Free-matrices min-projection control for high frequency DC-DC converters

M. Serieye, C. Albea Sanchez & A. Seuret

LAAS-CNRS, Toulouse, France

December 11th-13th 2019

1/19

CDC 2019 conference

Research on power converters control

Why should we get an interest in converters ?

- Their omnipresence
- Relevant issues
 - Efficiency
 - Reliability

... , how Automatic Control can improve those properties?

Plan

Motivation

4 Free-matrix based switching control design

5 Simulation

Switched Affine Systems

$$\dot{z}(t) = \mathbf{A}_{\sigma} z(t) + \mathbf{b}_{\sigma},$$
 (1) $ullet z(t) \in \mathbb{R}^n$: state vector

• $\sigma \in \mathbb{K} := \{1, ..., N\}$: control input

 $\textbf{A}_{\sigma} \in \{\textbf{A}_1,...,\textbf{A}_N\}$ and $\textbf{b}_{\sigma} \in \{\textbf{b}_1,...,\textbf{b}_N\}$ are matrices of suited dimension

Notation

$$\Lambda_{\mathbb{K}} := \left\{ \lambda = [\lambda_1, ..., \lambda_N] \in \mathbb{R}^N : \lambda_i \ge 0, \ \sum_{i=1}^N \lambda_i = 1 \right\},$$
$$\mathbf{A}_{\lambda} := \sum_{i \in \mathbb{K}} \lambda_i \mathbf{A}_i, \qquad \mathbf{b}_{\lambda} := \sum_{i \in \mathbb{K}} \lambda_i \mathbf{b}_i.$$

M. Serieye (LAAS-CNRS, Toulouse, France)

Switched Affine Systems

$$\dot{z}(t) = \mathbf{A}_{\sigma} z(t) + \mathbf{b}_{\sigma},$$
 (1) $ullet z(t) \in \mathbb{R}^n$: state vector

• $\sigma \in \mathbb{K} := \{1, ..., N\}$: control input

 $\mathbf{A}_{\sigma} \in \{\mathbf{A}_1,...,\mathbf{A}_N\}$ and $\mathbf{b}_{\sigma} \in \{\mathbf{b}_1,...,\mathbf{b}_N\}$ are matrices of suited dimension

$$\begin{array}{l} \text{Assumption 1} \\ \hline\\ \text{Existence of a couple } (z_e,\lambda) \in \mathbb{R}^n \times \Lambda_{\mathbb{K}} \\ \\ \Omega_e = \{z_e \in \mathbb{R}^n, \; \mathbf{A}_{\lambda} z_e + \mathbf{b}_{\lambda} = 0, \quad \lambda \in \Lambda_{\mathbb{K}}\}, \end{array}$$

Error equation

$$\dot{x}(t) = \mathbf{A}_{\sigma} x(t) + \mathcal{B}_{\sigma},$$
 (2) • $x(t) := z(t) - z_e$
• $\mathcal{B}_{\sigma} = \mathbf{A}_{\sigma} z_e + \mathbf{b}_{\sigma}$

Periodic sampled-data control

- Control laws that consider min-projection strategy : (Deaecto and Geromel, 2017), (Hauroigne et al., 2011) and (Hetel and Fridman, 2013)
 - $\rightarrow~$ No suitable for high frequency systems
 - $\rightarrow\,$ Depends on the Lyapunov matrix or systems matrices
- Control law that consider high frequency model : (Ventosa-Cutillas et al., 2018)
 - $\rightarrow~$ Invariance of the set is not proven

The discretization with $\delta\text{-operator}$

δ -operator (Middleton and Goodwin, 1986)

For any function ξ from \mathbb{R}^+ to \mathbb{R}^n , the vector $\delta \xi_k$, at any sampling instant $t_k \in \mathbb{R}^+$, is defined as follows:

$$\delta \xi_k := rac{1}{T} (\xi_{k+1} - \xi_k), \qquad orall k \geq 0,$$

Notation

$$\delta \xi_k = \delta \xi(t_k)$$
 and $\xi_k = \xi(t_k)$

M. Serieye (LAAS-CNRS, Toulouse, France)

The discretization with $\delta\text{-operator}$

Hence, we have

$$\delta x_k = A_\sigma x_k + B_\sigma, \tag{3}$$

where matrices A_{σ} and B_{σ} , with $\sigma \in \mathbb{K}$, are given by

$$A_{\sigma} = rac{1}{T} (e^{\mathbf{A}_{\sigma}T} - I), \qquad \qquad B_{\sigma} = rac{1}{T} \int_{0}^{T} e^{\mathbf{A}_{\sigma}(T-s)} ds \mathcal{B}_{\sigma}$$

Attractor set and stability

Lyapunov function

Attractors expressed as a level set of a Lyapunov function

$$V(x, x_c) = (x - x_c)^T P(x - x_c),$$
 (4)

Attractor

$$\mathcal{A}(x_c) := \{ x \in \mathbb{R}^n \mid V(x, x_c) < 1 \}$$
(5)

