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Relevant keywords and concepts

▶ Fleming-Viot (is a Stochastic Process)

▶ Reinforcement Learning (tackles Markov Decision Processes)

▶ Exploration (impacts Learning)
▶ Rewards (sparse and rare) (impacts Learning)
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Motivation - The M/M/1/K queue system

λ < µ

▶ Simplest queue model - useful as test bench

▶ Blocking is usually costly (i.e. when an incoming job cannot be
accepted, e.g. when Xt = K )
▶ sparse: (K large) 1 out of K + 1 states
▶ rare: (λ≪ µ or K large)

e.g. K = 40, λ = 0.7, µ = 1 =⇒ Pr(Xt = K ) ∼ 10−7

Although rare, blocking can be very costly when it happens...
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Outline

Environments with sparse and rare rewards

Fleming-Viot particle systems for probability estimation

FVRL: Fleming-Viot particle systems for learning optimum policy
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Many environments give very few rewards - sparsity
In some, rewards are also rare

▶ Games (e.g. chess, go, ...)

→ normally sparse but not rare

▶ Industry (energy blackout, financial black swan, falling robot, ...)

→ sparse and rare

▶ Commonly used to estimate prob. rare events:
Importance Sampling
→ Here we explore a completely different approach, using
Fleming-Viot particle systems
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Normally we know a lot about environment structure
E.g. location of zero-reward states

▶ We can exploit structure knowledge to guide exploration

▶ Domain knowledge or prior exploration
M/M/1/K queue: set of queue sizes where no blocking has
happened
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Fleming-Viot particle systems for probability estimation

▶ FV based on Markov chain with absorbing states

▶ Proposed by Burdzy et al. in 1996 as genetic particle system
to mimic evolution

▶ Let A: set of known zero-reward states

▶ Absorbing state: J − 1 (in general, the boundary of A, ”∂A”)
▶ N particles evolve independently - same dynamics

▶ When absorbed → reactivation to one of other N − 1
particles
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Fleming-Viot particle systems for probability estimation
The method pushes the system to be closer to rare states with non-zero rewards

▶ FV dynamics example on N = 5 particles, K = 10, J = 5
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Fleming-Viot particle systems for probability estimation
...compared to standard Monte-Carlo...

▶ MC dynamics (same number of events as FV case)
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Fleming-Viot particle systems for probability estimation
How to choose J in FV?

▶ FV dynamics example on N = 5 particles, K = 10, J = 5

First we need to know how to estimate probabilities using FV
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Stationary probability estimation using FV

Assume irreducible, aperiodic Markov chain Xt , renewal theory
gives us a characterization of the stationary probability of state x :

p(x) =
Ei
( ∫ Ti

0 1{Xt = x}dt
)

EiTi

=

∫∞
0 Ei

1{Xt = x , t ≤ Ti}dt
EiTi

Ti is the random cycle time: state i → i (any chosen state i).



12/29

Environments with sparse and rare rewards Fleming-Viot particle systems for probability estimation FVRL: Fleming-Viot particle systems for learning optimum policy

Stationary probability estimation using FV

Given knowledge of set A of zero-reward states, it’s convenient to
write, for x /∈ A:

p(x) =

∫∞
0

ϕ∂Ac

t (x)P∂Ac

(T2 > t)dt

E∂A
[
T1 + T2

]

∂Ac is the boundary of the complement set of A,
ϕ∂Ac

t (x) = P∂Ac

(Xt = x |T > t)
T1 is the time to hitting Ac starting at ∂A,
T2 is the time to absorption starting at ∂Ac .

Key fact ([Asselah et al.(2011)Asselah, Ferrari, and Groisman]):
”Empirical probability of x” → ϕ∂Ac

t (x) in L1-norm when N →∞ as 1√
N
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Estimation of p(x), x /∈ A
Illustration on M/M/1/K queue system:

p(x) =

∫∞
0

ϕJ
t (x)P

J(T2 > t)dt

EJ−1
[
T1 + T2

]

▶ Each of three quantities estimated separately

▶ Two simulations, in order:

1. A single queue, run for sufficiently large time T to observe
enough re-absorption cycles
→ ÊJ−1

[
T1 + T2

]
, P̂J(T2 > t) using moment estimators

2. N queues ∼ Fleming-Viot process for as long as maxT2

→ ϕ̂J
t (x) using empirical probability of state x at each t

Flavour of P̂J(T2 > t), ϕ̂J
t (x),

ϕ̂J
t (x)P̂

J(T2 > t) as function of t
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There is an estimation trade-off in J (size of A)

▶ Larger J: Need larger simulation time T for proper
estimation of denominator, EJ−1

[
T1 + T2

]
,PJ(T2 > t)

▶ Smaller J: Need larger number of particles N for proper
estimation of numerator, ϕJ

t (x)
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Results on the M/M/1/K queue system
Simulation setup

▶ Goal: Estimate blocking probability p(K )

▶ Simulation setup
▶ λ = 0.7, µ = 1, different K ’s
▶ J = K/2
▶ Fixed simulation time T
▶ Increasing number of particles N (analyze convergence)

▶ Fair comparison with vanilla Monte-Carlo (MC)
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Results on the M/M/1/K queue system (λ = 0.7, µ = 1)

Medium-size capacity K - FV and MC give unbiased estimates

Convergence with number of particles N - FV vs. MC

K = 20,Pr(K) ∼ 10−4, J = K/2, on 8 replications per violin plot
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Results on the M/M/1/K queue system (λ = 0.7, µ = 1)

Large capacity K - FV gives unbiased estimates while MC fails

Convergence with number of particles N - FV vs. MC

K = 40,Pr(K) ∼ 10−7, J = K/2, on 8 replications per violin plot
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FVRL: Fleming-Viot particle systems for learning optimum policy

▶ As queue owners → what is the optimum K?

