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Introduction

System presentation :

Figure – Schematic of the EMA

State space representation :

x =

 x1 Moving part position
x2 Moving part speed
x3 Magnetic coil current

 (1)
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Introduction

Problem statement

State space system :

ẋ1 = x2,

ẋ2 =
1

m
[−Fmag(x1, x3)− λx2 −K(x1 − x0)] ,

ẋ3 =
1

L(x1, x3)

[
u−Rx3 + x2x3

∂L

∂x1

]
.

(2)

Paper goal :

Develop a new magnetic force model.

The actuator position x1 has to track a reference signal yr
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Magnetic Modelling

Magnetic force measurment

Figure – Testbench of force measurment
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Magnetic Modelling

Magnetic force measurment

Figure – Comparison between analytical model and measurements
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Magnetic Modelling

Magnetic force modelling

A method from [Yan, 2000]and [Wang, 2002]was adapted to take into
account the magnetic saturation in the force modelling :

Fmag(x1, x3) =

{
F lin
mag if x3 ≤ is(x1),
F sat
mag if x3 > is(x1).

(3)

with 
F lin
mag =

1

2
x23

dL

dx1

F sat
mag = p1(x1)ep2(x1)x3 + p3(x1)ep4(x1)x3 + cor(x1).

(4)

Remark : The functions pi(x1) and cor(x1) are given by a parameter
identification from optimization tools
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Magnetic Modelling

Magnetic force modelling

Figure – Comparaison between switched analytical model and measurements
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Local nonlinear control law synthesis

Mechanical subsystem stabilization by Backstepping


ẋ1 = x2,

ẋ2 =
1

m
[−Fmag(x1, x3)− λx2 −K(x1 − x0)] .

(5)

Aim : Find the desired current x3d that stabilises the subsystem.

Problem : Complicated to express x3d due to the expression of Fmag(x1, x3).

Solution : More convenient to find the desired magnetic force Fd to stabilize this
susbsytem.

Theorem

Consider α1, α2 two positives scalars, the virtual control law

Fd = m (az1 + (b+ α2)z2 − d) with a = 1− α2
1 +

λ

m
α1 −

K

m
, b = α1 −

λ

m

and d =
K

m
(yr − x0). makes the subsystem (5) converge to (yr, 0).
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Local nonlinear control law synthesis

Proof

Step 1 : define errors variables such that x1 follow the reference signal yr :
z1 = x1 − yr,

z2 = x2 + α1z1,

Step 2 : use a Lyapunov function to prove stability

V1 = 1
2
z21 + 1

2
z22

The derivative of V1, if Fmag = Fd is equal to :

V̇1 = −α1z
2
1 − α2z

2
2 ≤ 0 ∀z1, z2

Remark

Notice that, by construction Fmag is always positive, while the expression
of the desired force Fd may be not always positive.
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Local nonlinear control law synthesis

Definition : validity region

Lemma

The estimation of the validity region is defined by the largest level line of
V (z1, z2) where there is a single intersection point between V and Fd = 0.
This set is defined as : ∃C ∈ R+ such that
D = {(z1, z2) ∈ R2|V (z1, z2) ≤ C}.

Figure – Approximation of the validity region for α1 = α2 = 100
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Local nonlinear control law synthesis

Local convergence of the complete system

The full system (6) is now considered :

ż1 = −α1z1 + z2,

ż2 =
1

m
[−Fmag(z1, x3)− λ(z2 − α1z1)−K(z1 + yr − x0)]

+ α1z2 − α2
1z1.

ẋ3 =
1

L(z1, x3)

[
u−Rx3 + (z2 − α1z1)x3

∂L

∂z1

]
.

(6)

Theorem

Assume the initial condition xini ∈ D, then the control

u =
1

gF (z)

[
−α3 (Fmag − Fd) +

z2
m

+ Ḟd − fF (z)
]
,

with α3 > 0, z = (z1, z2, x3) and Ḟmag = fF (z) + gF (z)u where makes the
system (6 ) stable and makes the position converges to yr.
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Global strategies design

Expansion of the validity region

In order to optimize the size of the domain D, let consider a more general
Lyapunov function candidate.

V = ZTPZ, (7)

with Z = (z1, z2) and P a definite positive matrix.

Theorem

If Fd = −K
m

(yr − x0)− α1mz1 − α2mz2, ∃P > 0, ∃Q > 0 such that

V̇ = ATP + PA < −Q and V̇ < −αV with α > 0 and V = ZTPZ.

Tool : Use a LMI procedure to find a P matrix :
objective function

Min tr(P )

under constraints

ATP + PA < −αP
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Global strategies design

Expansion of the validity region

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

-6

-4

-2

0

2

4

6

New attraction region
Old attraction region
F

d
 = 0

Spring equilibrium point
Reference

Figure – validity region optimisation

The spring equilibrium point X0 is now included in D

CDC 2019 - 11/12/2019 14 / 20



Global strategies design

Intuitive global strategy

case 1 : x(t) ∈ D
The control u of theorem 1 and
Fd = m (−α1z1 − α2z2 − d) are
choosen and the system
converges to the desired
equilibrium point yr

case 2 : x(t) ∈ D̄
The control u = 0 is enforced
and there is a time where the
trajectorie x(t) hits D because
X0 is attractive and it returns
to the case 1.
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Global strategies design

Hybrid global strategy

case 1 : xini ∈ D The control u
of Theorem 1 is choosen and the
system converges to the desired
equilibrium point [yr, 0]T

case 2 : xini ∈ {Fd < 0} The
control u = 0 is choosen and as
the spring equilibrium point
X0 ∈ D, there exists t1 > t0
where x(t1) ∈ D.

case 3 : xini ∈ {Fd > 0} ∩ D̄
The control u of Theorem 1 is
choosen and the trajectories
x(t) have two options : x(t)
enter in D or in {Fd = 0}.
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Global strategies design

Hybrid modelling of the closed-loop system

Using a token M to take into account the fact that the trajectory x(t) has
ever been in region {Fd < 0}.

So let consider the flow set

Ff := {{M = 1} × {Fd ≥ 0} or {M = 0} × {z|V (z) ≤ C}} . (8)

Let consider the jump set

Df := {{M = 1} × {Fd ≤ 0} or {M = 0} × {z|V (z) > C}} . (9)

The closed loop system can be rewritten as

ż = f (z(t), uM (z))

Ṁ = 0

}
if (z,M) ∈ Ff

z+ = z

M+ = M − 1

}
if (z,M) ∈ Df

(10)

where

u =

{
u1(z) = 1

gF (z)

[
−α3z3 + z2

m
+ Ḟd − fF (z)

]
u0(z) = 0

(11)
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Global strategies design

Convergence of the complete system

with M(t0) = 1. Inspired by [Goebel et Al., 2009] , the system (10) satisfies
the conditions which ensures the well-posedness of the closed-loop system.

Theorem

Assume the closed-loop system (10), and consider the compact set
A = {x = xeq , M ∈ {0, 1}} then A is globaly asymptotically stable.
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Figure – Dynamics of the controlled subsystem
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Global strategies design

Position tracking simulation :

Figure – Position tracking simulation

Figure – Current simulation
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Conclusion

Conclusion

The tracking has been achieved in simulation and more recently in the
testbed

Possible improvement : A more generic Lyapunov function with a new
form of Fd may enlarge the set D.

A future paper will sum up the global work : A theoritical to an
experimental work.
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