
1/29

Environments with sparse and rare rewards Fleming-Viot particle systems for probability estimation FVRL: Fleming-Viot particle systems for learning optimum policy

FVRL: Fleming-Viot Reinforcement Learning for
the efficient exploration of environments with

sparse and rare rewards

Daniel Mastropietro, Szymon Majewski, Urtzi Ayesta, Matthieu Jonckheere
IRIT, Toulouse INP

École Polytechnique de Paris
CNRS, LAAS

STORE Seminar, Toulouse
April 6, 2022



2/29

Environments with sparse and rare rewards Fleming-Viot particle systems for probability estimation FVRL: Fleming-Viot particle systems for learning optimum policy

Relevant keywords and concepts

▶ Fleming-Viot (is a Stochastic Process)

▶ Reinforcement Learning (tackles Markov Decision Processes)

▶ Exploration (impacts Learning)
▶ Rewards (sparse and rare) (impacts Learning)
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Motivation - The M/M/1/K queue system

λ < µ

▶ Simplest queue model - useful as test bench

▶ Blocking is usually costly (i.e. when an incoming job cannot be
accepted, e.g. when Xt = K )
▶ sparse: (K large) 1 out of K + 1 states
▶ rare: (λ≪ µ or K large)

e.g. K = 40, λ = 0.7, µ = 1 =⇒ Pr(Xt = K ) ∼ 10−7

Although rare, blocking can be very costly when it happens...
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Outline

Environments with sparse and rare rewards

Fleming-Viot particle systems for probability estimation

FVRL: Fleming-Viot particle systems for learning optimum policy
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Many environments give very few rewards - sparsity
In some, rewards are also rare

▶ Games (e.g. chess, go, ...)

→ normally sparse but not rare

▶ Industry (energy blackout, financial black swan, falling robot, ...)

→ sparse and rare

▶ Commonly used to estimate prob. rare events:
Importance Sampling
→ Here we explore a completely different approach, using
Fleming-Viot particle systems
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Normally we know a lot about environment structure
E.g. location of zero-reward states

▶ We can exploit structure knowledge to guide exploration

▶ Domain knowledge or prior exploration
M/M/1/K queue: set of queue sizes where no blocking has
happened
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Fleming-Viot particle systems for probability estimation

▶ FV based on Markov chain with absorbing states

▶ Proposed by Burdzy et al. in 1996 as genetic particle system
to mimic evolution

▶ Let A: set of known zero-reward states

▶ Absorbing state: J − 1 (in general, the boundary of A, ”∂A”)
▶ N particles evolve independently - same dynamics

▶ When absorbed → reactivation to one of other N − 1
particles
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Fleming-Viot particle systems for probability estimation
The method pushes the system to be closer to rare states with non-zero rewards

▶ FV dynamics example on N = 5 particles, K = 10, J = 5
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Fleming-Viot particle systems for probability estimation
...compared to standard Monte-Carlo...

▶ MC dynamics (same number of events as FV case)
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Fleming-Viot particle systems for probability estimation
How to choose J in FV?

▶ FV dynamics example on N = 5 particles, K = 10, J = 5

First we need to know how to estimate probabilities using FV



10/29

Environments with sparse and rare rewards Fleming-Viot particle systems for probability estimation FVRL: Fleming-Viot particle systems for learning optimum policy

Fleming-Viot particle systems for probability estimation
How to choose J in FV?

▶ FV dynamics example on N = 5 particles, K = 10, J = 5

First we need to know how to estimate probabilities using FV



10/29

Environments with sparse and rare rewards Fleming-Viot particle systems for probability estimation FVRL: Fleming-Viot particle systems for learning optimum policy

Fleming-Viot particle systems for probability estimation
How to choose J in FV?

