Stakes and techniques of stability set approximation for power systems

MAC team PhD seminar

<u>Matteo Tacchi</u>

Toulouse, January 24th 2019

Plan

- Current security assessment method
- The network is changing

Tools for security assessment

- Lasserre hierarchy for set approximation
- Stability set approximation

RTE needs to

Matteo Tacchi

RTE needs to

• Balance power production & consumption (ex: OPF problem)

RTE needs to

- Balance power production & consumption (ex: OPF problem)
- Avoid loss of stability (blackouts, damages in plants)

RTE needs to

- Balance power production & consumption (ex: OPF problem)
- Avoid loss of stability (blackouts, damages in plants)
- \rightarrow Simulate & secure all hazardous operating points

RTE needs to

- Balance power production & consumption (ex: OPF problem)
- Avoid loss of stability (blackouts, damages in plants)
- $\rightarrow\,$ Simulate & secure all hazardous operating points
- \rightarrow Avoid expensive simulations of safe situations

RTE needs to

- Balance power production & consumption (ex: OPF problem)
- Avoid loss of stability (blackouts, damages in plants)
- \rightarrow Simulate & secure all hazardous operating points
- \rightarrow Avoid expensive simulations of safe situations

Nowadays

Security risk = identified by operators (consumption peak)

Increase of renewables share

• Non-modulable (e.g. solar power \neq night)

- Non-modulable (e.g. solar power \neq night)
- Randomly time-varying (e.g. clouds \Rightarrow solar power \searrow)

- Non-modulable (e.g. solar power \neq night)
- Randomly time-varying (e.g. clouds \Rightarrow solar power \searrow)
- Connected through power electronics

- Non-modulable (e.g. solar power \neq night)
- Randomly time-varying (e.g. clouds \Rightarrow solar power \searrow)
- Connected through power electronics
- \Rightarrow Risky operating points during off-peak time

Increase of renewables share

- Non-modulable (e.g. solar power \neq night)
- Randomly time-varying (e.g. clouds \Rightarrow solar power \searrow)
- Connected through power electronics
- \Rightarrow Risky operating points during off-peak time

Consequence

Difficult to identify & secure unstable operating points

Aim

Matteo Tacchi

Aim

• At least conservatively identify safe situations

Aim

- At least conservatively identify safe situations
- $\rightarrow\,$ Reduce use of extensive simulations

Aim

- At least conservatively identify safe situations
- $\rightarrow\,$ Reduce use of extensive simulations

Proposition of solution

Idea:

Aim

- At least conservatively identify safe situations
- $\rightarrow\,$ Reduce use of extensive simulations

Proposition of solution

• Idea: Inner estimate of stability regions of power systems

Aim

- At least conservatively identify safe situations
- $\rightarrow\,$ Reduce use of extensive simulations

Proposition of solution

- Idea: Inner estimate of stability regions of power systems
- Tools:

Aim

- At least conservatively identify safe situations
- $\rightarrow\,$ Reduce use of extensive simulations

Proposition of solution

- Idea: Inner estimate of stability regions of power systems
- Tools:
 - Lyapunov-LaSalle stability theory [Anghel et al. 2013]

Aim

- At least conservatively identify safe situations
- $\rightarrow\,$ Reduce use of extensive simulations

Proposition of solution

- Idea: Inner estimate of stability regions of power systems
- Tools:
 - Lyapunov-LaSalle stability theory [Anghel et al. 2013]
 - Moment approach for set approximation [Korda et al. 2013.]

Plan

Context

2 Tools for security assessment

- Notions of stability
- Sets of interest

3 Lasserre hierarchy for set approximation

4 Stability set approximation

Stability in electrical engineering

Stability notions depend on modelling & approximation hypothesis¹

¹Kundur et al. Definition and Classification of Power System Stability. 2004.

<u>Matteo Tacchi</u>	PhD Seminar	Toulouse, January 24 th 2019	7 / 33
----------------------	-------------	---	--------

Definition

• Fast dynamics: characteristic time $\simeq 100$ ms.

- Fast dynamics: characteristic time $\simeq 100$ ms.
- Loss of synchronism \Leftrightarrow rotor angle explodes

- Fast dynamics: characteristic time $\simeq 100$ ms.
- Loss of synchronism ⇔ rotor angle explodes
- Large perturbation: strongly nonlinear dynamics

- Fast dynamics: characteristic time $\simeq 100$ ms.
- Loss of synchronism ⇔ rotor angle explodes
- Large perturbation: strongly nonlinear dynamics

LaSalle invariance principle

• Find a Lyapunov function V on a domain D

- Find a Lyapunov function V on a domain D
- Find a sublevel set Ω of V s.t. $\Omega \subset D$

- Find a Lyapunov function V on a domain D
- Find a sublevel set Ω of V s.t. $\Omega \subset D$
- Maximize the size of such Ω

- Find a Lyapunov function V on a domain D
- Find a sublevel set Ω of V s.t. $\Omega \subset D$
- Maximize the size of such Ω
- $\rightarrow~\Omega=$ inner approx. of equilibrium's ROA

LaSalle invariance principle

- Find a Lyapunov function V on a domain D
- Find a sublevel set Ω of V s.t. $\Omega \subset D$
- Maximize the size of such Ω
- $\rightarrow~\Omega=$ inner approx. of equilibrium's ROA

Problems

LaSalle invariance principle

- Find a Lyapunov function V on a domain D
- Find a sublevel set Ω of V s.t. $\Omega \subset D$
- Maximize the size of such Ω
- $\rightarrow~\Omega=$ inner approx. of equilibrium's ROA

Problems

• Asymptotic stability VS short term stability
Lyapunov stability (paper with Rte)

LaSalle invariance principle

- Find a Lyapunov function V on a domain D
- Find a sublevel set Ω of V s.t. $\Omega \subset D$
- Maximize the size of such Ω
- $\rightarrow~\Omega=$ inner approx. of equilibrium's ROA

Problems

- Asymptotic stability VS short term stability
- Ω = only local optimum (no proof of global optimality)

Lyapunov stability (paper with Rte)

LaSalle invariance principle

- Find a Lyapunov function V on a domain D
- Find a sublevel set Ω of V s.t. $\Omega \subset D$
- Maximize the size of such Ω
- $\rightarrow~\Omega=$ inner approx. of equilibrium's ROA

Problems

- Asymptotic stability VS short term stability
- Ω = only local optimum (no proof of global optimality)
- Existing algorithms resort to BMIs

Definition

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) \quad ; \quad \mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n \quad ; \quad \mathbf{x}(0) = \mathbf{x}_0$$
 (1)

Definition

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
 ; $\mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n$; $\mathbf{x}(0) = \mathbf{x}_0$

Given target set X_T and time horizon τ

(1)

Definition

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) \quad ; \quad \mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n \quad ; \quad \mathbf{x}(0) = \mathbf{x}_0$$
 (1)

Given target set X_T and time horizon τ

$$\mathbf{X}_0 := \{ \mathbf{x}_0 \in \mathbf{X} ; \, \mathbf{x}(\tau \,|\, \mathbf{x}_0) \in \mathbf{X}_{\mathcal{T}} \}$$
(2)

Definition

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) \quad ; \quad \mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n \quad ; \quad \mathbf{x}(0) = \mathbf{x}_0$$
 (1)

Given target set X_T and time horizon τ

$$\mathbf{X}_0 := \{ \mathbf{x}_0 \in \mathbf{X} ; \, \mathbf{x}(\tau \,|\, \mathbf{x}_0) \in \mathbf{X}_{\mathcal{T}} \}$$
(2)

$$egin{cases} \dot{ heta}_k = \omega_k & k = 1,2 \ \dot{\omega}_k = -\lambda_k \omega_k + rac{1}{M_k} \left(P_k^m - P_k^e(heta_1, heta_2)
ight) \end{cases}$$

3 bus 2nd order model

Definition

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) \quad ; \quad \mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n \quad ; \quad \mathbf{x}(0) = \mathbf{x}_0$$
 (1)

