> Florent Koudohode

Outline

Small-time global stabilization of the KdV equation with three scalar controls.

Florent Koudohode

MAC team PhD seminar

Laboratoire d'analyse et d'architecture des systèmes (LAAS) Institut de Mathématiques de Toulouse (IMT)

Advisors:

Sylvain Ervedoza(IMT) et Alexandre Seuret(LAAS)

July 1, 2019

Florent Koudohode

Koudohode

Outline

1 Modelization of the KdV equation

2 Small-time global stabilization of the KdV equation

- Global approximate stabilization
- Small-time local stabilization

3 Conclusion and Perspectives

Modelization of the KdV equation

Small-time global stabilization of the KdV equation with three scalar controls.

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time global stabilization of the KdV equation Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives

Modelization

- Description of long waves in water of relatively shallow depth: $y_t + y_x + y_{xxx} + yy_x = 0$,
- =Korteweg-de Vries equation (KdV): 1895

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time global stabilization of the KdV equation (1)

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives

Our KdV control system

We consider the following Korteweg-de Vries controlled system:

($ (y_t + y_x + y_{xxx} + yy_x = v(t)) $	in $(s, +\infty) \times (0, L)$,
	y(t,0) = w(t)	in $(s, +\infty)$,
- {	y(t,L) = h(t)	in $(s, +\infty)$,
	$y_x(t,L) = 0$	in $(s, +\infty)$,
	$y(0,\cdot) = y_0(\cdot).$	

Control objective: Stabilize (1) globally in small time:

y(T) = 0 with the controls v, w, h given by a feedback law.

The main result

Small-time global stabilization of the KdV equation with three scalar controls.

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time global stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives

Theorem

Let $T_0 > 0$. There exists a $2T_0$ -periodic time-varying feedback law for the system (1) such that

(i) The closed-loop system is well-posed, in particular the flow φ is defined in Δ := {(t, s); t > s}.

(ii) $\varphi(4T_0 + t, t, y_0) = 0, \forall t \in \mathbb{R}, \forall y_0 \in L^2(0, L).$

Strategy to prove the main result

Small-time global stabilization of the KdV equation with three scalar controls.

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time global stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives To prove this Theorem we split the small-time global stabilization into two steps:

Step 1: Global approximate (pratical) stabilization

 $\stackrel{\sim}{\to} \forall \varepsilon, T_0 > 0, \text{ for all arbitrary } y_0 \in L^2(0, L) \text{ one has } \\ \|y(T_0)\|_{L^2(0, L)} < \varepsilon.$

Step 2: Small-time local stabilization → Based on the study of the linearized control system

- $\|y_0\|_{L^2(0,L)} < \eta$ then $\|\varphi(t,t',y_0)\|_{L^2(0,L)} \le \delta \ \forall t \ge t'$ and
- $\varphi(T_0, 0, y_0) = 0$ if $||y_0|| \le \varepsilon$

Small-time global stabilization of Viscous Burgers equation [Coron-Xiang (2018)]

Small-time global stabilization of the KdV equation with three scalar controls.

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time global stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives

The Viscous Burgers control system

Heuristic description of the two steps

Figure 1: Small-time global stabilization of (y, a).

Florent Koudohode

Global approximate stabilization of Viscous Burgers equation

Small-time global stabilization of the KdV equation with three scalar controls.

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time global stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives • In $(0, T/2) \rightsquigarrow$ Phantom tracking method **Principle**: Follow the trajectory $\overline{\overline{y}(t, x) = \overline{a}}$ with \overline{a} large.

- Setting $z = y \bar{a} \rightsquigarrow z_t z_{xx} + \bar{y}z_x = 0 \rightsquigarrow z_t + \bar{y}z_x = 0$ if \bar{y} large.
- For a global argument one constructs a time-varying feedback such that suitable Lyapunov functional decays.
- In fact $\bar{a} = \bar{a}(t)$, so that it can vary and get small at the end.

$$\bar{a}' = \alpha$$

2 In (T/2,T): stabilization on a in other to get z = y

Global approximate stabilization of our KdV control system

Small-time global stabilization of the KdV equation with three scalar controls.

