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Current security assessment method
The network is changing
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Stability assessment

RTE needs to

Balance power production & consumption (ex: OPF problem)

Avoid loss of stability (blackouts, damages in plants)

→ Simulate & secure all hazardous operating points

→ Avoid expensive simulations of safe situations

Nowadays

Security risk = identified by operators (consumption peak)
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Complexification of risk evaluation

Increase of renewables share

Non-modulable (e.g. solar power 6= night)

Randomly time-varying (e.g. clouds ⇒ solar power ↘)

Connected through power electronics

⇒ Risky operating points during off-peak time

Consequence

Difficult to identify & secure unstable operating points
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The challenge and a perspective

Aim

At least conservatively identify safe situations

→ Reduce use of extensive simulations

Proposition of solution

Idea: Inner estimate of stability regions of power systems

Tools:

Lyapunov-LaSalle stability theory [Anghel et al. 2013]
Moment approach for set approximation [Korda et al. 2013.]
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Plan

1 Context

2 Tools for security assessment
Notions of stability
Sets of interest

3 Lasserre hierarchy for set approximation

4 Stability set approximation

5 Projects
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Stability in electrical engineering

Stability notions depend on modelling & approximation hypothesis1

1Kundur et al. Definition and Classification of Power System Stability. 2004.
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Rotor angle transient stability

Definition

Fast dynamics: characteristic time ' 100 ms.

Loss of synchronism ⇔ rotor angle explodes

Large perturbation: strongly nonlinear dynamics
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Lyapunov stability (paper with Rte)

LaSalle invariance principle

Find a Lyapunov function V on a domain D

Find a sublevel set Ω of V s.t. Ω ⊂ D

Maximize the size of such Ω

→ Ω = inner approx. of equilibrium’s ROA

Problems

Asymptotic stability VS short term stability

Ω = only local optimum (no proof of global optimality)

Existing algorithms resort to BMIs
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Admissible Initializing set (paper with C. Josz)

Definition

ẋ = f(x) ; x ∈ X b Rn ; x(0) = x0 (1)

Given target set XT and time horizon τ

X0 := {x0 ∈ X ; x(τ | x0) ∈ XT} (2)

{
θ̇k = ωk k = 1, 2

ω̇k = −λkωk + 1
Mk

(Pm
k − Pe

k (θ1, θ2))

3 bus 2nd order model AI set - τ = 8s, XT = B(0, 0.1)
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Maximal Positively Invariant set (ongoing A. Oustry)

Definition

X∞ := {x0 ∈ X ; ∀t ≥ 0, x(t | x0) ∈ X∞} (3)

X∞ = {x0 ∈ X ; ∀t ≥ 0, x(t | x0) ∈ X} (4)

{
δ̇ = ω

2Hω̇ = −Dω + Cm − VsVi
Xl

sin δ

SMIB 2nd order model A trajectory in the MPI set
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Interest

Pros

Approximation reduced to LMI (SDP) via Lasserre hierarchy

Approximation converges in volume to global optimum

AI set ' finite time ROA

MPI set ensures no rotor angle explosion

Cons

AI set needs input (time horizon, target set)

MPI set may include non-converging limit cycles
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Plan

1 Context

2 Tools for security assessment

3 Lasserre hierarchy for set approximation
Volume computation
Dual Lasserre hierarchy
Primal Lasserre hierarchy

4 Stability set approximation

5 Projects
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The volume problem

Problem statement

Given g,h ∈ R[x]m, compute the Lebesgue volume of

K := {x ∈ Rn ; g(x) ≥ 0} ⊂ X := {x ∈ Rn ; h(x) ≥ 0}

Examples
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The GMP approach

The problem on measures

If X is compact, then
vol(K) = maxµ(X)

s.t. µ ∈M(K)+ ⊂M(X)+ (5)

µ̄ ∈M(X)+

µ+ µ̄ = λX

−1. −0.5 0.5 1.0

µ

K

µ̄ µ̄
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A dual approach

The dual of (5) on continuous functions

vol(K) = inf

∫
X
w(x) dx

s.t. ∀x ∈ X,w(x) ≥ 0 (6)

∀x ∈ K,w(x) ≥ 1
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How do we represent positive continuous functions ?

Consider the sets:

C(X) of continuous functions on X

P(X) of polynomial functions on X

Stone-Weierstrass approximation theorem

Any positive continuous function on the compact X can be approximated
uniformly by positive polynomials:

adhP(X)+ = C(X)+

Consequence on the dual (6)

vol(K) = inf

∫
X
w(x) dx

s.t. w ∈ P(X)+

w − 1 ∈ P(K)+
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Some useful definitions

Sums of squares

Memo: K = {x ∈ Rn ; g(x) ≥ 0},X = {x ∈ Rn ; h(x) ≥ 0}.