300

Given target set X_T and time horizon τ

$$\mathbf{X}_0 := \{ \mathbf{x}_0 \in \mathbf{X} ; \, \mathbf{x}(\tau \,|\, \mathbf{x}_0) \in \mathbf{X}_{\mathcal{T}} \}$$
(2)

$$egin{cases} \dot{ heta}_k = \omega_k & k = 1,2 \ \dot{\omega}_k = -\lambda_k \omega_k + rac{1}{M_k} \left(P_k^m - P_k^e(heta_1, heta_2)
ight) \end{cases}$$

3 bus 2nd order model

Al set - $\tau = 8s$, $X_{\tau} = B(0, 0.1)$

Definition

$$\mathbf{X}_{\infty} := \{ \mathbf{x}_0 \in \mathbf{X} ; \forall t \ge 0, \mathbf{x}(t \mid \mathbf{x}_0) \in \mathbf{X}_{\infty} \}$$
(3)

Definition

$$\mathbf{X}_{\infty} := \{\mathbf{x}_0 \in \mathbf{X} ; \forall t \ge 0, \mathbf{x}(t \,|\, \mathbf{x}_0) \in \mathbf{X}_{\infty}\}$$
(3)

$$\mathbf{X}_{\infty} = \{\mathbf{x}_0 \in \mathbf{X} ; \forall t \ge 0, \mathbf{x}(t \mid \mathbf{x}_0) \in \mathbf{X}\}$$
(4)

Definition

$$\mathbf{X}_{\infty} := \{\mathbf{x}_0 \in \mathbf{X} ; \forall t \ge 0, \mathbf{x}(t \mid \mathbf{x}_0) \in \mathbf{X}_{\infty}\}$$
(3)

$$\mathbf{X}_{\infty} = \{\mathbf{x}_0 \in \mathbf{X} ; \forall t \ge 0, \mathbf{x}(t \mid \mathbf{x}_0) \in \mathbf{X}\}$$
(4)

$$\begin{cases} \dot{\delta} = \omega \\ 2H\dot{\omega} = -D\omega + C_m - \frac{V_s V_i}{X_i} \sin \delta \end{cases}$$

SMIB 2nd order model

Matteo Tacchi

Definition

$$\mathbf{X}_{\infty} := \{ \mathbf{x}_0 \in \mathbf{X} ; \forall t \ge 0, \mathbf{x}(t \mid \mathbf{x}_0) \in \mathbf{X}_{\infty} \}$$
(3)
$$\mathbf{X}_{\infty} = \{ \mathbf{x}_0 \in \mathbf{X} : \forall t \ge 0, \mathbf{x}(t \mid \mathbf{x}_0) \in \mathbf{X} \}$$
(4)

$$\mathbf{X}_{\infty} = \{\mathbf{x}_0 \in \mathbf{X} ; \forall t \ge 0, \mathbf{x}(t \mid \mathbf{x}_0) \in \mathbf{X}\}$$
(4)

$$\begin{cases} \dot{\delta} = \omega \\ 2H\dot{\omega} = -D\omega + C_m - \frac{V_s V_i}{\chi_i} \sin \delta \end{cases}$$

SMIB 2nd order model

A trajectory in the MPI set

PhD Seminar

Pros

Matteo Tacchi

Pros

• Approximation reduced to LMI (SDP) via Lasserre hierarchy

Pros

- Approximation reduced to LMI (SDP) via Lasserre hierarchy
- Approximation converges in volume to global optimum

Pros

- Approximation reduced to LMI (SDP) via Lasserre hierarchy
- Approximation converges in volume to global optimum
- AI set \simeq finite time ROA

Pros

- Approximation reduced to LMI (SDP) via Lasserre hierarchy
- Approximation converges in volume to global optimum
- Al set \simeq finite time ROA
- MPI set ensures no rotor angle explosion

Pros

- Approximation reduced to LMI (SDP) via Lasserre hierarchy
- Approximation converges in volume to global optimum
- Al set \simeq finite time ROA
- MPI set ensures no rotor angle explosion

Cons

Pros

- Approximation reduced to LMI (SDP) via Lasserre hierarchy
- Approximation converges in volume to global optimum
- Al set \simeq finite time ROA
- MPI set ensures no rotor angle explosion

Cons

• Al set needs input (time horizon, target set)

Pros

- Approximation reduced to LMI (SDP) via Lasserre hierarchy
- Approximation converges in volume to global optimum
- AI set \simeq finite time ROA
- MPI set ensures no rotor angle explosion

Cons

- Al set needs input (time horizon, target set)
- MPI set may include non-converging limit cycles

1 Context

3 Lasserre hierarchy for set approximation

- Volume computation
- Dual Lasserre hierarchy
- Primal Lasserre hierarchy

Stability set approximation

Projects

Problem statement

Given $\mathbf{g}, \mathbf{h} \in \mathbb{R}[\mathbf{x}]^m$, compute the Lebesgue volume of

$$\mathsf{K}:=\{\mathsf{x}\in\mathbb{R}^n ext{ ; } \mathsf{g}(\mathsf{x})\geq 0\}\subset\mathsf{X}:=\{\mathsf{x}\in\mathbb{R}^n ext{ ; } \mathsf{h}(\mathsf{x})\geq 0\}$$

Problem statement

Given $\mathbf{g}, \mathbf{h} \in \mathbb{R}[\mathbf{x}]^m$, compute the Lebesgue volume of

$$\mathsf{K}:=\{\mathsf{x}\in\mathbb{R}^n ext{ ; } \mathsf{g}(\mathsf{x})\geq 0\}\subset\mathsf{X}:=\{\mathsf{x}\in\mathbb{R}^n ext{ ; } \mathsf{h}(\mathsf{x})\geq 0\}$$

Examples

11100000 100011	Μ	atte	э Тас	cchi
-----------------	---	------	-------	------

Problem statement

Given $\mathbf{g},\mathbf{h}\in\mathbb{R}[\mathbf{x}]^m$, compute the Lebesgue volume of

$$\mathsf{K}:=\{\mathsf{x}\in\mathbb{R}^n ext{ ; } \mathsf{g}(\mathsf{x})\geq 0\}\subset\mathsf{X}:=\{\mathsf{x}\in\mathbb{R}^n ext{ ; } \mathsf{h}(\mathsf{x})\geq 0\}$$

Examples

Problem statement

Given $\mathbf{g}, \mathbf{h} \in \mathbb{R}[\mathbf{x}]^m$, compute the Lebesgue volume of

$$\mathsf{K}:=\{\mathsf{x}\in\mathbb{R}^n ext{ ; } \mathsf{g}(\mathsf{x})\geq 0\}\subset\mathsf{X}:=\{\mathsf{x}\in\mathbb{R}^n ext{ ; } \mathsf{h}(\mathsf{x})\geq 0\}$$

Examples

	Mat	teo	Tacc	hi
--	-----	-----	------	----

Matteo Tacchi

The problem on measures

If X is compact,

The problem on measures

If X is compact, then

The problem on measures

۱.

If X is compact, then

$$\begin{aligned} \operatorname{rol}(\mathsf{K}) &= \max \mu(\mathsf{X}) \\ \text{s.t.} \quad \mu \in \mathcal{M}(\mathsf{K})_+ \subset \mathcal{M}(\mathsf{X})_+ \\ & \overline{\mu} \in \mathcal{M}(\mathsf{X})_+ \\ & \mu + \overline{\mu} = \lambda_{\mathsf{X}} \end{aligned}$$

(5)

A dual approach

The dual of (5) on continuous functions

$$\begin{aligned} \mathsf{vol}(\mathbf{K}) &= \inf \int_{\mathbf{X}} w(\mathbf{x}) \, \mathrm{d} \mathbf{x} \\ \text{s.t.} \ \forall \mathbf{x} \in \mathbf{X}, w(\mathbf{x}) \geq 0 \\ \forall \mathbf{x} \in \mathbf{K}, w(\mathbf{x}) \geq 1 \end{aligned}$$

(6)

A dual approach

The dual of (5) on continuous functions

$$egin{aligned} & \mathsf{vol}(\mathbf{K}) = \inf \int_{\mathbf{X}} w(\mathbf{x}) \; \mathrm{d}\mathbf{x} \ & \mathsf{s.t.} \; \forall \mathbf{x} \in \mathbf{X}, w(\mathbf{x}) \geq 0 \ & \forall \mathbf{x} \in \mathbf{K}, w(\mathbf{x}) \geq 1 \end{aligned}$$

Matteo Tacchi

(6)

Consider the sets:

Consider the sets:

• $\mathcal{C}(X)$ of continuous functions on X

Consider the sets:

- $\mathcal{C}(X)$ of continuous functions on X
- $\mathcal{P}(\mathbf{X})$ of polynomial functions on \mathbf{X}

Consider the sets:

- $\mathcal{C}(X)$ of continuous functions on X
- $\mathcal{P}(X)$ of polynomial functions on X

Stone-Weierstrass approximation theorem

Any positive continuous function on the **compact** X can be approximated uniformly by positive polynomials:

$$\operatorname{adh} \mathcal{P}(\mathsf{X})_+ = \mathcal{C}(\mathsf{X})_+$$
How do we represent positive continuous functions ?