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time global stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives We perform the following change of variables z := y - uThen (1) becomes:

$$\begin{array}{ll} z_t + z_x + z_{xxx} + zz_x + u(t)z_x = 0 & \mbox{ for } ({\sf t},{\sf x}) \in (s,+\infty) \times (0,L), \\ z(t,0) = w(t) - u(t) & \mbox{ for } {\sf t} \in (s,+\infty), \\ z(t,L) = h(t) - u(t) & \mbox{ for } {\sf t} \in (s,+\infty), \\ z_x(t,L) = 0 & \mbox{ for } {\sf t} \in (s,+\infty), \\ z(0,\cdot) = z_0. & \mbox{ for } {\sf t} \in (s,+\infty), \end{array}$$

Now set: w(t) = h(t) = u(t) Then we obtain $\frac{d}{dt} \|z\|_{L^2}^2 \leq 0$

Dynamical extension (adding integrator)

Small-time global stabilization of the KdV equation with three scalar controls.

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time globa stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives

$$\begin{cases} \begin{array}{ll} y_t + y_x + y_{xxx} + yy_x = v(t) & \text{ in } (0,T) \times (0,L), \\ y(t,0) = u(t) & \text{ in } (0,T), \\ y(t,L) = u(t) & \text{ in } (0,T), \\ y_x(t,L) = 0 & \text{ in } (0,T), \\ u_t = v(t) & \text{ in } (0,T), \\ y(0,\cdot) = y_0(\cdot) \\ u(0) = u_0. \end{array} \end{cases}$$

State: $(y, u) = (y(t), u(t)) \rightsquigarrow$ Phantom trajectory Control: $v \in \mathbb{R}$. Then

$z_t + z_x + z_{xxx} + zz_x + u(t)z_x = 0$	for $(t,x) \in (0,T) \times (0,L)$,
z(t,0) = 0	for $\mathbf{t} \in (0, T)$,
z(t,L) = 0	for $t \in (0,T)$,
$z_x(t,L) = 0$	for $\mathbf{t} \in (0, T)$,
$u_t = v(t)$	for $\mathbf{t} \in (0, T)$,
$z(0,\cdot) = z_0.$	

State:
$$(z, u) \in L^2(0, L) \times \mathbb{R}$$

Control: $v \in \mathbb{R}$.

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time global stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives We introduce the weighted energy $V_1(z) := \int_0^L |z(t,x)|^2 e^x dx$. One has $\frac{d}{dt}V_1 \le (2+u)V_1 + V_1^2$ Setting $u(t) = -[2+(k+1)V_1(z)] \Longrightarrow \frac{d}{dt}V_1 \le -kV_1^2$.

Then
$$V_1(T_0) \leq \frac{1}{kT_0}$$
.

Choose
$$k = \frac{1}{\varepsilon T_0} \rightsquigarrow V_1(T_0) \le \varepsilon$$

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time global stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives For $T_0>0$ given and $\forall~\varepsilon>0, \exists \lambda>0$ such that by considering the following Lyapunov functional generated from the phantom tracking idea :

$$V_2(z, u) := V_1(z) + (u(t) - \lambda V_1(z))^2.$$

and chosing

$$v(t) = \lambda \left[(2+u)V_1(z) - 3\int_0^L z_x^2 e^x dx + \frac{2}{3}\int_0^L z^3 e^x dx \right]$$
$$-\frac{V_1(z)}{2} + \frac{1}{2}\lambda \left(u - \lambda V_1(z)\right)^3$$

we get

 $|V_2[z(T_0/2)] \le \varepsilon.$

Small-time global stabilization of the variable u

Small-time global stabilization of the KdV equation with three scalar controls.

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time global stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives We only need to find a feedback law which stabilizes u. For that it suffices to define on $\left(\frac{T_0}{2},T_0\right),\ v$ by $v(u):=-\mu(u^2+\sqrt{|u|}).sgn(u)$

Indeed, with this v, there exists $\mu_{T_0} > 0$ such that, whatever is $u(T_0/2)$, if $\mu \ge \mu_{T_0}$ and $\dot{u} = v(u)$ then $u(T_0) = 0$.

