Almost Everywhere Conditions for Hybrid Lipschitz Lyapunov Functions

Matteo Della Rossa, Rafal Goebel, Aneel Tanwani, Luca Zaccarian

LAAS – CNRS, Toulouse, France Department of Mathematics and Statistics, Loyola University, Chicago

58th IEEE Conference on Decision and Control, Nice, France Regular Session: Stability of Hybrid and Nonlinear Systems (FrC18) Friday, 13th December 2019

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
Preliminaries			

Hybrid System

We consider the system

$$\mathcal{H}: \begin{cases} \dot{x} \in F(x), & x \in \mathcal{C}, \\ x^+ \in G(x), & x \in \mathcal{D}, \end{cases}$$

such that $\mathcal{H} = (\mathcal{C}, \mathcal{D}, F, G)$ satisfies the hybrid basic conditions.

We want to analyze the stability of \mathcal{H} via **locally Lipschitz** Lyapunov functions. **Main Question**: Can we check the flow Lyapunov inequality only almost everywhere (i.e. only where the candidate Lyapunov function is differentiable)?

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
Preliminaries			

Hybrid System

We consider the system

$$\mathcal{H}: \begin{cases} \dot{x} \in F(x), & x \in \mathcal{C}, \\ x^+ \in G(x), & x \in \mathcal{D}, \end{cases}$$

such that $\mathcal{H} = (\mathcal{C}, \mathcal{D}, F, G)$ satisfies the hybrid basic conditions.

We want to analyze the stability of \mathcal{H} via **locally Lipschitz** Lyapunov functions. **Main Question**: Can we check the flow Lyapunov inequality only almost everywhere (i.e. only where the candidate Lyapunov function is differentiable)? We ask that

- cl(int(C)) = C, (t.i. C regular-closed set),
- $F: \mathcal{C} \rightrightarrows \mathbb{R}^n$ inner semicontinuous.

Why nonsmoo	oth Lvapunov Fur	actions?	
0000	000	0000	
Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions

Under the hybrid basic conditions the existence of a <u>smooth</u> Lyapunov function is **necessary and sufficient** for asymptotic stability of a compact set.

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
		0000	-0
Why nonsmo	oth Lyapunov	Functions?	

• A nonsmooth function V may be easier to describe and construct;

Why nonsi	mooth Lyapunov	/ Functions?	
0000	000	0000	0
Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions

- A nonsmooth function V may be easier to describe and construct;
- The differentiability of V is "crucial" only on the flow set C;

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
Why no	onsmooth Lyapunov	Functions?	

- A nonsmooth function V may be easier to describe and construct;
- The differentiability of V is "crucial" only on the flow set C;
- If ${\mathcal C}$ is closed under some conditions we can avoid to check on the boundaries of ${\mathcal C};$

- A nonsmooth function V may be easier to describe and construct;
- The differentiability of V is "crucial" only on the flow set C;
- If ${\mathcal C}$ is closed under some conditions we can avoid to check on the boundaries of ${\mathcal C};$
- A remarkable "precedent" of Smooth vs Non-Smooth:
 - For a LDI of the form

$$\dot{x} \in \mathsf{co}\{A_i x \mid i \in \{1, \dots, K\}\},\$$

GAS is **equivalent** to the existence of a smooth Lyapunov function homogeneous of degree 2 (but not necessary quadratic)[Dayawansa and Martin. '99];

• We can approximate this function using max of quadratics [Goebel, Teel, Hu, Lin. '06], or polyhedral functions [Molchanov and Pyatnitskiy. '89].

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
$cl(\mathrm{int}(\mathcal{C}))$	$\neq C$.		

Counterexample 1

 $\mathcal{H} = (\mathcal{C}, \mathcal{D}, \mathit{F}, \mathit{G})$ with

$$\mathcal{C} := \{ x \in \mathbb{R}^2 \mid x_2 = 0 \}, \ \mathcal{D} := \emptyset,$$
$$F(x) := \left\{ \begin{pmatrix} x_1^2 \\ 0 \end{pmatrix} \right\}, \qquad G(x) := \emptyset.$$

 ${\mathcal H}$ satisfies the basic Assumption and F is continuous.

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
$cl(\operatorname{int}(\mathcal{C}))$	$\neq C$.		