Consider the sets:

- $\mathcal{C}(X)$ of continuous functions on X
- $\mathcal{P}(X)$ of polynomial functions on X

Stone-Weierstrass approximation theorem

Any positive continuous function on the **compact** X can be approximated uniformly by positive polynomials:

$$\operatorname{\mathsf{adh}} \mathcal{P}(\mathsf{X})_+ = \mathcal{C}(\mathsf{X})_+$$

Consequence on the dual (6)

$$\begin{aligned} \mathsf{vol}(\mathsf{K}) &= \inf \int_{\mathsf{X}} w(\mathsf{x}) \, \mathsf{d} \mathsf{x} \\ \text{s.t.} \ \ w \in \mathcal{P}(\mathsf{X})_{+} \\ w - 1 \in \mathcal{P}(\mathsf{K})_{+} \end{aligned}$$

Matteo Tacchi

PhD Seminar

Sums of squares

Memo:
$$\mathbf{K} = {\mathbf{x} \in \mathbb{R}^n ; \mathbf{g}(\mathbf{x}) \ge 0}, \mathbf{X} = {\mathbf{x} \in \mathbb{R}^n ; \mathbf{h}(\mathbf{x}) \ge 0}.$$

Sums of squares

Memo: $\mathbf{K} = {\mathbf{x} \in \mathbb{R}^n ; \mathbf{g}(\mathbf{x}) \ge 0}, \mathbf{X} = {\mathbf{x} \in \mathbb{R}^n ; \mathbf{h}(\mathbf{x}) \ge 0}.$

• $\sigma \in \Sigma(\mathbb{R}^n)$ iff $\sigma = p_1^2 + \cdots + p_k^2$ for some $p_i \in \mathbb{R}[\mathbf{x}]$

Sums of squares

Memo: $\mathbf{K} = \{\mathbf{x} \in \mathbb{R}^n ; \mathbf{g}(\mathbf{x}) \ge 0\}, \mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n ; \mathbf{h}(\mathbf{x}) \ge 0\}.$

• $\sigma \in \Sigma(\mathbb{R}^n)$ iff $\sigma = p_1^2 + \cdots + p_k^2$ for some $p_i \in \mathbb{R}[\mathbf{x}]$

• $\Sigma(\mathbf{X}) := \{ \sigma_0 + \sigma_1 h_1 + \cdots + \sigma_m h_m ; \sigma_i \in \Sigma(\mathbb{R}^n) \}$

Sums of squares

Memo: $\mathbf{K} = \{\mathbf{x} \in \mathbb{R}^n ; \mathbf{g}(\mathbf{x}) \ge 0\}, \mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n ; \mathbf{h}(\mathbf{x}) \ge 0\}.$

• $\sigma \in \Sigma(\mathbb{R}^n)$ iff $\sigma = p_1^2 + \cdots + p_k^2$ for some $p_i \in \mathbb{R}[\mathbf{x}]$

• $\Sigma(\mathbf{X}) := \{ \sigma_0 + \sigma_1 h_1 + \cdots + \sigma_m h_m ; \sigma_i \in \Sigma(\mathbb{R}^n) \}$

•
$$\sigma(\mathbf{x}) = |\mathbf{x}|^2 \in \Sigma(\mathbb{R}^n)$$

Sums of squares

Memo: $\mathbf{K} = \{\mathbf{x} \in \mathbb{R}^n ; \mathbf{g}(\mathbf{x}) \ge 0\}, \mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n ; \mathbf{h}(\mathbf{x}) \ge 0\}.$

• $\sigma \in \Sigma(\mathbb{R}^n)$ iff $\sigma = p_1^2 + \cdots + p_k^2$ for some $p_i \in \mathbb{R}[\mathbf{x}]$

• $\Sigma(\mathbf{X}) := \{ \sigma_0 + \sigma_1 h_1 + \cdots + \sigma_m h_m ; \sigma_i \in \Sigma(\mathbb{R}^n) \}$

Examples

•
$$\sigma(\mathbf{x}) = |\mathbf{x}|^2 \in \Sigma(\mathbb{R}^n)$$

• Motzkin: $p(x_1, x_2) = x_1^4 x_2^2 + x_2^4 x_1^2 - 3 x_1^2 x_2^2 + 1 \in \mathcal{P}(\mathbb{R})_+ \setminus \Sigma(\mathbb{R})$

Sums of squares

Memo: $\mathbf{K} = \{\mathbf{x} \in \mathbb{R}^n ; \mathbf{g}(\mathbf{x}) \ge 0\}, \mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n ; \mathbf{h}(\mathbf{x}) \ge 0\}.$

• $\sigma \in \Sigma(\mathbb{R}^n)$ iff $\sigma = p_1^2 + \cdots + p_k^2$ for some $p_i \in \mathbb{R}[\mathbf{x}]$

• $\Sigma(\mathbf{X}) := \{ \sigma_0 + \sigma_1 h_1 + \cdots + \sigma_m h_m ; \sigma_i \in \Sigma(\mathbb{R}^n) \}$

Examples

•
$$\sigma(\mathbf{x}) = |\mathbf{x}|^2 \in \Sigma(\mathbb{R}^n)$$

• Motzkin: $p(x_1, x_2) = x_1^4 x_2^2 + x_2^4 x_1^2 - 3 x_1^2 x_2^2 + 1 \in \mathcal{P}(\mathbb{R})_+ \setminus \Sigma(\mathbb{R})$

• $q(x) = 1 + x^2 + (1 + x^4) x (1 - x) \in \Sigma([0, 1])$

Writing the SOS problem

Putinar's Positivstellensatz

Notation:
$$\mathcal{P}(\mathbf{X})_{++} := \{ p \in \mathbb{R}[\mathbf{x}] ; \forall \mathbf{x} \in \mathbf{X}, p(\mathbf{x}) > 0 \}$$

Writing the SOS problem

Putinar's Positivstellensatz

Notation: $\mathcal{P}(\mathbf{X})_{++} := \{ p \in \mathbb{R}[\mathbf{x}] ; \forall \mathbf{x} \in \mathbf{X}, p(\mathbf{x}) > 0 \}$

 $\mathcal{P}(\mathsf{X})_{++} \subset \Sigma(\mathsf{X}) \subset \mathcal{P}(\mathsf{X})_{+}$

Writing the SOS problem

Putinar's Positivstellensatz

Notation:
$$\mathcal{P}(\mathbf{X})_{++} := \{ p \in \mathbb{R}[\mathbf{x}] ; \forall \mathbf{x} \in \mathbf{X}, p(\mathbf{x}) > 0 \}$$

 $\mathcal{P}(\textbf{X})_{++} \subset \Sigma(\textbf{X}) \subset \mathcal{P}(\textbf{X})_{+}$

Consequence on the dual (6)

$$\operatorname{vol}(\mathbf{K}) = \inf \int_{\mathbf{X}} w(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

s.t. $w \in \Sigma(\mathbf{X})$
 $w - 1 \in \Sigma(\mathbf{K})$

	M	atteo	Tacch	ni
--	---	-------	-------	----

Idea: truncate the polynomials to given degree $d \in \mathbb{N}$: $\mathbb{R}_d[\mathbf{x}]$.