σ ∈ Σ(Rn) iff σ = p2
1 + · · ·+ p2

k for some pi ∈ R[x]

Σ(X) := {σ0 + σ1 h1 + · · ·+ σm hm ; σi ∈ Σ(Rn)}

Examples

σ(x) = |x|2 ∈ Σ(Rn)

Motzkin: p(x1, x2) = x4
1 x2

2 + x4
2 x2

1 − 3 x2
1 x2

2 + 1 ∈ P(R)+ \ Σ(R)

q(x) = 1 + x2 + (1 + x4) x (1− x) ∈ Σ([0, 1])
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Writing the SOS problem

Putinar’s Positivstellensatz

Notation: P(X)++ := {p ∈ R[x] ; ∀x ∈ X, p(x) > 0}

P(X)++ ⊂ Σ(X) ⊂ P(X)+

Consequence on the dual (6)

vol(K) = inf

∫
X
w(x) dx

s.t. w ∈ Σ(X)

w − 1 ∈ Σ(K)
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The Lasserre reinforcement

Idea: truncate the polynomials to given degree d ∈ N: Rd [x].
Define Σd(X) := Σ(X) ∩ Rd [x]. Then

The reinforced SOS problem

τ ′d = inf

∫
X
wd(x) dx

s.t. wd ∈ Σd(X)

wd − 1 ∈ Σd(K)

N.B: testing if a polynomial is in a quadratic module is an LMI !

Theorem (Lasserre, Henrion, Savorgnan)

∀d ∈ N, τ ′d ≥ vol(K)

τ ′d −→
d→∞

vol(K)

=⇒ K̂d := {x ∈ X ; wd(x) ≥ 1} is an outer approximation of K.
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How do we represent a measure ?

Riesz representation theorem

I :
M(X)+ −→ C(X)′+

µ 7−→ ϕ 7→ Iµ(ϕ) :=
∫

X ϕ dµ
is an isomorphism.

Corollary: a dual to Stone-Weierstrass theorem

L :
M(X)+ −→ P(X)′+

µ 7−→ xα 7→ Lµ(xα) :=
∫

X xα dµ
is a dense inclusion.

Consequences on problem (5)

vol(K) = max Lµ(x0)

s.t. Lµ ∈ P(K)′+ ⊂ P(X)′+

Lµ̄ ∈ P(X)′+

∀α ∈ Nn Lµ(xα) + Lµ̄(xα) =

∫
X

xα dx
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Some useful definitions

Functionals on moments

Riesz linear functional

L :
RNn −→ R[x]′

z = (zα)α∈Nn 7−→ xα 7→ Lz(xα) := zα

Moment / localization bilinear functional: For χ, p, q ∈ R[x],

Mχ z(p, q) := Lz(χ p q).

Examples

n = 2: Lz(R2 − x2
1 − x2

2 ) = R2 z00 − z20 − z02

n = 1: M1+x z(x , 1− x) = Lz(x (1− x2)) = z1 − z3
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Writing the moment problem

Memo: K = {x ∈ Rn ; g(x) ≥ 0},X = {x ∈ Rn ; h(x) ≥ 0}.

Putinar’s dual Positivstellensatz

Let z ∈ RNn
. Lz ∈ P(K)′+ iff

Mz � 0

∀i ∈ {1, . . . ,m}, Mgi z � 0

Consequences on problem (5)

vol(K) = max z0

s.t. Mz � 0; ∀i ∈ {1, . . . ,m}Mgi z � 0

Mz̄ � 0; ∀i ∈ {1, . . . ,m}Mhi z̄ � 0

∀α ∈ Nn zα + z̄α =

∫
X

xα dx
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Back to finite dimension

Idea: consider finite dim. bilinear functionals on Rd [x]: R
(
n + d
d

)
×
(
n + d
d

)
.

Definitions

Let Nn
d := {α ∈ Nn ; |α| := α1 + · · ·+ αn ≤ d}. Let z ∈ RNn

d .

Moment matrix Md
z : matrix of Mz in a basis of Rd [x]

Localizing matrix Md
χz : matrix of Mχz in a basis of Rd [x]

Examples
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d .

Moment matrix Md
z : matrix of Mz in a basis of Rd [x]

Localizing matrix Md
χz : matrix of Mχz in a basis of Rd [x]

Examples

first moment matrix: n = 2, d = 1 =⇒ basis (1, x1, x2)

M1
z =

 z00 z10 z01

z10 z20 z11

z01 z11 z02


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Back to finite dimension

Idea: consider finite dim. bilinear functionals on Rd [x]: R
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n + d
d

)
×
(
n + d
d

)
.