Examples:
▶ Minimize holding cost → K∗ = 0
▶ Minimize number of rejected jobs → K∗ =∞

We will illustrate the methodology on an objective with
non-trivial optimum

▶ The system can be cast as a Markov Decision Process (MDP)
▶ States x ∈ S and Actions a ∈ A(x)
▶ Rewards for each state and action (R(x , a))
▶ Policy of actions given the state: π(a/x) (probability)

States, actions and rewards are observed in time: Xt ,At ,Rt

▶ Goal: choose policy that optimises long-run reward
limt→∞

1
t

∑t
0 Eπ[Rt ]

▶ however... system parameters are normally unknown
=⇒ reinforcement learning comes into rescue
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Overview of reinforcement learning (RL)

Given the rewards Rt and a fixed policy π, an underlying value for each
state and action can be defined, as well as a value for each state:

Qπ(x , a) =
∞∑
t=0

Eπ [(Rt − vπ) | S0 = x ,A0 = a]

vπ(x) =
∞∑
t=0

Eπ [(Rt − vπ) | S0 = x ]

where vπ :=
∑

x p
π(x)

∑
a π(a|x)Qπ(x , a) (average long-run reward)

Goal: find policy that optimises the average long-run reward vπ
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Queue environment model
▶ Actions: 0 = Block incoming job; 1 = Accept incoming job

▶ Rewards: modeled as blocking cost:

R(x , a) = B(1 + bx−xref)1{a = 0} Non-zero only when in-
coming job is blocked

B, b and xref are positive constants Increasing function of
blocking size x

Sparse rewards... and rare if blocking state K is large.
Example of Expected cost vs. K

Eπ [R(Xt ,At)] = 5(1 + 3K−30)pπ(K)
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Policy gradient proposed to learn optimum K
Policy gradient theorem makes life eas(ier)

▶ Parameterised policy by θ: πθ(a|x), θ ∈ R
▶ Gradient descent to find minimum average cost, vπ∗θ
▶ Policy gradient theorem

[Sutton et al.(2000)Sutton, McAllester, Singh, and Mansour]

∇θv
π
θ = Eπθ [Qθ(X , a)∇θπθ(a|X )]

=
∑
x∈S

pπθ(x)
∑
a

Qθ(x , a)∇θπθ(a|x)
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Policy gradient proposed to learn optimum K
Proposed parameterised policy is a linear step function

▶ Linear-step parameterised policy
[Massaro et al.(2019)Massaro, Pellegrini, and Maggi]

Non-deterministic policy

πθ(a = 1|x) =


1 if x ≤ θ,

x − θ + 1 if θ < x < θ + 1

0 if x ≥ θ + 1

▶ Gradient becomes

∂vπθ
∂θ

= pπθ (K − 1) [Qθ(K − 1, 1)− Qθ(K − 1, 0)]
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FVRL results on the M/M/1/K queue system
Learning setup

▶ Initial guess of parameter: θ0 > 0
▶ At each learning step:

▶ FV estimation of pπθ (K ) with appropriate simulation time T
and N particles

▶ Estimation of Q difference until trajectories cross (a.s.)
▶ θ updated by gradient descent

θ ← θ − α
∂v̂π

θ

∂θ

▶ Fair comparison with vanilla Monte-Carlo (MC)
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FVRL results on the M/M/1/K queue system
FVRL is faster than Monte-Carlo-based learning for moderate optimum K value

Moderate K ∗ - Fleming-Viot vs. Monte-Carlo

K∗ = 19,K0 = 30, J = 0.3K

”free” learning clipped learning to ±1
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FVRL results on the M/M/1/K queue system
FVRL converges while Monte-Carlo-based learning fails for large optimum K value

Large K ∗ - Fleming-Viot vs. Monte-Carlo

K∗ = 24,K0 = 35, J = 0.5K

”free” learning clipped learning to ±1
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Conclusions

▶ Results show Fleming-Viot approach is able to successfully
▶ estimate very small probabilities (∼ 10−7)
▶ learn optimum parameterised policy with RL

while Monte-Carlo fails.

▶ In FVRL estimation accuracy is not as crucial as in probability
estimation problem

▶ Fleming-Viot can be applied when:
▶ Simulation is possible or historical data is available
▶ The environment is stationary
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Next steps

▶ Prove that Fleming-Viot is faster than Monte-Carlo

▶ Characterise optimum J in terms of estimation accuracy and
algorithm efficiency

▶ Consider dynamic J as more knowledge is acquired about
zero-reward states

▶ Reactivate absorbed particles more intelligently, by weighting
particle with the value of the state they are in

▶ Apply Fleming-Viot to other classical RL problems (e.g.
labyrinth, mountain car, etc.)
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Thank you for your attention!

This presentation is based on the paper:

Mastropietro, D., Majewski S., Ayesta U., Jonckheere M.
”Boosting reinforcement learning with sparse and rare rewards

using Fleming-Viot particle systems”
submitted to ICML 2022

partially supported by CIMI grant ANR-11-LABX-0040.
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