Idea: truncate the polynomials to given degree $d \in \mathbb{N}$: $\mathbb{R}_d[\mathbf{x}]$. Define $\Sigma_d(\mathbf{X}) := \Sigma(\mathbf{X}) \cap \mathbb{R}_d[\mathbf{x}]$. Then

Idea: truncate the polynomials to given degree $d \in \mathbb{N}$: $\mathbb{R}_d[\mathbf{x}]$. Define $\Sigma_d(\mathbf{X}) := \Sigma(\mathbf{X}) \cap \mathbb{R}_d[\mathbf{x}]$. Then

$$\begin{aligned} \tau'_{d} &= \inf \int_{\mathbf{X}} w_{d}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \\ \text{s.t.} \ w_{d} &\in \Sigma_{d}(\mathbf{X}) \\ w_{d} - 1 &\in \Sigma_{d}(\mathbf{K}) \end{aligned}$$

Idea: truncate the polynomials to given degree $d \in \mathbb{N}$: $\mathbb{R}_d[\mathbf{x}]$. Define $\Sigma_d(\mathbf{X}) := \Sigma(\mathbf{X}) \cap \mathbb{R}_d[\mathbf{x}]$. Then

The reinforced SOS problem

$$\begin{aligned} \tau'_{d} &= \inf \int_{\mathbf{X}} w_{d}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \\ \text{s.t.} \ w_{d} &\in \Sigma_{d}(\mathbf{X}) \\ w_{d} - 1 &\in \Sigma_{d}(\mathbf{K}) \end{aligned}$$

N.B: testing if a polynomial is in a quadratic module is an LMI !

Idea: truncate the polynomials to given degree $d \in \mathbb{N}$: $\mathbb{R}_d[\mathbf{x}]$. Define $\Sigma_d(\mathbf{X}) := \Sigma(\mathbf{X}) \cap \mathbb{R}_d[\mathbf{x}]$. Then

The reinforced SOS problem

$$\begin{aligned} \tau_d' &= \inf \int_{\mathbf{X}} w_d(\mathbf{x}) \, \mathrm{d} \mathbf{x} \\ \text{s.t.} \ w_d &\in \Sigma_d(\mathbf{X}) \\ w_d - 1 &\in \Sigma_d(\mathbf{K}) \end{aligned}$$

N.B: testing if a polynomial is in a quadratic module is an LMI !

Theorem (Lasserre, Henrion, Savorgnan)

Idea: truncate the polynomials to given degree $d \in \mathbb{N}$: $\mathbb{R}_d[\mathbf{x}]$. Define $\Sigma_d(\mathbf{X}) := \Sigma(\mathbf{X}) \cap \mathbb{R}_d[\mathbf{x}]$. Then

The reinforced SOS problem

$$\begin{aligned} \tau'_d &= \inf \int_{\mathbf{X}} w_d(\mathbf{x}) \, \mathrm{d} \mathbf{x} \\ \text{s.t.} \ w_d &\in \Sigma_d(\mathbf{X}) \\ w_d - 1 &\in \Sigma_d(\mathbf{K}) \end{aligned}$$

N.B: testing if a polynomial is in a quadratic module is an LMI !

Theorem (Lasserre, Henrion, Savorgnan)

•
$$\forall d \in \mathbb{N}, \tau'_d \geq \mathsf{vol}(\mathsf{K})$$

Matteo Tacchi

PhD Seminar

Toulouse, January 24th 2019 20 / 33

Idea: truncate the polynomials to given degree $d \in \mathbb{N}$: $\mathbb{R}_d[\mathbf{x}]$. Define $\Sigma_d(\mathbf{X}) := \Sigma(\mathbf{X}) \cap \mathbb{R}_d[\mathbf{x}]$. Then

The reinforced SOS problem

$$\begin{aligned} \tau'_d &= \inf \int_{\mathbf{X}} w_d(\mathbf{x}) \, \mathrm{d} \mathbf{x} \\ \text{s.t.} \ w_d &\in \Sigma_d(\mathbf{X}) \\ w_d - 1 &\in \Sigma_d(\mathbf{K}) \end{aligned}$$

N.B: testing if a polynomial is in a quadratic module is an LMI !

Theorem (Lasserre, Henrion, Savorgnan)

•
$$\forall d \in \mathbb{N}, \tau'_d \geq \mathsf{vol}(\mathsf{K})$$

•
$$au_d' \xrightarrow[d o \infty]{} \operatorname{vol}(\mathsf{K})$$

Matteo Tacchi

Idea: truncate the polynomials to given degree $d \in \mathbb{N}$: $\mathbb{R}_d[\mathbf{x}]$. Define $\Sigma_d(\mathbf{X}) := \Sigma(\mathbf{X}) \cap \mathbb{R}_d[\mathbf{x}]$. Then

The reinforced SOS problem

$$\begin{aligned} \tau'_d &= \inf \int_{\mathbf{X}} w_d(\mathbf{x}) \, \mathrm{d} \mathbf{x} \\ \text{s.t.} \ w_d &\in \Sigma_d(\mathbf{X}) \\ w_d - 1 &\in \Sigma_d(\mathbf{K}) \end{aligned}$$

N.B: testing if a polynomial is in a quadratic module is an LMI !

Theorem (Lasserre, Henrion, Savorgnan)

•
$$\forall d \in \mathbb{N}, \tau'_d \geq \operatorname{vol}(\mathsf{K})$$

•
$$au_d' \xrightarrow[d o \infty]{} \mathsf{vol}(\mathsf{K})$$

 $\implies \hat{\mathsf{K}}_{d} := \{ \mathsf{x} \in \mathsf{X} \; ; \; w_{d}(\mathsf{x}) \geq 1 \}$ is an outer approximation of K .

Riesz representation theorem

$$\mathbf{I}: \begin{array}{ccc} \mathcal{M}(\mathbf{X})_+ & \longrightarrow & \mathcal{C}(\mathbf{X})'_+ \\ \mu & \longmapsto & \varphi \mapsto \mathbf{I}_{\mu}(\varphi) := \int_{\mathbf{X}} \varphi \, \mathrm{d}\mu \end{array} \text{ is an isomorphism.}$$

Riesz representation theorem

$$\mathbf{I}: \begin{array}{ccc} \mathcal{M}(\mathbf{X})_+ & \longrightarrow & \mathcal{C}(\mathbf{X})'_+ \\ \mu & \longmapsto & \varphi \mapsto \mathbf{I}_{\boldsymbol{\mu}}(\varphi) := \int_{\mathbf{X}} \varphi \, \mathrm{d}_{\boldsymbol{\mu}} \end{array} \text{ is an isomorphism.}$$

Corollary: a dual to Stone-Weierstrass theorem

$$\mathsf{L}: \begin{array}{ccc} \mathcal{M}(\mathsf{X})_+ & \longrightarrow & \mathcal{P}(\mathsf{X})'_+ \\ \mu & \longmapsto & \mathsf{x}^\alpha \mapsto \mathsf{L}_\mu(\mathsf{x}^\alpha) := \int_\mathsf{X} \mathsf{x}^\alpha \, \mathsf{d}\mu \end{array} \text{ is a dense inclusion.}$$

Riesz representation theorem

$$\mathbf{I}: \begin{array}{ccc} \mathcal{M}(\mathbf{X})_+ & \longrightarrow & \mathcal{C}(\mathbf{X})'_+ \\ \mu & \longmapsto & \varphi \mapsto \mathbf{I}_{\mu}(\varphi) := \int_{\mathbf{X}} \varphi \, \mathrm{d}\mu \end{array} \text{ is an isomorphism.}$$

Corollary: a dual to Stone-Weierstrass theorem

$$\mathsf{L}: \begin{array}{ccc} \mathcal{M}(\mathsf{X})_+ & \longrightarrow & \mathcal{P}(\mathsf{X})'_+ \\ \mu & \longmapsto & \mathsf{x}^\alpha \mapsto \mathsf{L}_\mu(\mathsf{x}^\alpha) := \int_\mathsf{X} \mathsf{x}^\alpha \, \mathsf{d}\mu \end{array} \text{ is a dense inclusion.}$$

Consequences on problem (5)

$$\begin{aligned} \text{vol}(\mathbf{K}) &= \max \mathbf{L}_{\mu}(\mathbf{x}^{0}) \\ \text{s.t.} \quad \mathbf{L}_{\mu} \in \mathcal{P}(\mathbf{K})'_{+} \subset \mathcal{P}(\mathbf{X})'_{+} \\ \quad \mathbf{L}_{\bar{\mu}} \in \mathcal{P}(\mathbf{X})'_{+} \\ &\forall \alpha \in \mathbb{N}^{n} \ \mathbf{L}_{\mu}(\mathbf{x}^{\alpha}) + \mathbf{L}_{\bar{\mu}}(\mathbf{x}^{\alpha}) = \int_{\mathbf{X}} \mathbf{x}^{\alpha} \ d\mathbf{x} \end{aligned}$$