Small-time local stabilization

Small-time global stabilization of the KdV equation with three scalar controls.

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time global stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives

The idea

- $\bullet \quad Local \Longrightarrow based on the linearized control system$
- Small-time stabilization: bring exactly to 0
 - Contruction of a feedback F_{λ} such that the associated semigroup (trajectory) decays in $e^{-\lambda t}$
 - Concatenation of the estimates

Small-time local stabilization of KdV

Small-time global stabilization of the KdV equation with three scalar controls.

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time globa stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives

• Construction of feedback via Backstepping approach

 $\Pi_{\lambda_{i}}$

• Step 1: Backstepping approach

Linear system

$$\begin{aligned} y_t + y_x + y_{xxx} &= 0, \\ y(t,L) &= y_x(t,L) = 0, \\ y(t,0) &= w(t), \end{aligned}$$

Target system

$$\begin{cases} z_t + z_x + z_{xxx} + \lambda z = 0, \\ z(t, L) = z_x(t, L) = 0, \\ z(t, 0) = 0, \end{cases}$$

$$\|z(t, \cdot)\|_{L^2(0, L)} \le \|z(0, \cdot)\|_{L^2(0, L)} e^{-\lambda t}$$

• Proposition:**Voltera operator**[Coron-Cerpa(2013)] $z(x) = \Pi_{\lambda}(y) := y(x) - \int_{x}^{L} k(x, x')y(x')dx',$

Small-time local stabilization

Small-time global stabilization of the KdV equation with three scalar controls.

> Florent Koudohode

Outlin

Modelization of the KdV equatio

Small-time global stabilization of the KdV equation

stabilization

Small-time local stabilization

Conclusion and Perspectives

Kernel equation

$$\begin{cases} k_{xxx}(x,x') + k_{yyy}(x,x') + k_x(x,x') + k_y(x,x') = -\lambda k(x,x') & \text{ in } \mathcal{T}, \\ k(x,L) = 0, & \text{ in } [0,L] \\ k(x,x) = 0, & \text{ in } [0,L] \\ k_x(x,x) = \frac{\lambda}{3}(L-x), & \text{ in } [0,L] \end{cases}$$

where $\mathcal{T} = \{(x,x')/x \in [0,L], x' \in [x,L]\}$

 Difficulty : Find the kernel k_λ Is it exists? Yes! How? → (Successive approximation) [Coron-Cerpa(2013)]

Step 2: Backstepping approach applied to the linearized of our system [**S.Xiang** (2018)]

Concatenation of the estimates

Small-time global stabilization of the KdV equation with three scalar controls.

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time global stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives

- $(0,T) \rightsquigarrow 0 < t_1 < \cdots < t_n < \cdots < T$ on each $[t_n, t_{n+1}]$, construction of F_{λ_n} , where $(\lambda_n) \xrightarrow[n \to +\infty]{} +\infty$
- Finally the flow between 0 and T

$$= \cdots e^{-(t_{i+1}-t_i)(A+F_{\lambda_i})} \cdots e^{-(t_{i+1}-t_i)(A+F_{\lambda_i})} y_0$$

= 0 for suitable choices of $t_{i+1} - t_i$ and λ_i

 \rightsquigarrow In the spirit of the construction of **Lebeau-Robbiano** (1995) for the control of the heat equation.

 \rightsquigarrow Coron-Nguyen(2017), Xiang (2018)

Future works

Small-time global stabilization of the KdV equation with three scalar controls.

> Florent Koudohode

Outline

Modelization of the KdV equation

Small-time global stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives

- Well-posedness of the closed-loop system for the constructed time-varying feedback laws.
- Exponentional stabilization of cascade ODE-PDE
 - ODE-linearized KdV [H.Ayadi (2018)]
 - ODE-Heat equation
 - ODE-Kuramoto-Sivashinsky equation

> Florent Koudohode

Outline

Modelization of the KdV equatio

Small-time global stabilization of the KdV equation

Global approximate stabilization

Small-time local stabilization

Conclusion and Perspectives

Merci pour votre aimable attention.