▶ FV dynamics example on N = 5 particles, K = 10, J = 5

First we need to know how to estimate probabilities using FV



11/29

Environments with sparse and rare rewards Fleming-Viot particle systems for probability estimation FVRL: Fleming-Viot particle systems for learning optimum policy

Stationary probability estimation using FV

Assume irreducible, aperiodic Markov chain Xt , renewal theory
gives us a characterization of the stationary probability of state x :

p(x) =
Ei
( ∫ Ti

0 1{Xt = x}dt
)

EiTi

=

∫∞
0 Ei

1{Xt = x , t ≤ Ti}dt
EiTi

Ti is the random cycle time: state i → i (any chosen state i).
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Stationary probability estimation using FV

Given knowledge of set A of zero-reward states, it’s convenient to
write, for x /∈ A:

p(x) =

∫∞
0

ϕ∂Ac

t (x)P∂Ac

(T2 > t)dt

E∂A
[
T1 + T2

]

∂Ac is the boundary of the complement set of A,
ϕ∂Ac

t (x) = P∂Ac

(Xt = x |T > t)
T1 is the time to hitting Ac starting at ∂A,
T2 is the time to absorption starting at ∂Ac .

Key fact ([Asselah et al.(2011)Asselah, Ferrari, and Groisman]):
”Empirical probability of x” → ϕ∂Ac

t (x) in L1-norm when N →∞ as 1√
N
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Estimation of p(x), x /∈ A
Illustration on M/M/1/K queue system:

p(x) =

∫∞
0

ϕJ
t (x)P

J(T2 > t)dt

EJ−1
[
T1 + T2

]

▶ Each of three quantities estimated separately

▶ Two simulations, in order:

1. A single queue, run for sufficiently large time T to observe
enough re-absorption cycles
→ ÊJ−1

[
T1 + T2

]
, P̂J(T2 > t) using moment estimators

2. N queues ∼ Fleming-Viot process for as long as maxT2

→ ϕ̂J
t (x) using empirical probability of state x at each t

Flavour of P̂J(T2 > t), ϕ̂J
t (x),

ϕ̂J
t (x)P̂

J(T2 > t) as function of t
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There is an estimation trade-off in J (size of A)

▶ Larger J: Need larger simulation time T for proper
estimation of denominator, EJ−1

[
T1 + T2

]
,PJ(T2 > t)

▶ Smaller J: Need larger number of particles N for proper
estimation of numerator, ϕJ

t (x)
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Results on the M/M/1/K queue system
Simulation setup

▶ Goal: Estimate blocking probability p(K )

▶ Simulation setup
▶ λ = 0.7, µ = 1, different K ’s
▶ J = K/2
▶ Fixed simulation time T
▶ Increasing number of particles N (analyze convergence)

▶ Fair comparison with vanilla Monte-Carlo (MC)
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Results on the M/M/1/K queue system (λ = 0.7, µ = 1)

Medium-size capacity K - FV and MC give unbiased estimates

Convergence with number of particles N - FV vs. MC

K = 20,Pr(K) ∼ 10−4, J = K/2, on 8 replications per violin plot
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Results on the M/M/1/K queue system (λ = 0.7, µ = 1)

Large capacity K - FV gives unbiased estimates while MC fails

Convergence with number of particles N - FV vs. MC

K = 40,Pr(K) ∼ 10−7, J = K/2, on 8 replications per violin plot
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FVRL: Fleming-Viot particle systems for learning optimum policy

▶ As queue owners → what is the optimum K?

Examples:
▶ Minimize holding cost → K∗ = 0
▶ Minimize number of rejected jobs → K∗ =∞

We will illustrate the methodology on an objective with
non-trivial optimum

▶ The system can be cast as a Markov Decision Process (MDP)
▶ States x ∈ S and Actions a ∈ A(x)
▶ Rewards for each state and action (R(x , a))
▶ Policy of actions given the state: π(a/x) (probability)

States, actions and rewards are observed in time: Xt ,At ,Rt

▶ Goal: choose policy that optimises long-run reward
limt→∞

1
t

∑t
0 Eπ[Rt ]

▶ however... system parameters are normally unknown
=⇒ reinforcement learning comes into rescue
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Overview of reinforcement learning (RL)

Given the rewards Rt and a fixed policy π, an underlying value for each
state and action can be defined, as well as a value for each state:

Qπ(x , a) =
∞∑
t=0

Eπ [(Rt − vπ) | S0 = x ,A0 = a]

vπ(x) =
∞∑
t=0

Eπ [(Rt − vπ) | S0 = x ]

where vπ :=
∑

x p
π(x)

∑
a π(a|x)Qπ(x , a) (average long-run reward)

Goal: find policy that optimises the average long-run reward vπ
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Queue environment model
▶ Actions: 0 = Block incoming job; 1 = Accept incoming job

▶ Rewards: modeled as blocking cost:

R(x , a) = B(1 + bx−xref)1{a = 0} Non-zero only when in-
coming job is blocked

B, b and xref are positive constants Increasing function of
blocking size x

Sparse rewards... and rare if blocking state K is large.
Example of Expected cost vs. K

Eπ [R(Xt ,At)] = 5(1 + 3K−30)pπ(K)
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Policy gradient proposed to learn optimum K
Policy gradient theorem makes life eas(ier)

▶ Parameterised policy by θ: πθ(a|x), θ ∈ R
▶ Gradient descent to find minimum average cost, vπ∗θ
▶ Policy gradient theorem

[Sutton et al.(2000)Sutton, McAllester, Singh, and Mansour]

∇θv
π
θ = Eπθ [Qθ(X , a)∇θπθ(a|X )]

=
∑
x∈S

pπθ(x)
∑
a

Qθ(x , a)∇θπθ(a|x)
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Policy gradient proposed to learn optimum K
Proposed parameterised policy is a linear step function

▶ Linear-step parameterised policy
[Massaro et al.(2019)Massaro, Pellegrini, and Maggi]

Non-deterministic policy

πθ(a = 1|x) =


1 if x ≤ θ,

x − θ + 1 if θ < x < θ + 1

0 if x ≥ θ + 1

▶ Gradient becomes

∂vπθ
∂θ

= pπθ (K − 1) [Qθ(K − 1, 1)− Qθ(K − 1, 0)]
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FVRL results on the M/M/1/K queue system
Learning setup

▶ Initial guess of parameter: θ0 > 0
▶ At each learning step:

▶ FV estimation of pπθ (K ) with appropriate simulation time T
and N particles

▶ Estimation of Q difference until trajectories cross (a.s.)
▶ θ updated by gradient descent

θ ← θ − α
∂v̂π

θ

∂θ

▶ Fair comparison with vanilla Monte-Carlo (MC)
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FVRL results on the M/M/1/K queue system
FVRL is faster than Monte-Carlo-based learning for moderate optimum K value

Moderate K ∗ - Fleming-Viot vs. Monte-Carlo

K∗ = 19,K0 = 30, J = 0.3K

”free” learning clipped learning to ±1
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FVRL results on the M/M/1/K queue system
FVRL converges while Monte-Carlo-based learning fails for large optimum K value

Large K ∗ - Fleming-Viot vs. Monte-Carlo

K∗ = 24,K0 = 35, J = 0.5K

”free” learning clipped learning to ±1
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Conclusions

▶ Results show Fleming-Viot approach is able to successfully
▶ estimate very small probabilities (∼ 10−7)
▶ learn optimum parameterised policy with RL

while Monte-Carlo fails.

▶ In FVRL estimation accuracy is not as crucial as in probability
estimation problem

▶ Fleming-Viot can be applied when:
▶ Simulation is possible or historical data is available
▶ The environment is stationary
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Next steps

▶ Prove that Fleming-Viot is faster than Monte-Carlo

▶ Characterise optimum J in terms of estimation accuracy and
algorithm efficiency

▶ Consider dynamic J as more knowledge is acquired about
zero-reward states

▶ Reactivate absorbed particles more intelligently, by weighting
particle with the value of the state they are in

▶ Apply Fleming-Viot to other classical RL problems (e.g.
labyrinth, mountain car, etc.)
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Thank you for your attention!

This presentation is based on the paper:

Mastropietro, D., Majewski S., Ayesta U., Jonckheere M.
”Boosting reinforcement learning with sparse and rare rewards

using Fleming-Viot particle systems”
submitted to ICML 2022

partially supported by CIMI grant ANR-11-LABX-0040.
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