Matteo Tacchi

Functionals on moments

Functionals on moments

• Riesz linear functional

$$\mathbf{L}: \begin{array}{ccc} \mathbb{R}^{\mathbb{N}^n} & \longrightarrow & \mathbb{R}[\mathbf{x}]' \\ \mathbf{z} = (\mathbf{z}_{\alpha})_{\alpha \in \mathbb{N}^n} & \longmapsto & \mathbf{x}^{\alpha} \mapsto \mathbf{L}_{\mathbf{z}}(\mathbf{x}^{\alpha}) := \mathbf{z}_{\alpha} \end{array}$$

Functionals on moments

Riesz linear functional

• Moment / localization bilinear functional: For $\chi, p, q \in \mathbb{R}[\mathbf{x}]$,

 $\mathbf{M}_{\boldsymbol{\chi}\boldsymbol{z}}(\boldsymbol{\rho},\boldsymbol{q}) := \mathbf{L}_{\boldsymbol{z}}(\boldsymbol{\chi}\,\boldsymbol{\rho}\,\boldsymbol{q}).$

Functionals on moments

Riesz linear functional

• Moment / localization bilinear functional: For $\chi, p, q \in \mathbb{R}[\mathbf{x}]$,

 $\mathbf{M}_{\boldsymbol{\chi}\,\boldsymbol{z}}(\boldsymbol{p},\boldsymbol{q}) := \mathbf{L}_{\boldsymbol{z}}(\boldsymbol{\chi}\,\boldsymbol{p}\,\boldsymbol{q}).$

Functionals on moments

Riesz linear functional

$$\mathsf{L}: \begin{array}{ccc} \mathbb{R}^{\mathbb{N}^n} & \longrightarrow & \mathbb{R}[\mathsf{x}]' \\ \mathsf{z} = (\mathsf{z}_{\alpha})_{\alpha \in \mathbb{N}^n} & \longmapsto & \mathsf{x}^{\alpha} \mapsto \mathsf{L}_{\mathsf{z}}(\mathsf{x}^{\alpha}) := \mathsf{z}_{\alpha} \end{array}$$

• Moment / localization bilinear functional: For $\chi, p, q \in \mathbb{R}[\mathbf{x}]$,

 $\mathbf{M}_{\boldsymbol{\chi}\boldsymbol{z}}(\boldsymbol{p},\boldsymbol{q}) := \mathbf{L}_{\boldsymbol{z}}(\boldsymbol{\chi}\,\boldsymbol{p}\,\boldsymbol{q}).$

•
$$n = 2$$
: $\mathbf{L}_{\mathbf{z}}(R^2 - x_1^2 - x_2^2) = R^2 z_{00} - z_{20} - z_{02}$

Functionals on moments

Riesz linear functional

$$\mathsf{L}: \begin{array}{ccc} \mathbb{R}^{\mathbb{N}^n} & \longrightarrow & \mathbb{R}[\mathsf{x}]' \\ \mathsf{z} = (\mathsf{z}_{\alpha})_{\alpha \in \mathbb{N}^n} & \longmapsto & \mathsf{x}^{\alpha} \mapsto \mathsf{L}_{\mathsf{z}}(\mathsf{x}^{\alpha}) := \mathsf{z}_{\alpha} \end{array}$$

• Moment / localization bilinear functional: For $\chi, p, q \in \mathbb{R}[\mathbf{x}]$,

 $\mathbf{M}_{\boldsymbol{\chi}\boldsymbol{z}}(\boldsymbol{p},\boldsymbol{q}) := \mathbf{L}_{\boldsymbol{z}}(\boldsymbol{\chi}\,\boldsymbol{p}\,\boldsymbol{q}).$

•
$$n = 2$$
: $L_z(R^2 - x_1^2 - x_2^2) = R^2 z_{00} - z_{20} - z_{02}$
• $n = 1$: $M_{1+x z}(x, 1-x) = L_z(x(1-x^2)) = z_1 - z_3$

Memo: $\mathbf{K} = {\mathbf{x} \in \mathbb{R}^n ; \mathbf{g}(\mathbf{x}) \ge 0}, \mathbf{X} = {\mathbf{x} \in \mathbb{R}^n ; \mathbf{h}(\mathbf{x}) \ge 0}.$

Memo:
$$\mathbf{K} = \{\mathbf{x} \in \mathbb{R}^n ; \mathbf{g}(\mathbf{x}) \ge 0\}, \mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n ; \mathbf{h}(\mathbf{x}) \ge 0\}.$$

Putinar's dual Positivstellensatz

Let $z \in \mathbb{R}^{\mathbb{N}^n}$. $L_z \in \mathcal{P}(\mathsf{K})'_+$ iff

Memo:
$$\mathbf{K} = {\mathbf{x} \in \mathbb{R}^n ; \mathbf{g}(\mathbf{x}) \ge 0}, \mathbf{X} = {\mathbf{x} \in \mathbb{R}^n ; \mathbf{h}(\mathbf{x}) \ge 0}.$$

Putinar's dual Positivstellensatz

Let
$$z \in \mathbb{R}^{\mathbb{N}^n}$$
. $L_z \in \mathcal{P}(\mathsf{K})'_+$ iff

● M_z ≥ 0

Memo:
$$\mathbf{K} = {\mathbf{x} \in \mathbb{R}^n ; \mathbf{g}(\mathbf{x}) \ge 0}, \mathbf{X} = {\mathbf{x} \in \mathbb{R}^n ; \mathbf{h}(\mathbf{x}) \ge 0}.$$

Putinar's dual Positivstellensatz

- Let $z \in \mathbb{R}^{\mathbb{N}^n}$. $L_z \in \mathcal{P}(\mathsf{K})'_+$ iff
 - M_z ≥ 0
 - $\forall i \in \{1, \ldots, m\}, \ \mathbf{M}_{g_i \mathbf{Z}} \succeq 0$

Memo:
$$\mathbf{K} = {\mathbf{x} \in \mathbb{R}^n ; \mathbf{g}(\mathbf{x}) \ge 0}, \mathbf{X} = {\mathbf{x} \in \mathbb{R}^n ; \mathbf{h}(\mathbf{x}) \ge 0}.$$

Putinar's dual Positivstellensatz

Let
$$z \in \mathbb{R}^{\mathbb{N}^n}$$
. $L_z \in \mathcal{P}(\mathsf{K})'_+$ iff

•
$$\forall i \in \{1, \ldots, m\}$$
, $\mathbf{M}_{g_i \mathbf{Z}} \succeq 0$

Consequences on problem (5)

$$\mathsf{vol}(\mathsf{K}) = \max z_0$$

s.t. $\mathsf{M}_z \succeq 0; \quad \forall i \in \{1, \dots, m\} \; \mathsf{M}_{g_i z} \succeq 0$
 $\mathsf{M}_{\overline{z}} \succeq 0; \quad \forall i \in \{1, \dots, m\} \; \mathsf{M}_{h_i \overline{z}} \succeq 0$
 $\forall \alpha \in \mathbb{N}^n \; \mathbf{z}_\alpha + \overline{\mathbf{z}}_\alpha = \int_{\mathsf{X}} \mathbf{x}^\alpha \; \mathsf{d}\mathbf{x}$

Back to finite dimension

Back to finite dimension

Idea: consider finite dim. bilinear functionals on $\mathbb{R}_d[\mathbf{x}]$: $\mathbb{R}^{\binom{n+d}{d} \times \binom{n+d}{d}}$.
Idea: consider finite dim. bilinear functionals on $\mathbb{R}_d[\mathbf{x}]$: $\mathbb{R}^{\binom{n+d}{d} \times \binom{n+d}{d}}$.

