Magnetic force modelling and nonlinear switched control of an electromagnetic actuator

58^{TH} IEEE Conference on Decision and Control Flavien Deschaux - Frederic Gouaisbaut - Yassine Ariba

Outline

Outline

1 - Introduction

- System presentation
- Problem statement

2 -Magnetic modelling

- Magnetic force measurement
- Magnetic force modeling

3 -Local nonlinear control law design

- Mechanical subsystem stabilization by backstepping
- Convergence of the complete system

4 -Global strategies design

- Validity region expansion
- Intuitive global strategy
- Hybrid global strategy

5-Simulation & Conclusion

Introduction

System presentation :

FIGURE – Schematic of the EMA

State space representation :

$$x = \begin{pmatrix} x_1 & \text{Moving part position} \\ x_2 & \text{Moving part speed} \\ x_3 & \text{Magnetic coil current} \end{pmatrix}$$
(1)

Introduction

Problem statement

State space system :

$$\begin{cases}
\dot{x}_{1} = x_{2}, \\
\dot{x}_{2} = \frac{1}{m} \left[-F_{mag}(x_{1}, x_{3}) - \lambda x_{2} - K(x_{1} - x_{0}) \right], \\
\dot{x}_{3} = \frac{1}{L(x_{1}, x_{3})} \left[u - Rx_{3} + x_{2}x_{3}\frac{\partial L}{\partial x_{1}} \right].
\end{cases}$$
(2)

Introduction

Problem statement

State space system :

$$\begin{pmatrix} \dot{x}_1 &= x_2, \\ \dot{x}_2 &= \frac{1}{m} \left[-F_{mag}(x_1, x_3) - \lambda x_2 - K(x_1 - x_0) \right], \\ \dot{x}_3 &= \frac{1}{L(x_1, x_3)} \left[u - Rx_3 + x_2 x_3 \frac{\partial L}{\partial x_1} \right].$$

$$(2)$$

Paper goal :

- Develop a new magnetic force model.
- The actuator position x_1 has to track a reference signal y_r

Magnetic force measurment

FIGURE – Testbench of force measurment

Magnetic force measurment

FIGURE - Comparison between analytical model and measurements

Magnetic force modelling

A method from [Yan, 2000] and [Wang, 2002] was adapted to take into account the magnetic saturation in the force modelling :

$$F_{mag}(x_1, x_3) = \begin{cases} F_{mag}^{lin} & \text{if } x_3 \le i_s(x_1), \\ F_{mag}^{sat} & \text{if } x_3 > i_s(x_1). \end{cases}$$
(3)

with

$$\begin{cases}
F_{mag}^{lin} = \frac{1}{2}x_3^2 \frac{dL}{dx_1} \\
F_{mag}^{sat} = p_1(x_1)e^{p_2(x_1)x_3} + p_3(x_1)e^{p_4(x_1)x_3} + cor(x_1).
\end{cases}$$
(4)

<u>Remark</u>: The functions $p_i(x_1)$ and $cor(x_1)$ are given by a parameter identification from optimization tools

Magnetic force modelling

FIGURE - Comparaison between switched analytical model and measurements

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = \frac{1}{m} \left[-F_{mag}(x_1, x_3) - \lambda x_2 - K(x_1 - x_0) \right]. \end{cases}$$
(5)

$$\begin{cases} \dot{x}_1 = x_2, \\ \\ \dot{x}_2 = \frac{1}{m} \left[-F_{mag}(x_1, x_3) - \lambda x_2 - K(x_1 - x_0) \right]. \end{cases}$$
(5)

Aim : Find the desired current x_{3d} that stabilises the subsystem.

- Problem : Complicated to express x_{3d} due to the expression of $F_{mag}(x_1, x_3)$.
- Solution : More convenient to find the desired magnetic force F_d to stabilize this subsystem.

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = \frac{1}{m} \left[-F_{mag}(x_1, x_3) - \lambda x_2 - K(x_1 - x_0) \right]. \end{cases}$$
(5)

Aim : Find the desired current x_{3d} that stabilises the subsystem.

- Problem : Complicated to express x_{3d} due to the expression of $F_{mag}(x_1, x_3)$.
- Solution : More convenient to find the desired magnetic force F_d to stabilize this subsystem.

Theorem

Consider
$$\alpha_1$$
, α_2 two positives scalars, the virtual control law
 $F_d = m (az_1 + (b + \alpha_2)z_2 - d)$ with $a = 1 - \alpha_1^2 + \frac{\lambda}{m}\alpha_1 - \frac{K}{m}$, $b = \alpha_1 - \frac{\lambda}{m}$
and $d = \frac{K}{m}(y_r - x_0)$. makes the subsystem (5) converge to $(y_r, 0)$.

