynomial systems.
I Graph approximation of non-polynomial function.
I Approximation of "density" for signed measure
I Applications to D-finite functions.
I Optimal control, occupation measures, PDEs.

Graph approximation: Degree 10 polynomial approximation surface in pink of the
indicator function of a curve
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perturbed Christoffel function.

D-finite functions: Plot of the real value of the
Airy function.
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End

Thank for your attention!
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