Definitions

Let
$$\mathbb{N}_d^n := \{ \alpha \in \mathbb{N}^n ; |\alpha| := \alpha_1 + \cdots + \alpha_n \leq d \}$$
. Let $\mathbf{z} \in \mathbb{R}^{\mathbb{N}_d^n}$

Idea: consider finite dim. bilinear functionals on $\mathbb{R}_d[\mathbf{x}]$: $\mathbb{R}^{\binom{n+d}{d} \times \binom{n+d}{d}}$.

Definitions

Let
$$\mathbb{N}_d^n := \{ \alpha \in \mathbb{N}^n ; |\alpha| := \alpha_1 + \dots + \alpha_n \leq d \}$$
. Let $\mathbf{z} \in \mathbb{R}^{\mathbb{N}_d^n}$.

• Moment matrix $\mathbf{M}_{\mathbf{z}}^{d}$: matrix of $\mathbf{M}_{\mathbf{z}}$ in a basis of $\mathbb{R}_{d}[\mathbf{x}]$

Idea: consider finite dim. bilinear functionals on $\mathbb{R}_{d}[\mathbf{x}]$: $\mathbb{R}^{\binom{n+d}{d} \times \binom{n+d}{d}}$.

Definitions

Let
$$\mathbb{N}_d^n := \{ \alpha \in \mathbb{N}^n ; |\alpha| := \alpha_1 + \dots + \alpha_n \leq d \}$$
. Let $\mathbf{z} \in \mathbb{R}^{\mathbb{N}_d^n}$.

- Moment matrix $\mathbf{M}_{\mathbf{z}}^{d}$: matrix of $\mathbf{M}_{\mathbf{z}}$ in a basis of $\mathbb{R}_{d}[\mathbf{x}]$
- Localizing matrix $\mathbf{M}_{\chi z}^d$: matrix of $\mathbf{M}_{\chi z}$ in a basis of $\mathbb{R}_d[\mathbf{x}]$

Idea: consider finite dim. bilinear functionals on $\mathbb{R}_{d}[\mathbf{x}]$: $\mathbb{R}^{\binom{n+d}{d} \times \binom{n+d}{d}}$.

Definitions

Let
$$\mathbb{N}_d^n := \{ \alpha \in \mathbb{N}^n ; |\alpha| := \alpha_1 + \dots + \alpha_n \leq d \}$$
. Let $\mathbf{z} \in \mathbb{R}^{\mathbb{N}_d^n}$.

- Moment matrix $\mathbf{M}_{\mathbf{z}}^{d}$: matrix of $\mathbf{M}_{\mathbf{z}}$ in a basis of $\mathbb{R}_{d}[\mathbf{x}]$
- Localizing matrix $\mathbf{M}_{\chi z}^d$: matrix of $\mathbf{M}_{\chi z}$ in a basis of $\mathbb{R}_d[\mathbf{x}]$

Examples

first moment matrix:
$$n = 2, d = 1 \implies \text{basis} (1, x_1, x_2)$$

$$\mathbf{M}_{\mathbf{z}}^{1} = \begin{bmatrix} z_{00} & z_{10} & z_{01} \\ z_{10} & z_{20} & z_{11} \\ z_{01} & z_{11} & z_{02} \end{bmatrix}$$

Idea: consider finite dim. bilinear functionals on $\mathbb{R}_{d}[\mathbf{x}]$: $\mathbb{R}^{\binom{n+d}{d} \times \binom{n+d}{d}}$.

Definitions

Let
$$\mathbb{N}_d^n := \{ \alpha \in \mathbb{N}^n ; |\alpha| := \alpha_1 + \dots + \alpha_n \leq d \}$$
. Let $\mathbf{z} \in \mathbb{R}^{\mathbb{N}_d^n}$.

- Moment matrix \mathbf{M}_{z}^{d} : matrix of \mathbf{M}_{z} in a basis of $\mathbb{R}_{d}[\mathbf{x}]$
- Localizing matrix $\mathbf{M}_{\chi z}^d$: matrix of $\mathbf{M}_{\chi z}$ in a basis of $\mathbb{R}_d[\mathbf{x}]$

Examples

a localizing matrix:
$$n = 1, d = 2, \chi = 1 + x \Longrightarrow$$
 basis $(1, x, x^2)$

$$\mathbf{M}_{1+x\,\mathbf{z}}^{2} = \begin{bmatrix} z_{0} + z_{1} & z_{1} + z_{2} & z_{2} + z_{3} \\ z_{1} + z_{2} & z_{2} + z_{3} & z_{3} + z_{4} \\ z_{2} + z_{3} & z_{3} + z_{4} & z_{4} + z_{5} \end{bmatrix}$$

The Lasserre relaxation

$$\tau_{d} := \max \mathbf{z}_{0}$$
s.t. $\mathbf{M}_{\mathbf{z}}^{d} \succeq 0; \quad \forall i \in \{1, \dots, m\} \ \mathbf{M}_{g_{i} \mathbf{z}}^{d-d_{g_{i}}} \succeq 0$

$$\mathbf{M}_{\mathbf{z}}^{d} \succeq 0; \quad \forall i \in \{1, \dots, m\} \ \mathbf{M}_{h_{i} \mathbf{z}}^{d-d_{h_{i}}} \succeq 0$$

$$\forall \alpha \in \mathbb{N}_{d}^{n} \mathbf{z}_{\alpha} + \mathbf{\overline{z}}_{\alpha} = \int_{\mathbf{X}} \mathbf{x}^{\alpha} \ d\mathbf{x}$$
where $d_{\chi} = \lceil (\deg \chi)/2 \rceil.$
(7)

$$\tau_{d} := \max \mathbf{Z}_{0}$$
s.t. $\mathbf{M}_{\mathbf{Z}}^{d} \succeq 0; \quad \forall i \in \{1, \dots, m\} \ \mathbf{M}_{g_{i} \mathbf{Z}}^{d-d_{g_{i}}} \succeq 0$

$$\mathbf{M}_{\overline{\mathbf{Z}}}^{d} \succeq 0; \quad \forall i \in \{1, \dots, m\} \ \mathbf{M}_{h_{i} \mathbf{\overline{Z}}}^{d-d_{h_{i}}} \succeq 0$$

$$\forall \alpha \in \mathbb{N}_{d}^{n} \mathbf{Z}_{\alpha} + \mathbf{\overline{Z}}_{\alpha} = \int_{\mathbf{X}} \mathbf{x}^{\alpha} \ d\mathbf{x}$$
where $d_{\chi} = \lceil (\deg \chi)/2 \rceil.$
(7)

$$\tau_{d} := \max \mathbf{Z}_{0}$$
s.t. $\mathbf{M}_{\mathbf{Z}}^{d} \succeq 0; \quad \forall i \in \{1, \dots, m\} \ \mathbf{M}_{g_{i} \mathbf{Z}}^{d-d_{g_{i}}} \succeq 0$

$$\mathbf{M}_{\overline{\mathbf{Z}}}^{d} \succeq 0; \quad \forall i \in \{1, \dots, m\} \ \mathbf{M}_{h_{i} \mathbf{\overline{Z}}}^{d-d_{h_{i}}} \succeq 0$$

$$\forall \alpha \in \mathbb{N}_{d}^{n} \mathbf{Z}_{\alpha} + \mathbf{\overline{Z}}_{\alpha} = \int_{\mathbf{X}} \mathbf{x}^{\alpha} \ d\mathbf{x}$$
where $d_{\chi} = \lceil (\deg \chi)/2 \rceil.$
(7)

•
$$\forall d \in \mathbb{N}, \tau'_d = \tau_d$$

$$\tau_{d} := \max \mathbf{Z}_{0}$$
s.t. $\mathbf{M}_{\mathbf{Z}}^{d} \succeq 0; \quad \forall i \in \{1, \dots, m\} \ \mathbf{M}_{g_{i} \mathbf{Z}}^{d-d_{g_{i}}} \succeq 0$

$$\mathbf{M}_{\overline{\mathbf{Z}}}^{d} \succeq 0; \quad \forall i \in \{1, \dots, m\} \ \mathbf{M}_{h_{i} \mathbf{\overline{Z}}}^{d-d_{h_{i}}} \succeq 0$$

$$\forall \alpha \in \mathbb{N}_{d}^{n} \mathbf{Z}_{\alpha} + \mathbf{\overline{Z}}_{\alpha} = \int_{\mathbf{X}} \mathbf{x}^{\alpha} \ d\mathbf{x}$$
where $d_{\chi} = \lceil (\deg \chi)/2 \rceil.$
(7)