Proof

Step 1 : define errors variables such that x_1 follow the reference signal y_r :

$$\begin{cases} z_1 = x_1 - y_r, \\ z_2 = x_2 + \alpha_1 z_1, \end{cases}$$

Step 2 : use a Lyapunov function to prove stability

$$V_1 = \frac{1}{2}z_1^2 + \frac{1}{2}z_2^2$$

The derivative of V_1 , if $F_{mag} = F_d$ is equal to :

$$\dot{V}_1 = -\alpha_1 z_1^2 - \alpha_2 z_2^2 \le 0 \quad \forall z_1, z_2$$

Proof

Step 1 : define errors variables such that x_1 follow the reference signal y_r :

$$\begin{cases} z_1 = x_1 - y_r, \\ z_2 = x_2 + \alpha_1 z_1, \end{cases}$$

Step 2 : use a Lyapunov function to prove stability

$$V_1 = \frac{1}{2}z_1^2 + \frac{1}{2}z_2^2$$

The derivative of V_1 , if $F_{mag} = F_d$ is equal to :

$$\dot{V}_1 = -\alpha_1 z_1^2 - \alpha_2 z_2^2 \le 0 \quad \forall z_1, z_2$$

Remark

Notice that, by construction F_{mag} is always positive, while the expression of the desired force F_d may be not always positive.

Definition : validity region

Lemma

The estimation of the validity region is defined by the largest level line of $V(z_1, z_2)$ where there is a single intersection point between V and $\mathbf{F}_d = 0$. This set is defined as : $\exists C \in \mathbb{R}^+$ such that $\mathbb{D} = \{(z_1, z_2) \in \mathbb{R}^2 | V(z_1, z_2) \leq C\}.$

FIGURE – Approximation of the validity region for $\alpha_1 = \alpha_2 = 100$

Local convergence of the complete system

The full system (6) is now considered :

$$\begin{cases}
\dot{z}_{1} = -\alpha_{1}z_{1} + z_{2}, \\
\dot{z}_{2} = \frac{1}{m} \left[-F_{mag}(z_{1}, x_{3}) - \lambda(z_{2} - \alpha_{1}z_{1}) - K(z_{1} + y_{r} - x_{0}) \right] \\
+ \alpha_{1}z_{2} - \alpha_{1}^{2}z_{1}. \\
\dot{x}_{3} = \frac{1}{L(z_{1}, x_{3})} \left[u - Rx_{3} + (z_{2} - \alpha_{1}z_{1})x_{3}\frac{\partial L}{\partial z_{1}} \right].
\end{cases}$$
(6)

Local convergence of the complete system

The full system (6) is now considered :

$$\begin{pmatrix}
\dot{z}_1 = -\alpha_1 z_1 + z_2, \\
\dot{z}_2 = \frac{1}{m} \left[-F_{mag}(z_1, x_3) - \lambda(z_2 - \alpha_1 z_1) - K(z_1 + y_r - x_0) \right] \\
+ \alpha_1 z_2 - \alpha_1^2 z_1. \\
\dot{x}_3 = \frac{1}{L(z_1, x_3)} \left[u - Rx_3 + (z_2 - \alpha_1 z_1) x_3 \frac{\partial L}{\partial z_1} \right].$$
(6)

Theorem

Assume the initial condition $x_{ini} \in \mathbb{D}$, then the control

$$u = \frac{1}{g_F(z)} \left[-\alpha_3 \left(F_{mag} - F_d \right) + \frac{z_2}{m} + \dot{F}_d - f_F(z) \right],$$

with $\alpha_3 > 0$, $z = (z_1, z_2, x_3)$ and $\dot{F}_{mag} = f_F(z) + g_F(z)u$ where makes the system (6) stable and makes the position converges to y_r .

In order to optimize the size of the domain $\mathbb D,$ let consider a more general Lyapunov function candidate.

$$V = Z^T P Z, (7)$$

with $Z = (z_1, z_2)$ and P a definite positive matrix.

In order to optimize the size of the domain \mathbb{D} , let consider a more general Lyapunov function candidate.

$$V = Z^T P Z, (7)$$

with $Z = (z_1, z_2)$ and P a definite positive matrix.

Theorem If $F_d = -\frac{K}{m}(y_r - x_0) - \alpha_1 m z_1 - \alpha_2 m z_2$, $\exists P > 0$, $\exists Q > 0$ such that $\dot{V} = A^T P + PA < -Q$ and $\dot{V} < -\alpha V$ with $\alpha > 0$ and $V = Z^T PZ$.

In order to optimize the size of the domain $\mathbb D,$ let consider a more general Lyapunov function candidate.

$$V = Z^T P Z, (7)$$

with $Z = (z_1, z_2)$ and P a definite positive matrix.

Theorem If $F_d = -\frac{K}{m}(y_r - x_0) - \alpha_1 m z_1 - \alpha_2 m z_2$, $\exists P > 0$, $\exists Q > 0$ such that $\dot{V} = A^T P + PA < -Q$ and $\dot{V} < -\alpha V$ with $\alpha > 0$ and $V = Z^T PZ$.

