Free-matrices min-projection control for high frequency DC-DC converters

M. Serieye, C. Albea Sanchez \& A. Seuret

LAAS-CNRS, Toulouse, France

December $11^{\text {th }}-13^{\text {th }} 2019$
$A \begin{aligned} & \text { ACENCE } \\ & \text { NATIONALE } \\ & \text { DE LA } \\ & \text { RECHERCHE }\end{aligned}$

Research on power converters control

Why should we get an interest in converters ?

- Their omnipresence
- Relevant issues
- Efficiency
- Reliability

... , how Automatic Control can improve those properties?

Plan

(1) Introduction
(2) Motivation
(3) Problem statement

4 Free-matrix based switching control design
(5) Simulation
(6) Conclusion

Switched Affine Systems

$$
\begin{aligned}
\dot{z}(t)=\mathbf{A}_{\sigma} z(t)+\mathbf{b}_{\sigma}, & \text { (1) } & \bullet z(t) \in \mathbb{R}^{n}: \text { state vector } \\
& & \bullet \sigma \in \mathbb{K}:=\{1, \ldots, N\}: \text { control input }
\end{aligned}
$$

$\mathbf{A}_{\sigma} \in\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}\right\}$ and $\mathbf{b}_{\sigma} \in\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{N}\right\}$ are matrices of suited dimension
Assumption 1
Existence of a couple $\left(z_{e}, \lambda\right) \in \mathbb{R}^{n} \times \Lambda_{\mathbb{K}}$

$$
\Omega_{e}=\left\{z_{e} \in \mathbb{R}^{n}, \mathbf{A}_{\lambda} z_{e}+\mathbf{b}_{\lambda}=0, \quad \lambda \in \Lambda_{\mathbb{K}}\right\}
$$

Notation

$$
\begin{gathered}
\Lambda_{\mathbb{K}}:=\left\{\lambda=\left[\lambda_{1}, \ldots, \lambda_{N}\right] \in \mathbb{R}^{N}: \lambda_{i} \geq 0, \sum_{i=1}^{N} \lambda_{i}=1\right\}, \\
\mathbf{A}_{\lambda}:=\sum_{i \in \mathbb{K}} \lambda_{i} \mathbf{A}_{i}, \quad \mathbf{b}_{\lambda}:=\sum_{i \in \mathbb{K}} \lambda_{i} \mathbf{b}_{i} .
\end{gathered}
$$

Switched Affine Systems

$$
\begin{aligned}
\dot{z}(t)=\mathbf{A}_{\sigma} z(t)+\mathbf{b}_{\sigma}, & \text { (1) } & \bullet z(t) \in \mathbb{R}^{n}: \text { state vector } \\
& & \bullet \sigma \in \mathbb{K}:=\{1, \ldots, N\} \text { : control input }
\end{aligned}
$$

$\mathbf{A}_{\sigma} \in\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{N}\right\}$ and $\mathbf{b}_{\sigma} \in\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{N}\right\}$ are matrices of suited dimension
Assumption 1
Existence of a couple $\left(z_{e}, \lambda\right) \in \mathbb{R}^{n} \times \Lambda_{\mathbb{K}}$

$$
\Omega_{e}=\left\{z_{e} \in \mathbb{R}^{n}, \quad \mathbf{A}_{\lambda} z_{e}+\mathbf{b}_{\lambda}=0, \quad \lambda \in \Lambda_{\mathbb{K}}\right\}
$$

Error equation

$$
\begin{aligned}
\dot{x}(t)=\mathbf{A}_{\sigma} x(t)+\mathcal{B}_{\sigma}, \quad(2) & \bullet x(t):=z(t)-z_{e} \\
& \bullet \mathcal{B}_{\sigma}=\mathbf{A}_{\sigma} z_{e}+\mathbf{b}_{\sigma}
\end{aligned}
$$

