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Modelization of the KdV equation

Modelization
Description of long waves in water of relatively shallow depth:
yt + yx + yxxx + yyx = 0,
=Korteweg-de Vries equation (KdV): 1895

y(t, x)
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Our KdV control system
We consider the following Korteweg-de Vries controlled system:

(1)


yt + yx + yxxx + yyx = v(t) in (s,+∞)× (0, L),
y(t, 0) = w(t) in (s,+∞),
y(t, L) = h(t) in (s,+∞),
yx(t, L) = 0 in (s,+∞),
y(0, ·) = y0(·).

Control objective: Stabilize (1) globally in small time:

y(T ) = 0 with the controls v, w, h given by a feedback law.

Florent Koudohode
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The main result

Theorem

Let T0 > 0. There exists a 2T0−periodic time-varying feedback law
for the system (1) such that

(i) The closed-loop system is well-posed, in particular the flow ϕ is
defined in ∆ := {(t, s); t > s} .

(ii) ϕ(4T0 + t, t, y0) = 0, ∀t ∈ R, ∀y0 ∈ L2(0, L).

Florent Koudohode
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Strategy to prove the main result

To prove this Theorem we split the small-time global stabilization
into two steps:

1 Step 1: Global approximate (pratical) stabilization

 ∀ε, T0 > 0, for all arbitrary y0 ∈ L2(0, L) one has
‖y(T0)‖L2(0,L) < ε.

2 Step 2: Small-time local stabilization
 Based on the study of the linearized control system

‖y0‖L2(0,L) < η then ‖ϕ(t, t′, y0)‖L2(0,L) ≤ δ ∀t ≥ t′ and

ϕ(T0, 0, y0) = 0 if ‖y0‖ ≤ ε

Florent Koudohode
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Small-time global stabilization of Viscous Burgers
equation [Coron-Xiang (2018) ]

The Viscous Burgers control system
yt − yxx + yyx = α(t) in (0,+∞)× (0, 1),
y(t, 0) = u1(t) in (0,+∞),
y(t, L) = u2(t) in (0,+∞),
y(0, ·) = y0(·).

Heuristic description of the two steps

Florent Koudohode
Small-time global stabilization of the KdV equation with three scalar controls.
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Global approximate stabilization of Viscous Burgers
equation

1 In (0, T/2) Phantom tracking method

Principle: Follow the trajectory
�� ��ȳ(t, x) = ā with ā large.

Setting z = y − ā zt − zxx + ȳzx = 0 
�� ��zt+ȳzx = 0 if ȳ

large.

For a global argument one constructs a time-varying feedback
such that suitable Lyapunov functional decays.

In fact ā = ā(t), so that it can vary and get small at the end.�� ��ā′ = α

2 In (T/2, T ) : stabilization on a in other to get z = y

Florent Koudohode
Small-time global stabilization of the KdV equation with three scalar controls.
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Global approximate stabilization of our KdV
control system

We perform the following change of variables z := y − u
Then (1) becomes:

zt + zx + zxxx + zzx + u(t)zx = 0 for (t,x) ∈ (s,+∞)× (0, L),
z(t, 0) = w(t)− u(t) for t ∈ (s,+∞),
z(t, L) = h(t)− u(t) for t ∈ (s,+∞),
zx(t, L) = 0 for t ∈ (s,+∞),
z(0, ·) = z0.

Now set: w(t) = h(t) = u(t) Then we obtain d

dt
‖z‖2L2 ≤ 0

Florent Koudohode
Small-time global stabilization of the KdV equation with three scalar controls.
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Dynamical extension (adding integrator)



yt + yx + yxxx + yyx = v(t) in (0, T )× (0, L),
y(t, 0) = u(t) in (0, T ),
y(t, L) = u(t) in (0, T ),
yx(t, L) = 0 in (0, T ),
ut = v(t) in (0, T ),
y(0, ·) = y0(·)
u(0) = u0.

State: (y, u) = (y(t), u(t)) Phantom trajectory
Control: v ∈ R. Then

zt + zx + zxxx + zzx + u(t)zx = 0 for (t,x) ∈ (0, T )× (0, L),
z(t, 0) = 0 for t ∈ (0, T ),
z(t, L) = 0 for t ∈ (0, T ),
zx(t, L) = 0 for t ∈ (0, T ),
ut = v(t) for t ∈ (0, T ),
z(0, ·) = z0.

State: (z, u) ∈ L2(0, L)× R
Control:v ∈ R.