 $\underline{\text{Tool}:}$ Use a LMI procedure to find a P matrix : $\underline{objective\ function}$

 $Min \ tr(P)$

 $under\ constraints$

$$A^T P + PA < -\alpha P$$

FIGURE - validity region optimisation

The spring equilibrium point X0 is now included in $\mathbb D$

Intuitive global strategy

- case $1: x(t) \in \mathbb{D}$ The control u of theorem 1 and $F_d = m(-\alpha_1 z_1 - \alpha_2 z_2 - d)$ are choosen and the system converges to the desired equilibrium point y_r
- case $2: x(t) \in \overline{\mathbb{D}}$ The control u = 0 is enforced and there is a time where the trajectorie x(t) hits \mathbb{D} because X0 is attractive and it returns to the case 1.

Hybrid global strategy

- case $1: x_{ini} \in \mathbb{D}$ The control uof Theorem 1 is choosen and the system converges to the desired equilibrium point $[y_r, 0]^T$
- case $2: x_{ini} \in \{F_d < 0\}$ The control u = 0 is choosen and as the spring equilibrium point $X0 \in \mathbb{D}$, there exists $t_1 > t_0$ where $x(t_1) \in \mathbb{D}$.
- case $3: x_{ini} \in \{F_d > 0\} \cap \overline{\mathbb{D}}$ The control u of Theorem 1 is choosen and the trajectories x(t) have two options : x(t)enter in \mathbb{D} or in $\{F_d = 0\}$.

Hybrid modelling of the closed-loop system

Using a token M to take into account the fact that the trajectory x(t) has ever been in region $\{F_d < 0\}$.

Hybrid modelling of the closed-loop system

Using a token M to take into account the fact that the trajectory x(t) has ever been in region $\{F_d < 0\}$. So let consider the flow set

$$\mathbb{F}_f := \{\{M = 1\} \times \{F_d \ge 0\} \text{ or } \{M = 0\} \times \{z | V(z) \le C\}\}.$$
(8)

Let consider the jump set

$$\mathbb{D}_f := \{\{M = 1\} \times \{F_d \le 0\} \text{ or } \{M = 0\} \times \{z | V(z) > C\}\}.$$
 (9)

Hybrid modelling of the closed-loop system

Using a token M to take into account the fact that the trajectory x(t) has ever been in region $\{F_d < 0\}$. So let consider the flow set

$$\mathbb{F}_f := \{\{M = 1\} \times \{F_d \ge 0\} \text{ or } \{M = 0\} \times \{z | V(z) \le C\}\}.$$
(8)

Let consider the jump set

$$\mathbb{D}_f := \{\{M = 1\} \times \{F_d \le 0\} \text{ or } \{M = 0\} \times \{z | V(z) > C\}\}.$$
 (9)

The closed loop system can be rewritten as

$$\begin{cases}
\dot{z} = f(z(t), u_M(z)) \\
\dot{M} = 0
\end{cases} \quad \text{if } (z, M) \in \mathbb{F}_f \\
z^+ = z \\
M^+ = M - 1
\end{cases} \quad \text{if } (z, M) \in \mathbb{D}_f$$
(10)

where

$$u = \begin{cases} u_1(z) = \frac{1}{g_F(z)} \left[-\alpha_3 z_3 + \frac{z_2}{m} + \dot{F}_d - f_F(z) \right] \\ u_0(z) = 0 \end{cases}$$
(11)

Convergence of the complete system

with $M(t_0) = 1$. Inspired by [Goebel et Al., 2009], the system (10) satisfies the conditions which ensures the well-posedness of the closed-loop system.

Convergence of the complete system

with $M(t_0) = 1$. Inspired by [Goebel et Al., 2009], the system (10) satisfies the conditions which ensures the well-posedness of the closed-loop system.

Theorem

Assume the closed-loop system (10), and consider the compact set $\mathbb{A} = \{x = x_{eq}, M \in \{0, 1\}\}$ then \mathbb{A} is globally asymptotically stable.

Convergence of the complete system

with $M(t_0) = 1$. Inspired by [Goebel et Al., 2009], the system (10) satisfies the conditions which ensures the well-posedness of the closed-loop system.

Theorem

Assume the closed-loop system (10), and consider the compact set $\mathbb{A} = \{x = x_{eq} , M \in \{0,1\}\}$ then \mathbb{A} is globally asymptotically stable.

FIGURE – Dynamics of the controlled subsystem

Position tracking simulation :

FIGURE - Current simulation

Conclusion

- The tracking has been achieved in simulation and more recently in the testbed
- Possible improvement : A more generic Lyapunov function with a new form of F_d may enlarge the set \mathbb{D} .
- A future paper will sum up the global work : A theoritical to an experimental work.