Periodic sampled-data control

- Control laws that consider min-projection strategy :
(Deaecto and Geromel, 2017), (Hauroigne et al., 2011) and (Hetel and Fridman, 2013)
\rightarrow No suitable for high frequency systems
\rightarrow Depends on the Lyapunov matrix or systems matrices
- Control law that consider high frequency model :
(Ventosa-Cutillas et al., 2018)
\rightarrow Invariance of the set is not proven

The discretization with δ-operator

Assumption 2
The sampling period is very small, $T \ll 1$
δ-operator (Middleton and Goodwin, 1986)
For any function ξ from \mathbb{R}^{+}to \mathbb{R}^{n}, the vector $\delta \xi_{k}$, at any sampling instant $t_{k} \in \mathbb{R}^{+}$, is defined as follows:

$$
\delta \xi_{k}:=\frac{1}{T}\left(\xi_{k+1}-\xi_{k}\right), \quad \forall k \geq 0
$$

Notation
$\delta \xi_{k}=\delta \xi\left(t_{k}\right)$ and $\xi_{k}=\xi\left(t_{k}\right)$

The discretization with δ-operator

Hence, we have

$$
\begin{equation*}
\delta x_{k}=A_{\sigma} x_{k}+B_{\sigma}, \tag{3}
\end{equation*}
$$

where matrices A_{σ} and B_{σ}, with $\sigma \in \mathbb{K}$, are given by

$$
A_{\sigma}=\frac{1}{T}\left(e^{\mathbf{A}_{\sigma} T}-l\right), \quad B_{\sigma}=\frac{1}{T} \int_{0}^{T} e^{\mathbf{A}_{\sigma}(T-s)} d s \mathcal{B}_{\sigma}
$$

Remark 1
When $T \rightarrow 0$

$$
A_{\sigma} \rightarrow \mathbf{A}_{\sigma} \quad \text { and } \quad B_{\sigma} \rightarrow \mathcal{B}_{\sigma}
$$

Attractor set and stability

Lyapunov function
Attractors expressed as a level set of a Lyapunov function

$$
\begin{equation*}
V\left(x, x_{c}\right)=\left(x-x_{c}\right)^{T} P\left(x-x_{c}\right) \tag{4}
\end{equation*}
$$

Attractor

$$
\begin{equation*}
\mathcal{A}\left(x_{c}\right):=\left\{x \in \mathbb{R}^{n} \mid V\left(x, x_{c}\right)<1\right\} \tag{5}
\end{equation*}
$$

Stability

The set $\mathcal{A}\left(x_{c}\right)$ is Uniformly Globally Asymptotically Stable if

1. if $x_{k} \notin \mathcal{A}\left(x_{c}\right)$, then $T \delta V\left(x_{k}, x_{c}\right)=V\left(x_{k+1}, x_{c}\right)-V\left(x_{k}, x_{c}\right)<0$
2. $x=0 \in \mathcal{A}\left(x_{c}\right)$
3. whenever $x_{k} \in \mathcal{A}\left(x_{c}\right)$, then $x_{k+1} \in \mathcal{A}\left(x_{c}\right)$

Switching control law

- σ depends on x_{k}

Switching control law

- σ depends on x_{k}
- Free-matrices min-projection control law

Switching control law

- σ depends on x_{k}
- Free-matrices min-projection control law

$$
\sigma \in \underset{i \in \mathbb{K}}{\operatorname{argmin}}\left[\begin{array}{c}
x_{k} \tag{6}\\
1
\end{array}\right]^{T} N_{i}\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right]
$$

$N_{\lambda}:=\sum_{i \in \mathbb{K}} \lambda_{i} N_{i}$

Switching control law

- σ depends on x_{k}
- Free-matrices min-projection control law

$$
\sigma \in \underset{i \in \mathbb{K}}{\operatorname{argmin}}\left[\begin{array}{c}
x_{k} \tag{6}\\
1
\end{array}\right]^{T} N_{i}\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right]
$$