•
$$\forall d \in \mathbb{N}, \tau'_d = \tau_d$$

$$\implies \forall d \in \mathbb{N}, \tau_d \ge \mathsf{vol}(\mathsf{K})$$

$$\begin{aligned} \tau_{d} &:= \max \mathbf{Z}_{0} \\ \text{s.t.} \quad \mathbf{M}_{\mathbf{z}}^{d} \succeq 0; \quad \forall i \in \{1, \dots, m\} \; \mathbf{M}_{g_{i} \mathbf{z}}^{d-d_{g_{i}}} \succeq 0 \\ \mathbf{M}_{\overline{\mathbf{z}}}^{d} \succeq 0; \quad \forall i \in \{1, \dots, m\} \; \mathbf{M}_{h_{i} \mathbf{\overline{z}}}^{d-d_{h_{i}}} \succeq 0 \\ \forall \alpha \in \mathbb{N}_{d}^{n} \; \mathbf{z}_{\alpha} + \mathbf{\overline{z}}_{\alpha} = \int_{\mathbf{X}} \mathbf{x}^{\alpha} \; \mathrm{d}\mathbf{x} \end{aligned}$$
where $d_{\chi} = \lceil (\deg \chi)/2 \rceil.$ (7)

- $\forall d \in \mathbb{N}, \tau'_d = \tau_d$
- $\implies \forall d \in \mathbb{N}, \tau_d \ge \mathsf{vol}(\mathsf{K})$
- $\implies \tau_d \underset{d \to \infty}{\longrightarrow} \operatorname{vol}(\mathsf{K})$

Summary: the Lasserre hierarchy framework

Context

2 Tools for security assessment

D Lasserre hierarchy for set approximation

4 Stability set approximation

- Liouville's transport PDE
- Outer approximation of the AI set

Projects

Probabilistic heuristic

Probabilistic heuristic

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
 ; $\mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n$; $\mathbf{x}(0) = X_0 \sim \mathbb{P}_0$

Probabilistic heuristic

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
 ; $\mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n$; $\mathbf{x}(0) = X_0 \sim \mathbb{P}_0$

 \implies **x**($t \mid X_0$) is a random variable $X_t \sim \mathbb{P}_t$.

Probabilistic heuristic

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
 ; $\mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n$; $\mathbf{x}(0) = X_0 \sim \mathbb{P}_0$

 $\implies \mathbf{x}(t \mid X_0) \text{ is a random variable } X_t \sim \mathbb{P}_t.$ N.B.: $\mathbb{P}_0 = \delta_{\mathbf{x}_0} \implies \mathbb{P}_t = \delta_{\mathbf{x}(t \mid \mathbf{x}_0)} \text{ (deterministic case)}$

Probabilistic heuristic

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
 ; $\mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n$; $\mathbf{x}(0) = X_0 \sim \mathbb{P}_0$

 $\implies \mathbf{x}(t \mid X_0) \text{ is a random variable } X_t \sim \mathbb{P}_t.$ N.B.: $\mathbb{P}_0 = \delta_{\mathbf{x}_0} \implies \mathbb{P}_t = \delta_{\mathbf{x}(t \mid \mathbf{x}_0)} \text{ (deterministic case)}$

Theorem (Liouville)

Probabilistic heuristic

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
 ; $\mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n$; $\mathbf{x}(0) = X_0 \sim \mathbb{P}_0$

 $\implies \mathbf{x}(t \mid X_0) \text{ is a random variable } X_t \sim \mathbb{P}_t.$ N.B.: $\mathbb{P}_0 = \delta_{\mathbf{x}_0} \implies \mathbb{P}_t = \delta_{\mathbf{x}(t \mid \mathbf{x}_0)} \text{ (deterministic case)}$

Theorem (Liouville)

$$\frac{\partial}{\partial t} \mathbb{P}_t + \operatorname{div}(\mathbf{f} \,\mathbb{P}_t) = 0 \tag{8}$$

Probabilistic heuristic

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
 ; $\mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n$; $\mathbf{x}(0) = X_0 \sim \mathbb{P}_0$

 $\implies \mathbf{x}(t \mid X_0) \text{ is a random variable } X_t \sim \mathbb{P}_t.$ N.B.: $\mathbb{P}_0 = \delta_{\mathbf{x}_0} \implies \mathbb{P}_t = \delta_{\mathbf{x}(t \mid \mathbf{x}_0)} \text{ (deterministic case)}$

Theorem (Liouville)

$$\frac{\partial}{\partial t} \mathbb{P}_t + \operatorname{div}(\mathbf{f} \,\mathbb{P}_t) = 0 \tag{8}$$

Integral Liouville PDE

Probabilistic heuristic

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
 ; $\mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n$; $\mathbf{x}(0) = X_0 \sim \mathbb{P}_0$

 $\implies \mathbf{x}(t \mid X_0) \text{ is a random variable } X_t \sim \mathbb{P}_t.$ N.B.: $\mathbb{P}_0 = \delta_{\mathbf{x}_0} \implies \mathbb{P}_t = \delta_{\mathbf{x}(t \mid \mathbf{x}_0)} \text{ (deterministic case)}$

Theorem (Liouville)

$$\frac{\partial}{\partial t} \mathbb{P}_t + \operatorname{div}(\mathbf{f} \,\mathbb{P}_t) = 0 \tag{8}$$

Integral Liouville PDE

 $\mathbb{P}_{0} \longleftrightarrow \mu_{0}$,

Probabilistic heuristic

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
 ; $\mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n$; $\mathbf{x}(0) = X_0 \sim \mathbb{P}_0$

 $\implies \mathbf{x}(t \mid X_0) \text{ is a random variable } X_t \sim \mathbb{P}_t.$ N.B.: $\mathbb{P}_0 = \delta_{\mathbf{x}_0} \implies \mathbb{P}_t = \delta_{\mathbf{x}(t \mid \mathbf{x}_0)} \text{ (deterministic case)}$

Theorem (Liouville)

$$\frac{\partial}{\partial t} \mathbb{P}_t + \operatorname{div}(\mathbf{f} \,\mathbb{P}_t) = 0 \tag{8}$$

Integral Liouville PDE

 $\mathbb{P}_{0} \longleftrightarrow \mu_{0}, \mathbb{P}_{\tau} \longleftrightarrow \mu_{T},$

Probabilistic heuristic

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
 ; $\mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n$; $\mathbf{x}(0) = X_0 \sim \mathbb{P}_0$

 $\implies \mathbf{x}(t \mid X_0) \text{ is a random variable } X_t \sim \mathbb{P}_t.$ N.B.: $\mathbb{P}_0 = \delta_{\mathbf{x}_0} \implies \mathbb{P}_t = \delta_{\mathbf{x}(t \mid \mathbf{x}_0)} \text{ (deterministic case)}$

Theorem (Liouville)

$$\frac{\partial}{\partial t} \mathbb{P}_t + \operatorname{div}(\mathbf{f} \,\mathbb{P}_t) = 0 \tag{8}$$

Integral Liouville PDE

$$\mathbb{P}_0 \longleftrightarrow \mu_0$$
, $\mathbb{P}_{\tau} \longleftrightarrow \mu_{\tau}$, $\mathbb{P}_t(d\mathbf{x}) dt \longleftrightarrow \mu(dt, d\mathbf{x})$

Probabilistic heuristic

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$
 ; $\mathbf{x} \in \mathbf{X} \Subset \mathbb{R}^n$; $\mathbf{x}(0) = X_0 \sim \mathbb{P}_0$

 $\implies \mathbf{x}(t \mid X_0) \text{ is a random variable } X_t \sim \mathbb{P}_t.$ N.B.: $\mathbb{P}_0 = \delta_{\mathbf{x}_0} \implies \mathbb{P}_t = \delta_{\mathbf{x}(t \mid \mathbf{x}_0)} \text{ (deterministic case)}$

Theorem (Liouville)

$$\frac{\partial}{\partial t} \mathbb{P}_t + \operatorname{div}(\mathbf{f} \,\mathbb{P}_t) = 0 \tag{8}$$