Counterexample 1

 $\mathcal{H} = (\mathcal{C}, \mathcal{D}, F, G)$ with

$$\mathcal{C} := \{ x \in \mathbb{R}^2 \mid x_2 = 0 \}, \ \mathcal{D} := \emptyset,$$
$$F(x) := \left\{ \begin{pmatrix} x_1^2 \\ 0 \end{pmatrix} \right\}, \qquad G(x) := \emptyset.$$

 ${\mathcal H}$ satisfies the basic Assumption and F is continuous. Candidate Lyapunov function

 $V(x) = |x_1| + |x_2|.$

Problem: V is locally Lipschitz but the set \mathcal{N}_V where it is not differentiable covers the flow sets \mathcal{C} , the system is unstable.

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	O
Non Continuit	v: Switching svs	tems	

Counterexample 2

 $\mathcal{H} = (\mathcal{C}, \mathcal{D}, F, G)$ with $\mathcal{C} = \mathbb{R}^2$, $\mathcal{D} = G = \emptyset$ and $F : \mathbb{R}^2 \rightrightarrows \mathbb{R}^2$ defined as the Filippov regularization of:

$$\dot{x} = \begin{cases} A_1 x, & \text{if } x^\top Q x \ge 0, \\ A_2 x, & \text{if } x^\top Q x < 0. \end{cases}$$

Candidate Lyapunov Function:

- Max of Quadratics $V(x) = \max \{ x^\top P_1 x, x^\top P_2 x \},$
- The Lyapunov inequality is satisfied almost everywhere in $\mathbb{R}^2,$
- We have diverging sliding motion (solutions flowing along the discontinuity surface).

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
A class of lo	cally Lipschitz Fu	nctions	

Properly Piecewise C^1 functions

Let $V : \mathcal{C} \cup \mathcal{D} \cup G(\mathcal{D}) \to \mathbb{R}$ be a continuous function. Given $I = \{1, \ldots, K\}$, let us suppose there exist $\{\mathcal{X}_i\}_{i \in I}$ closed sets and functions $V_i \in \mathcal{C}^1(\mathcal{X}_i + \varepsilon \mathbb{B}, \mathbb{R})$, such that:

• $\overline{\operatorname{int}(\mathcal{X}_i)} = \mathcal{X}_i$, (regular-closed) for all $i \in I$,

•
$$\operatorname{int}(\mathcal{X}_i) \cap \operatorname{int}(\mathcal{X}_j) = \emptyset$$
, for all $i \neq j$

- $\mathcal{C} \subset \bigcup_{i \in I} \mathcal{X}_i$,
- $V(x) = V_i(x)$, if $x \in \mathcal{X}_i$.

Then the function V is called a properly piecewise C^1 function.

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
A class of	locally Lipschitz	Functions	

Properly Piecewise C^1 functions

Let $V : \mathcal{C} \cup \mathcal{D} \cup G(\mathcal{D}) \to \mathbb{R}$ be a continuous function. Given $I = \{1, \ldots, K\}$, let us suppose there exist $\{\mathcal{X}_i\}_{i \in I}$ closed sets and functions $V_i \in \mathcal{C}^1(\mathcal{X}_i + \varepsilon \mathbb{B}, \mathbb{R})$, such that:

• $\overline{\operatorname{int}(\mathcal{X}_i)} = \mathcal{X}_i$, (regular-closed) for all $i \in I$,

•
$$\operatorname{int}(\mathcal{X}_i) \cap \operatorname{int}(\mathcal{X}_j) = \emptyset$$
, for all $i \neq j$,

- $\mathcal{C} \subset \bigcup_{i \in I} \mathcal{X}_i$,
- $V(x) = V_i(x)$, if $x \in \mathcal{X}_i$.

Then the function V is called a *properly piecewise* C^1 *function*.

Intuitively, the flow set C is covered by a finite number of sets \mathcal{X}_i and V on C is obtained "gluing" together some functions $V_i \in C^1$. Locally Lipschitz; we consider \mathcal{N}_V the null measure set where V is not differentiable (Rademacher Theorem)

Preliminaries 0000	Stability conditions ○●○	Numerical Example: Clegg Integrator 0000	Conclusions O
Example:	Max/Min Functions	5	

Given a family $\mathcal{V} = \{V_1, \dots, V_K\} \subset \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$, the functions $V_M(x) := \max_{i \in I} V_i(x) \text{ and } V_m(x) := \min_{i \in I} V_i(x)$

are properly piecewise \mathcal{C}^1 on \mathbb{R}^n . For the V_M we have

 $\mathcal{X}_i = \overline{\{x \in \mathbb{R}^n \mid V_i(x) > V_j(x), \, \forall j \in I, \, j \neq i\}}.$

Example:

- $V_m(x) = \min\{x^\top P_1 x, x^\top P_2 x\},\$
- Min of 2 quadratics, non-convex,
- Homogeneous of degree 2,
- $\mathcal{X}_1, \mathcal{X}_2$ are symmetric cones,
- $\mathcal{N}_V = \{ x \in \mathbb{R}^n \mid V_1(x) = V_2(x) \}.$

Stability Conc	litions		
0000	000	0000	0
Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions

Main Theorem: "Almost everywhere" conditions

Consider a closed set \mathcal{A} . Given a properly piecewise \mathcal{C}^1 function $V : \mathcal{C} \cup \mathcal{D} \cup G(\mathcal{D}) \to \mathbb{R}$, suppose that there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and $\rho \in \mathcal{PD}$ such that $\alpha_1(|x||_4) \leq V(x) \leq \alpha_2(|x||_4) \quad \forall x \in \mathcal{C} \sqcup \mathcal{D}$

$$\begin{array}{c} \langle \nabla V_i(x), f \rangle \leq -\rho(|x|_{\mathcal{A}}), \quad \forall x \in \mathcal{C} \in \mathcal{D}, \\ \forall x \in \operatorname{int}(\mathcal{X}_i) \cap \operatorname{int}(\mathcal{C}) \\ \forall f \in F(x), \quad \forall i \in I \end{array}$$

$$V(g) - V(x) \le -\rho(|x|_{\mathcal{A}}), \ \forall x \in \mathcal{D}, \forall g \in G(x).$$

Then \mathcal{A} is UGpAS for \mathcal{H} .

Proof Sketch:

Main Idea: C ⊂ U_{i∈I} X_i and U_i bd(X_i) has zero measure and contains the points at which V is not differentiable.

١,

Stability Conc	litions		
0000	000	0000	0
Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions

Main Theorem: "Almost everywhere" conditions

Consider a closed set \mathcal{A} . Given a properly piecewise \mathcal{C}^1 function $V : \mathcal{C} \cup \mathcal{D} \cup G(\mathcal{D}) \to \mathbb{R}$, suppose that there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and $\rho \in \mathcal{PD}$ such that that $\alpha_1 (|x||_{\mathcal{A}}) \leq V(x) \leq \alpha_2 (|x||_{\mathcal{A}}) \quad \forall x \in \mathcal{C} \sqcup \mathcal{D}$

$$\alpha_1(|x|_{\mathcal{A}}) \le V(x) \le \alpha_2(|x|_{\mathcal{A}}) \quad \forall x \in \mathcal{C} \cup \mathcal{D},$$

$$\langle \nabla V_i(x), f \rangle \le -\rho(|x|_A), \quad \forall x \in \operatorname{int}(\mathcal{X}_i) \cap \operatorname{int}(\mathcal{C}),$$

$$\forall V_i(x), f \neq P(|x|\mathcal{A}), \forall f \in F(x), \forall i \in I.$$

$$V(g) - V(x) \le -\rho(|x|_{\mathcal{A}}), \ \forall x \in \mathcal{D}, \forall g \in G(x).$$

Then \mathcal{A} is UGpAS for \mathcal{H} .

Proof Sketch:

- Main Idea: C ⊂ U_{i∈I} X_i and U_i bd(X_i) has zero measure and contains the points at which V is not differentiable.
- Considering a flowing solution $\phi: [0, T_{\phi}) \rightarrow \mathcal{C}$, we show that

$$\frac{d}{dt}V(\phi(\cdot))(t) \leq -\rho(|\phi(t)|_{\mathcal{A}}) \text{ for a.e.} t \in [0, T_{\phi}).$$

	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
Clegg Int	egrator System		

Let us consider the hybrid system

$$\begin{cases} \dot{x} = A_F x, & x \in \mathcal{C} = \{ x \in \mathbb{R}^2 \, | \, x^\top Q x \ge 0 \}, \\ x^+ = A_J x, & x \in \mathcal{D} = \{ x \in \mathbb{R}^2 \, | \, x^\top Q x \le 0 \}, \end{cases}$$

with

$$A_F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \ A_J = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ Q = \begin{bmatrix} 1 & -\frac{1}{2\varepsilon} \\ -\frac{1}{2\varepsilon} & 0 \end{bmatrix},$$

	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
Clegg Int	egrator System		

Let us consider the hybrid system

$$\begin{cases} \dot{x} = A_F x, & x \in \mathcal{C} = \{ x \in \mathbb{R}^2 \, | \, x^\top Q x \ge 0 \}, \\ x^+ = A_J x, & x \in \mathcal{D} = \{ x \in \mathbb{R}^2 \, | \, x^\top Q x \le 0 \}, \end{cases}$$

with

$$A_F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \ A_J = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ Q = \begin{bmatrix} 1 & -\frac{1}{2\varepsilon} \\ -\frac{1}{2\varepsilon} & 0 \end{bmatrix},$$

Linear hybrid system, "intuitively" UGpAS, **but** there does not exist a *quadratic* Lyapunov function. We construct 3 properly piecewise C^1 Lyapunov functions, homogeneous of degree 2.