$N_{\lambda}:=\sum_{i \in \mathbb{K}} \lambda_{i} N_{i}$

- Suitable for high frequency

Main Result

Theorem 1

For a given $z_{e} \in \Omega_{e}$ and a given parameter $\mu \in(0,1)$, assume that matrices $P \in \mathbb{R}^{n \times n} \succ 0, h \in \mathbb{R}^{n}$, and $N_{i}=N_{i}^{T} \in \mathbb{R}^{(n+1) \times(n+1)}$ are the solutions to the optimization problem

$$
\begin{array}{ll}
\min _{\mu, P, h, N_{i}} & -\log (\operatorname{det}(P)) \\
\text { s.t. } & P \succ 0 \\
& L M I_{1}\left(A_{i}, B_{i}, P, h, N_{i}, \lambda\right) \prec 0, \quad \forall i \in \mathbb{K}, \\
& L M I_{2}\left(B_{\lambda}, P, h, \lambda\right) \succ 0,
\end{array}
$$

Then, the control law ensures that $\mathcal{A}\left(-P^{-1} h\right)$ is UGAS for system and of a minimum volume.

Proof

Assumption 3

$P, h, N_{i}, i \in \mathbb{K}$: a solution to the convex problem, for a given $\mu \in(0,1)$

At any t_{k}, the control law ensures :

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right]^{\top}\left(N_{\lambda}-N_{\sigma}\right)\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right] } & \geq 0 \quad\left[\begin{array}{c}
x \\
1
\end{array}\right]^{\top}\left[\begin{array}{cc}
P & h \\
h^{\top} & h^{\top} P^{-1} h-1
\end{array}\right]\left[\begin{array}{l}
x \\
1
\end{array}\right]>0 \\
\delta V & =\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right]^{\top} \Psi_{\sigma}\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right]^{\prime}
\end{aligned}
$$

Proof

Assumption 3

$P, h, N_{i}, i \in \mathbb{K}$: a solution to the convex problem, for a given $\mu \in(0,1)$

At any t_{k}, the control law ensures :

$$
\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right]^{\top}\left(N_{\lambda}-N_{\sigma}\right)\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right] \geq 0
$$

$$
\delta V=\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right]^{\top} \Psi_{\sigma}\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right]<0
$$

Using S-procedures, into the existence of a positive scalar $\mu>0$, then using the Schur complement, we obtain $L M I_{1}$

Proof

1. \rightarrow Computing convex combination, weighted by λ, we obtain $L M I_{2}$ 2. \rightarrow With

$$
\begin{aligned}
V\left(x_{k+1},-P^{-1} h\right) & =V\left(x_{k},-P^{-1} h\right)+T \delta V \\
& =V\left(x_{k},-P^{-1} h\right)+T\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right]^{\top} \Psi_{\sigma}\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right] \\
& \leq(1-\mu) V\left(x_{k},-P^{-1} h\right)+\mu
\end{aligned}
$$

Example Boost converter

$\dot{z}(t)=\mathbf{A}_{\sigma} z(t)+\mathbf{b}_{\sigma}$
$\mathbf{A}_{\sigma}=\left[\begin{array}{cc}-\frac{R}{L} & \frac{(1-\sigma)}{L} \\ \frac{(\sigma-1)}{C_{o}} & -\frac{1}{R_{o} C_{o}}\end{array}\right], \quad \mathbf{b}_{\sigma}=\left[\begin{array}{c}\frac{V_{i n}}{L} \\ 0\end{array}\right], \quad z_{e}=\left[\begin{array}{c}3 \\ 120\end{array}\right] \Rightarrow \lambda=\left[\begin{array}{c}0.22 \\ 0.78\end{array}\right]$

T	μ	$(\operatorname{det}(P))^{\frac{1}{2}}$	x_{c}
3.10^{-5}	0.113	393.42	$\left[\begin{array}{ll}1.669 & -4.099\end{array}\right]$
10^{-5}	0.013	54.08	$\left[\begin{array}{ll}0.1506 & -0.3214\end{array}\right]$
10^{-6}	0.001	5.57	$\left[\begin{array}{ll}0.0146 & -0.03012\end{array}\right]$

Values
$V_{\text {in }}=100 \mathrm{~V}, R=2 \Omega, L=500 \mu H, C_{o}=470 \mu F$ and $R_{o}=50 \Omega$.