Stability

The set $\mathcal{A}(x_c)$ is Uniformly Globally Asymptotically Stable if 1. if $x_k \notin \mathcal{A}(x_c)$, then $T\delta V(x_k, x_c) = V(x_{k+1}, x_c) - V(x_k, x_c) < 0$ 2. $x = 0 \in \mathcal{A}(x_c)$

3. whenever
$$x_k \in \mathcal{A}(x_c)$$
, then $x_{k+1} \in \mathcal{A}(x_c)$

• σ depends on x_k

- σ depends on x_k
- Free-matrices min-projection control law

- σ depends on x_k
- Free-matrices min-projection control law

$$\sigma \in \underset{i \in \mathbb{K}}{\operatorname{argmin}} \begin{bmatrix} x_k \\ 1 \end{bmatrix}^T N_i \begin{bmatrix} x_k \\ 1 \end{bmatrix}$$
(6)

$$N_{\lambda} := \sum_{i \in \mathbb{K}} \lambda_i N_i$$

- σ depends on x_k
- Free-matrices min-projection control law

$$\sigma \in \underset{i \in \mathbb{K}}{\operatorname{argmin}} \begin{bmatrix} x_k \\ 1 \end{bmatrix}^{\mathsf{T}} N_i \begin{bmatrix} x_k \\ 1 \end{bmatrix}$$
(6)

$$N_{\lambda} := \sum_{i \in \mathbb{K}} \lambda_i N_i$$

• Suitable for high frequency

Main Result

Theorem 1 For a given $z_e \in \Omega_e$ and a given parameter $\mu \in (0,1)$, assume that matrices $P \in \mathbb{R}^{n \times n} \succ 0$, $h \in \mathbb{R}^n$, and $N_i = N_i^T \in \mathbb{R}^{(n+1) \times (n+1)}$ are the solutions to the optimization problem $\min_{P \in \mathcal{P}} - \log(\det(P))$ μ, P, h, N_i s.t. $P \succ 0$, $LMI_1(A_i, B_i, P, h, N_i, \lambda) \prec 0, \quad \forall i \in \mathbb{K},$ $LMI_2(B_{\lambda}, P, h, \lambda) \succ 0$, Then, the control law ensures that $\mathcal{A}(-P^{-1}h)$ is UGAS for system and of a minimum volume.

Proof

 $P, h, N_i, i \in \mathbb{K}$: a solution to the convex problem, for a given $\mu \in (0, 1)$

At any t_k , the control law ensures :

$$\forall x \in \mathbb{R}^n$$
, s.t. $V(x, -P^{-1}h) > 1$,
we have :

$$\begin{bmatrix} x_k \\ 1 \end{bmatrix}^{\top} (N_{\lambda} - N_{\sigma}) \begin{bmatrix} x_k \\ 1 \end{bmatrix} \ge 0 \qquad \begin{bmatrix} x \\ 1 \end{bmatrix}^{\top} \begin{bmatrix} P & h \\ h^{\top} & h^{\top} P^{-1} h - 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} > 0$$

$$\delta V = \begin{bmatrix} x_k \\ 1 \end{bmatrix}^\top \Psi_\sigma \begin{bmatrix} x_k \\ 1 \end{bmatrix}$$

Proof

 $P, h, N_i, i \in \mathbb{K}$: a solution to the convex problem, for a given $\mu \in (0, 1)$

At any t_k , the control law ensures :

 $\forall x \in \mathbb{R}^n$, s.t. $V(x, -P^{-1}h) > 1$, we have :

$$\begin{bmatrix} x_k \\ 1 \end{bmatrix}^\top (N_\lambda - N_\sigma) \begin{bmatrix} x_k \\ 1 \end{bmatrix} \ge 0 \qquad \qquad \begin{bmatrix} x \\ 1 \end{bmatrix}^\top \begin{bmatrix} P & h \\ h^\top & h^\top P^{-1}h - 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} > 0$$

$$\delta V = \begin{bmatrix} x_k \\ 1 \end{bmatrix}^\top \Psi_\sigma \begin{bmatrix} x_k \\ 1 \end{bmatrix} < 0$$

Using S-procedures, into the existence of a positive scalar $\mu > 0$, then using the Schur complement, we obtain LMI_1

Proof

1. \rightarrow Computing convex combination, weighted by $\lambda,$ we obtain LMI_2 2. \rightarrow With

$$V(x_{k+1}, -P^{-1}h) = V(x_k, -P^{-1}h) + T\delta V$$

= $V(x_k, -P^{-1}h) + T \begin{bmatrix} x_k \\ 1 \end{bmatrix}^\top \Psi_\sigma \begin{bmatrix} x_k \\ 1 \end{bmatrix}$
 $\leq (1-\mu)V(x_k, -P^{-1}h) + \mu$