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
Max of 2 sign	-indefinite quad	Iratics	

$$V_M(x) := \max\{x^\top P_1 x, x^\top P_2 x\},$$

with $P_1 = \begin{bmatrix} 1 & -0.1 \\ -0.1 & 0.5 \end{bmatrix}$, $P_2 = \begin{bmatrix} 2.5 & 1.4 \\ 1.4 & 0.5 \end{bmatrix}$,

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
Max of 2 sign	-indefinite quadra	atics	

$$V_M(x) := \max\{x^\top P_1 x, x^\top P_2 x\},$$

with $P_1 = \begin{bmatrix} 1 & -0.1 \\ -0.1 & 0.5 \end{bmatrix}$, $P_2 = \begin{bmatrix} 2.5 & 1.4 \\ 1.4 & 0.5 \end{bmatrix}$,

• Easy to check the Lyapunov inequalities,

 \mathbf{o}

- $P_2 \not> 0$,
- It is positive when "active",
- Homogeneous of degree 2,
- Non convex

	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
Mid of qu	adratics		

 $V_{\mathsf{mid}}(x) = \mathsf{mid}\{V_1, V_2, V_3\} = \max\{\min\{V_1, V_2\}, \min\{V_2, V_3\}, \min\{V_1, V_3\}\}$

with

$$P_1 = \begin{bmatrix} 1 & 0.25\\ 0.25 & 0.7 \end{bmatrix}, P_2 = \begin{bmatrix} 0.55 & -0.2\\ -0.2 & 0.25 \end{bmatrix}, P_3 = \begin{bmatrix} \frac{25}{16} & \frac{49}{160}\\ \star & 0.25 \end{bmatrix}$$

	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
Mid of qu	adratics		

 $V_{\mathsf{mid}}(x) = \mathsf{mid}\{V_1, V_2, V_3\} = \max\{\min\{V_1, V_2\}, \min\{V_2, V_3\}, \min\{V_1, V_3\}\}$

with

$$P_1 = \begin{bmatrix} 1 & 0.25\\ 0.25 & 0.7 \end{bmatrix}, P_2 = \begin{bmatrix} 0.55 & -0.2\\ -0.2 & 0.25 \end{bmatrix}, P_3 = \begin{bmatrix} \frac{25}{16} & \frac{49}{160}\\ \star & 0.25 \end{bmatrix}$$

- The mid "choose" the quadratics between the other 2,
- C^1 inside \mathcal{C} ,
- Homogeneous of degree 2,
- Non convex.

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
Convex Lyapu	nov Function		

$$V_{\rm conv}(x) = \begin{cases} V_{\rm mid}(x), & \text{ if } x \in \mathcal{C}, \\ \langle w, x \rangle^2, & \text{ if } x \in \mathcal{D}, \end{cases}$$

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	
Convex Lyapu	nov Function		

$$V_{\mathsf{conv}}(x) = \begin{cases} V_{\mathsf{mid}}(x), & \text{ if } x \in \mathcal{C}, \\ \langle w, x \rangle^2, & \text{ if } x \in \mathcal{D}, \end{cases}$$

- "Convexification" of the Mid function,
- Homogeneous of degree 2,
- $\bullet \ \mathcal{C}^1 \ \text{inside} \ \mathcal{C}\text{,}$
- Convex.

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000	000	0000	•
Conclusion			

Summary:

• A class of locally Lipschitz functions for Hybrid Systems that contains pointwise max and min of \mathcal{C}^1 functions;

Preliminaries 0000	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
Conclusion			

Summary:

- A class of locally Lipschitz functions for Hybrid Systems that contains pointwise max and min of \mathcal{C}^1 functions;
- Conditions under which it suffices to check the Lyapunov inequality almost everywhere in the flow set C;

Preliminaries	Stability conditions	Numerical Example: Clegg Integrator	Conclusions
0000		0000	•
Conclusion			

Summary:

- A class of locally Lipschitz functions for Hybrid Systems that contains pointwise max and min of C^1 functions;
- Conditions under which it suffices to check the Lyapunov inequality almost everywhere in the flow set C;
- Application to a linear reset system.

Thank you !!

Questions ??