Florent Koudohode
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We introduce the weighted energy V1(z) :=
∫ L

0 |z(t, x)|2exdx.

One has d

dt
V1 ≤ (2 + u)V1 + V 2

1

Setting u(t) = − [2 + (k + 1)V1(z)] =⇒ d

dt
V1 ≤ −kV 2

1 .�



�
	Then V1(T0) ≤ 1

kT0
.

Choose k = 1
εT0
 V1(T0) ≤ ε

Florent Koudohode
Small-time global stabilization of the KdV equation with three scalar controls.



Small-time global
stabilization of

the KdV
equation with
three scalar

controls.

Florent
Koudohode

Outline

Modelization of
the KdV equation

Small-time global
stabilization of
the KdV equation
Global approximate
stabilization

Small-time local
stabilization

Conclusion and
Perspectives

12/19

For T0 > 0 given and ∀ ε > 0,∃λ > 0 such that by considering the
following Lyapunov functional generated from the phantom tracking
idea :

V2(z, u) := V1(z) + (u(t)− λV1(z))2.

and chosing

v(t) = λ

[
(2 + u)V1(z)− 3

∫ L

0
z2
xe
xdx+ 2

3

∫ L

0
z3exdx

]
− V1(z)

2 + 1
2λ (u− λV1(z))3

we get
|V2[z(T0/2)] ≤ ε.

Florent Koudohode
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Small-time global stabilization of the variable u

We only need to find a feedback law which stabilizes u. For that it

suffices to define on
(
T0

2 , T0

)
, v by

v(u) := −µ(u2 +
√
|u|).sgn(u)

Indeed, with this v, there exists µT0 > 0 such that, whatever is
u(T0/2), if µ ≥ µT0 and u̇ = v(u) then u(T0) = 0.

Florent Koudohode
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Small-time local stabilization

The idea

1 Local =⇒ based on the linearized control system

2 Small-time stabilization: bring exactly to 0
Contruction of a feedback Fλ such that the associated
semigroup (trajectory) decays in e−λt

Concatenation of the estimates

Florent Koudohode
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Small-time local stabilization of KdV

1 Construction of feedback via Backstepping approach
Step 1: Backstepping approach

Linear system

{
yt + yx + yxxx = 0,
y(t, L) = yx(t, L) = 0,
y(t, 0) = w(t),

Πλ−→

Target system{
zt + zx + zxxx + λz = 0,
z(t, L) = zx(t, L) = 0,
z(t, 0) = 0,

‖z(t, ·)‖L2(0,L) ≤ ‖z(0, ·)‖L2(0,L)e
−λt

Proposition:Voltera operator[Coron-Cerpa(2013)]
z(x) = Πλ(y) := y(x)−

∫ L
x
k(x, x′)y(x′)dx′,

Florent Koudohode
Small-time global stabilization of the KdV equation with three scalar controls.
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Small-time local stabilization

Kernel equation


kxxx(x, x′) + kyyy(x, x′) + kx(x, x′) + ky(x, x′) = −λk(x, x′) in T ,
k(x, L) = 0, in [0, L],
k(x, x) = 0, in [0, L],
kx(x, x) = λ

3 (L− x), in [0, L],

where T = {(x, x′)/x ∈ [0, L], x′ ∈ [x, L]}

Difficulty : Find the kernel kλ
Is it exists? Yes! How?  ( Successive approximation)
[Coron-Cerpa(2013)]

Step 2: Backstepping approach applied to the linearized of our
system [S.Xiang (2018)]

Florent Koudohode
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Concatenation of the estimates

(0, T ) 0 < t1 < · · · < tn < · · · < T
on each [tn, tn+1],construction of Fλn , where (λn) −→

n→+∞
+∞

Finally the flow between 0 and T

= · · · e−(ti+1−ti)(A+Fλi ) · · · e−(ti+1−ti)(A+Fλi )y0

= 0 for suitable choices of ti+1 − ti and λi

 In the spirit of the construction of Lebeau-Robbiano (1995) for
the control of the heat equation.
 Coron-Nguyen(2017), Xiang (2018)

Florent Koudohode
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Future works

1 Well-posedness of the closed-loop system for the constructed
time-varying feedback laws.

2 Exponentional stabilization of cascade ODE-PDE

ODE-linearized KdV [H.Ayadi (2018)]

ODE-Heat equation

ODE-Kuramoto-Sivashinsky equation

Florent Koudohode
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Merci pour
votre aimable attention.
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