Example Boost converter

$$\dot{z}(t) = \mathbf{A}_{\sigma} z(t) + \mathbf{b}_{\sigma}$$
$$\mathbf{A}_{\sigma} = \begin{bmatrix} -\frac{R}{L} & \frac{(1-\sigma)}{L} \\ \frac{(\sigma-1)}{C_{\sigma}} & -\frac{1}{R_{\sigma}C_{\sigma}} \end{bmatrix}, \quad \mathbf{b}_{\sigma} = \begin{bmatrix} \frac{V_{in}}{L} \\ 0 \end{bmatrix}, \quad z_{e} = \begin{bmatrix} 3 \\ 120 \end{bmatrix} \Rightarrow \lambda = \begin{bmatrix} 0.22 \\ 0.78 \end{bmatrix}$$

Т	μ	$(det(P))^{\frac{1}{2}}$	X _c
3.10 ⁻⁵	0.113	393.42	$\begin{bmatrix} 1.669 & -4.099 \end{bmatrix}^ op$
10 ⁻⁵	0.013	54.08	$\begin{bmatrix} 0.1506 & -0.3214 \end{bmatrix}^{ op}$
10 ⁻⁶	0.001	5.57	$\begin{bmatrix} 0.0146 & -0.03012 \end{bmatrix}^{\top}$

Values

$$V_{in}=100V$$
, $R=2\Omega$, $L=500\mu H$, $C_o=470\mu F$ and $R_o=50\Omega$.

Example Boost converter

Conclusions & Perspectives

Conclusions

- The introduction of a free-matrices min-projection control law.
- Control design for discrete time switched affine systems using the delta-operator for high-frequency.

Conclusions & Perspectives

Conclusions

- The introduction of a free-matrices min-projection control law.
- Control design for discrete time switched affine systems using the delta-operator for high-frequency.

Perspectives

Robustness to parameter uncertainties or variation in the sampling period.

Thank you !

Appendix

Main result

Theorem 1 For a given $z_e \in \Omega_e$ and a given parameter $\mu \in (0,1)$, assume that matrices $P \in \mathbb{R}^{n \times n} \succ 0$, $h \in \mathbb{R}^n$, and $N_i = N_i^T \in \mathbb{R}^{(n+1) \times (n+1)}$ are the solutions to the optimization problem $\min_{\mu,P,h,N_i} \quad -\log(\det(P))$ (7)s.t. $P \succ 0$. (8) $\begin{bmatrix} \Psi_i + N_\lambda - N_i - \frac{\mu}{T} \begin{bmatrix} 0 & 0 \\ * & 1 \end{bmatrix} & \frac{\mu}{T} \begin{bmatrix} P \\ h^{\top} \end{bmatrix} \\ * & -\frac{\mu}{T} P \end{bmatrix} \prec 0, \quad \forall i \in \mathbb{K},$ (9) $\mathsf{He}\left(h^{\top}B_{\lambda}
ight) + T\sum_{i \in \mathbb{K}}\lambda_{i}B_{i}^{\top}PB_{i} \succ 0,$ (10)

M. Serieye (LAAS-CNRS, Toulouse, France)

Main result

Theorem 1 (cont.)				
where				
$\Psi_i := He \left(\begin{bmatrix} A_i^\top \\ B_i^\top \end{bmatrix} \begin{bmatrix} P & h \end{bmatrix} \right) + T \begin{bmatrix} A_i^\top \\ B_i^\top \end{bmatrix} P \begin{bmatrix} A_i & B_i \end{bmatrix},$	(11)			
$N_{\lambda} := \sum \lambda_i N_i.$	(12)			
Then, the switching control law given by				
$\sigma \in \operatorname*{argmin}_{i \in \mathbb{K}} egin{bmatrix} x_k \ 1 \end{bmatrix}^T oldsymbol{N}_i egin{bmatrix} x_k \ 1 \end{bmatrix}$	(13)			
ensures that $\mathcal{A}(-P^{-1}h)$ is UGAS for system and of a minimum size.				

Example Boost Converter

Example Boost Converter

- Deaecto, G. and Geromel, J. (2017). Stability analysis and control design of discrete-time switched affine systems. *IEEE Trans. on Automatic Control*, 62(8):4058–4065.
- Hauroigne, P., Riedinger, P., and lung, C. (2011). Switched affine systems using sampled-data controllers: Robust and guaranteed stabilisation. *IEEE Trans. on Automatic Control*, 56(12):2929–2935.
- Hetel, L. and Fridman, E. (2013). Robust sampled–data control of switched affine systems. *IEEE Trans. on Automatic Control*, 58(11):2922–2928.
- Middleton, R. and Goodwin, G. (1986). Improved Finite Word Length Characteristics in Digital Control Using Delta Operators. *IEEE Trans. on Automatic Control*, 31(11):1015–1021.
- Ventosa-Cutillas, A., Albea, C., Seuret, A., and Gordillo, F. (2018). Relaxed periodic switching controllers of high-frequency DC-DC converters using the δ -operator formulation. In 2018 IEEE Conference on Decision and Control (CDC), pages 3433–3438. IEEE.