Integral Liouville PDE

 $\mathbb{P}_0 \longleftrightarrow \mu_0, \mathbb{P}_{\tau} \longleftrightarrow \mu_{\mathcal{T}}, \mathbb{P}_t(\mathsf{d}\mathbf{x}) \mathsf{d}t \longleftrightarrow \mu(\mathsf{d}t, \mathsf{d}\mathbf{x})$

$$\frac{\partial \mu}{\partial t} + \operatorname{div}(\mathbf{f}\,\mu) = \mu_0 \otimes \delta_{t=0} - \mu_{\mathbf{T}} \otimes \delta_{t=\tau} \tag{9}$$

The problem on measures

The problem on measures

$$\operatorname{vol}(\mathbf{X}_{0}) = \max \mu_{0}(\mathbf{X})$$
(10)
s.t. $\mu \in \mathcal{M}([0, \tau] \times \mathbf{X})_{+}$ (11)
 $\mu_{0}, \bar{\mu}_{0} \in \mathcal{M}(\mathbf{X})_{+}$ (12)
 $\mu_{T} \in \mathcal{M}(\mathbf{X}_{T})_{+} \subset \mathcal{M}(\mathbf{X})_{+}$ (13)
 $\mu_{0} + \bar{\mu}_{0} = \lambda_{\mathbf{X}}$ (14)
 $\frac{\partial \mu}{\partial t} + \operatorname{div}(\mathbf{f} \mu) = \mu_{0} \otimes \delta_{t=0} - \mu_{T} \otimes \delta_{t=\tau}$ (15)

	Matt	teo T	Facchi
--	------	-------	---------------

The problem on measures

$$\operatorname{vol}(\mathbf{X}_{0}) = \max \mu_{0}(\mathbf{X})$$
(10)
s.t. $\mu \in \mathcal{M}([0, \tau] \times \mathbf{X})_{+}$ (11)
 $\mu_{0}, \overline{\mu}_{0} \in \mathcal{M}(\mathbf{X})_{+}$ (12)
 $\mu_{T} \in \mathcal{M}(\mathbf{X}_{T})_{+} \subset \mathcal{M}(\mathbf{X})_{+}$ (13)
 $\mu_{0} + \overline{\mu}_{0} = \lambda_{\mathbf{X}}$ (14)
 $\frac{\partial \mu}{\partial t} + \operatorname{div}(\mathbf{f} \mu) = \mu_{0} \otimes \delta_{t=0} - \mu_{T} \otimes \delta_{t=\tau}$ (15)

Statistical physics interpretation

Maximize (10) density $\rho_0 \leq 1$ (12),(14) of particles transported by equation (15) that end up in X_T (13) in time τ (11).

The problem on functions

Matteo Tacchi

The problem on functions

$$\operatorname{vol}(\mathbf{X}_{0}) = \inf \int_{\mathbf{X}} \boldsymbol{w}(\mathbf{x}) d\mathbf{x}$$
(16)
s.t. $\forall \mathbf{x} \in \mathbf{X}, \boldsymbol{w}(\mathbf{x}) \ge 0$
 $\forall \mathbf{x} \in \mathbf{X}, \boldsymbol{w}(\mathbf{x}) \ge \boldsymbol{v}(0, \mathbf{x}) + 1$
 $\forall \mathbf{x} \in \mathbf{X}_{T}, \boldsymbol{v}(\tau, \mathbf{x}) \ge 0$
 $\forall t \in [0, \tau], \mathbf{x} \in \mathbf{X}, \frac{\partial \boldsymbol{v}}{\partial t}(t, \mathbf{x}) + \nabla \boldsymbol{v}(t, \mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \le 0$ (17)

The problem on functions

$$\operatorname{vol}(\mathbf{X}_{0}) = \inf \int_{\mathbf{X}} \mathbf{w}(\mathbf{x}) d\mathbf{x}$$
(16)
s.t. $\forall \mathbf{x} \in \mathbf{X}, \mathbf{w}(\mathbf{x}) \ge 0$
 $\forall \mathbf{x} \in \mathbf{X}, \mathbf{w}(\mathbf{x}) \ge \mathbf{v}(0, \mathbf{x}) + 1$
 $\forall \mathbf{x} \in \mathbf{X}_{T}, \mathbf{v}(\tau, \mathbf{x}) \ge 0$
 $\forall t \in [0, \tau], \mathbf{x} \in \mathbf{X}, \frac{\partial \mathbf{v}}{\partial t}(t, \mathbf{x}) + \nabla \mathbf{v}(t, \mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \le 0$ (17)

Remark

Constraint (17) reminds of a Lyapunov inequality.

The problem on functions

$$\operatorname{vol}(\mathbf{X}_{0}) = \inf \int_{\mathbf{X}} \mathbf{w}(\mathbf{x}) d\mathbf{x}$$
(16)
s.t. $\forall \mathbf{x} \in \mathbf{X}, \mathbf{w}(\mathbf{x}) \ge 0$
 $\forall \mathbf{x} \in \mathbf{X}, \mathbf{w}(\mathbf{x}) \ge \mathbf{v}(0, \mathbf{x}) + 1$
 $\forall \mathbf{x} \in \mathbf{X}_{T}, \mathbf{v}(\tau, \mathbf{x}) \ge 0$
 $\forall t \in [0, \tau], \mathbf{x} \in \mathbf{X}, \frac{\partial \mathbf{v}}{\partial t}(t, \mathbf{x}) + \nabla \mathbf{v}(t, \mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \le 0$ (17)

Remark

Constraint (17) reminds of a Lyapunov inequality.

Set approximation

$$\hat{\mathbf{X}}^d_0 := \{\mathbf{x} \in \mathbf{X} \; ; \; w_d(\mathbf{x}) \geq 1\}$$
 is an outer approximation of \mathbf{X}_0 !

Matteo Tacchi

Context

- 2 Tools for security assessment
- **3** Lasserre hierarchy for set approximation
- 4 Stability set approximation

Problem statement

Assess the stability of the system

$$\forall i, j \in \{1, \dots, m\}, \begin{cases} \dot{\mathbf{x}}_i = f_i(\mathbf{x}_i, \mathbf{y}_i) \\ g_{ij}(\mathbf{x}_i, \mathbf{y}_i, \mathbf{x}_j, \mathbf{y}_j) = 0 \quad ; \quad (g_{ij})_{ij} \text{ "sparse"} \end{cases}$$
(18)

Problem statement

Assess the stability of the system

$$\forall i, j \in \{1, \dots, m\}, \begin{cases} \dot{\mathbf{x}}_i = f_i(\mathbf{x}_i, \mathbf{y}_i) \\ g_{ij}(\mathbf{x}_i, \mathbf{y}_i, \mathbf{x}_j, \mathbf{y}_j) = 0 \quad ; \quad (g_{ij})_{ij} \text{ "sparse"} \end{cases}$$
(18)

Adapting parsimony to algebraically coupled dynamics

ullet Inner ROA estimation \simeq lower estimation of ROA volume

Problem statement

Assess the stability of the system

$$\forall i, j \in \{1, \dots, m\}, \begin{cases} \dot{\mathbf{x}}_i = f_i(\mathbf{x}_i, \mathbf{y}_i) \\ g_{ij}(\mathbf{x}_i, \mathbf{y}_i, \mathbf{x}_j, \mathbf{y}_j) = 0 \quad ; \quad (g_{ij})_{ij} \text{ "sparse"} \end{cases}$$
(18)

Adapting parsimony to algebraically coupled dynamics

- Inner ROA estimation \simeq lower estimation of ROA volume
- We developed parsimony for volume computation
Parsimonious ROA estimation

Problem statement

Assess the stability of the system

$$\forall i, j \in \{1, \dots, m\}, \begin{cases} \dot{\mathbf{x}}_i = f_i(\mathbf{x}_i, \mathbf{y}_i) \\ g_{ij}(\mathbf{x}_i, \mathbf{y}_i, \mathbf{x}_j, \mathbf{y}_j) = 0 \quad ; \quad (g_{ij})_{ij} \text{ "sparse"} \end{cases}$$
(18)

Adapting parsimony to algebraically coupled dynamics

- ullet Inner ROA estimation \simeq lower estimation of ROA volume
- We developed parsimony for volume computation

Combine both \rightarrow parsimonious algo. for ROA/MPI/IAS estimation

Question Time