Definitions

Let Nn
d := {α ∈ Nn ; |α| := α1 + · · ·+ αn ≤ d}. Let z ∈ RNn

d .

Moment matrix Md
z : matrix of Mz in a basis of Rd [x]

Localizing matrix Md
χz : matrix of Mχz in a basis of Rd [x]

Examples

a localizing matrix: n = 1, d = 2, χ = 1 + x =⇒ basis (1, x , x2)

M2
1+x z =

 z0 + z1 z1 + z2 z2 + z3

z1 + z2 z2 + z3 z3 + z4

z2 + z3 z3 + z4 z4 + z5


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The Lasserre relaxation

The relaxed problem on moments

τd := max z0

s.t. Md
z � 0; ∀i ∈ {1, . . . ,m}M

d−dgi
gi z � 0 (7)

Md
z̄ � 0; ∀i ∈ {1, . . . ,m}M

d−dhi
hi z̄

� 0

∀α ∈ Nn
d zα + z̄α =

∫
X

xα dx

where dχ = d(degχ)/2e.

Strong duality theorem (Lasserre, Henrion, Savorgnan)

∀d ∈ N, τ ′d = τd

=⇒ ∀d ∈ N, τd ≥ vol(K)

=⇒ τd −→
d→∞

vol(K)
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Summary: the Lasserre hierarchy framework
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Plan

1 Context

2 Tools for security assessment

3 Lasserre hierarchy for set approximation

4 Stability set approximation
Liouville’s transport PDE
Outer approximation of the AI set

5 Projects
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Liouville’s formalism

Probabilistic heuristic

ẋ = f(x) ; x ∈ X b Rn ; x(0) = X0 ∼ P0

=⇒ x(t |X0) is a random variable Xt ∼ Pt .
N.B.: P0 = δx0 =⇒ Pt = δx(t | x0) (deterministic case)

Theorem (Liouville)

∂

∂t
Pt + div(f Pt) = 0 (8)

Integral Liouville PDE

P0 ←→ µ0, Pτ ←→ µT , Pt(dx) dt ←→ µ(dt, dx)

∂µ

∂t
+ div(f µ) = µ0 ⊗ δt=0 − µT ⊗ δt=τ (9)
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ẋ = f(x) ; x ∈ X b Rn ; x(0) = X0 ∼ P0

=⇒ x(t |X0) is a random variable Xt ∼ Pt .
N.B.: P0 = δx0 =⇒ Pt = δx(t | x0) (deterministic case)

Theorem (Liouville)

∂

∂t
Pt + div(f Pt) = 0 (8)

Integral Liouville PDE

P0 ←→ µ0,

Pτ ←→ µT , Pt(dx) dt ←→ µ(dt, dx)

∂µ

∂t
+ div(f µ) = µ0 ⊗ δt=0 − µT ⊗ δt=τ (9)

Matteo Tacchi PhD Seminar Toulouse, January 24th 2019 28 / 33



Liouville’s formalism

Probabilistic heuristic
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GMP for AI set estimation

The problem on measures

vol(X0) = maxµ0(X) (10)

s.t. µ ∈M([0, τ ]× X)+ (11)

µ0, µ̄0 ∈M(X)+ (12)

µT ∈M(XT )+ ⊂M(X)+ (13)

µ0 + µ̄0 = λX (14)

∂µ

∂t
+ div(f µ) = µ0 ⊗ δt=0 − µT ⊗ δt=τ (15)

Statistical physics interpretation

Maximize (10) density ρ0 ≤ 1 (12),(14) of particles transported by
equation (15) that end up in XT (13) in time τ (11).
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Dual GMP for AI set estimation

The problem on functions

vol(X0) = inf

∫
X
w(x)dx (16)

s.t. ∀x ∈ X,w(x) ≥ 0

∀x ∈ X,w(x) ≥ v(0, x) + 1

∀x ∈ XT , v(τ , x) ≥ 0

∀t ∈ [0, τ ], x ∈ X,
∂v

∂t
(t, x) +∇v(t, x) · f(x) ≤ 0 (17)

Remark

Constraint (17) reminds of a Lyapunov inequality.

Set approximation

X̂d
0 := {x ∈ X ; wd(x) ≥ 1} is an outer approximation of X0 !
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Parsimonious ROA estimation

Problem statement

Assess the stability of the system

∀i , j ∈ {1, . . . ,m},

{
ẋi = fi (xi , yi )

gij(xi , yi , xj , yj) = 0 ; (gij)ij “sparse”
(18)

Adapting parsimony to algebraically coupled dynamics

Inner ROA estimation ' lower estimation of ROA volume

We developed parsimony for volume computation

Combine both → parsimonious algo. for ROA/MPI/IAS estimation
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Question Time
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