Example Boost converter

Conclusions \& Perspectives

Conclusions

- The introduction of a free-matrices min-projection control law.
- Control design for discrete time switched affine systems using the delta-operator for high-frequency.

Conclusions \& Perspectives

Conclusions

- The introduction of a free-matrices min-projection control law.
- Control design for discrete time switched affine systems using the delta-operator for high-frequency.

Perspectives

- Robustness to parameter uncertainties or variation in the sampling period.

Thank you!

Main result

Theorem 1

For a given $z_{e} \in \Omega_{e}$ and a given parameter $\mu \in(0,1)$, assume that matrices $P \in \mathbb{R}^{n \times n} \succ 0, h \in \mathbb{R}^{n}$, and $N_{i}=N_{i}^{T} \in \mathbb{R}^{(n+1) \times(n+1)}$ are the solutions to the optimization problem

$$
\begin{array}{ll}
\min _{\mu, P, h, N_{i}} & -\log (\operatorname{det}(P)) \\
\quad \text { s.t. } & P \succ 0, \\
{\left[\begin{array}{rrr}
\Psi_{i}+N_{\lambda}-N_{i}-\frac{\mu}{T}\left[\begin{array}{ll}
0 & 0 \\
* & 1
\end{array}\right] & \frac{\mu}{T}\left[\begin{array}{c}
P \\
h^{\top}
\end{array}\right] \\
& * & -\frac{\mu}{T} P
\end{array}\right] \prec 0, \quad \forall i \in \mathbb{K},} \\
\operatorname{He}\left(h^{\top} B_{\lambda}\right)+T \sum_{i \in \mathbb{K}} \lambda_{i} B_{i}^{\top} P B_{i} \succ 0, \tag{10}
\end{array}
$$

Main result

where

$$
\begin{align*}
\Psi_{i} & :=\operatorname{He}\left(\left[\begin{array}{l}
A_{i}^{\top} \\
B_{i}^{\top}
\end{array}\right]\left[\begin{array}{ll}
P & h
\end{array}\right]\right)+T\left[\begin{array}{c}
A_{i}^{\top} \\
B_{i}^{\top}
\end{array}\right] P\left[\begin{array}{ll}
A_{i} & B_{i}
\end{array}\right] \tag{11}\\
N_{\lambda} & :=\sum \lambda_{i} N_{i} . \tag{12}
\end{align*}
$$

Then, the switching control law given by

$$
\sigma \in \underset{i \in \mathbb{K}}{\operatorname{argmin}}\left[\begin{array}{c}
x_{k} \tag{13}\\
1
\end{array}\right]^{T} N_{i}\left[\begin{array}{c}
x_{k} \\
1
\end{array}\right]
$$

ensures that $\mathcal{A}\left(-P^{-1} h\right)$ is UGAS for system and of a minimum size.

Example Boost Converter

Example Boost Converter

Deaecto, G. and Geromel, J. (2017). Stability analysis and control design of discrete-time switched affine systems. IEEE Trans. on Automatic Control, 62(8):4058-4065.
Hauroigne, P., Riedinger, P., and lung, C. (2011). Switched affine systems using sampled-data controllers: Robust and guaranteed stabilisation. IEEE Trans. on Automatic Control, 56(12):2929-2935.
Hetel, L. and Fridman, E. (2013). Robust sampled-data control of switched affine systems. IEEE Trans. on Automatic Control, 58(11):2922-2928.
Middleton, R. and Goodwin, G. (1986). Improved Finite Word Length Characteristics in Digital Control Using Delta Operators. IEEE Trans. on Automatic Control, 31(11):1015-1021.
Ventosa-Cutillas, A., Albea, C., Seuret, A., and Gordillo, F. (2018). Relaxed periodic switching controllers of high-frequency DC-DC converters using the δ-operator formulation. In 2018 IEEE Conference on Decision and Control (CDC), pages 3433-3438. IEEE.

