

Performance of NB-IoT

The technology that aims to reach the 5G-IoT requirements

Wednesday, December 1st, 2021

Romain Barbau

Agenda			
	01	NB-IoT Context : 5G & IoT	
	02	NB-IoT Inside the Communication Procedure	
	03	Our Model	
	04	Performance Evaluation	

Introduction to IoT

Internet of Things IoT

Introduction to IoT

An emblematic use case: The Connected Cow

Evolution of Cellular Technologies

Evolution of Cellular Technologies

NB-IoT Objectives

5G and IoT

How does 3GPP foresee the IoT in the future 5G ecosystem?

5G and IoT

Critical IoT

Bounded latencies Ultra-reliable data delivery Ultra-low latency

Broadband IoT

High data rates Large data volumes Low latency (best effort)

Massive IoT

Low-cost devices Small data volumes Extreme coverage

https://www.ericsson.com/

Agenda			
	01	NB-IoT Context : 5G & IoT	
	02	NB-IoT Inside the Communication Procedure	
	03	Our Model	
	04	Performance Evaluation	

PHY Layer

→ Same as LTE
But with a narrower transmission bandwidth = more power per symbol (increase the coverage)

MAC Layer and Communication Procedure

LTE Classic Procedure

Communication Procedure with connection

Communication Procedure

Communication Procedure

Communication Procedure

Message Exchanges during Connection Establishment, Data Report and Connection Termination

	Channel	Message	Payload Size (bits)	
	Channel		Uplink	Downlink
	↑ NPRACH	Message 1: Preamble	-	-
ŧ	\downarrow NPDCCH	Downlink Grant	-	23
shme	↓ NPDSCH	Message 2: Random Access Response	-	56
stabli	↑ NPUSCH	Message 3: RRC Connection Request	59	-
Connection establishment	↓ NPDCCH	Downlink Grant	-	23
nnect	↓ NPDSCH	Message 4: RRC Connection Setup	-	304
8	↓ NPDCCH	Uplink Grant	-	23
	↑ NPUSCH	Message 5: RRC Setup Complete	128	-
		Additional Signalling	≈344	≈1032
Conn- ected	\downarrow NPDCCH	Uplink Grant (+ piggybacked ACK)	-	23
ec C	↑ NPUSCH	Data (+ buffer status)	Variable	-
Releasing	↓ NPDCCH	Downlink Grant	-	23
Rele	\downarrow NPDSCH	RRC Connection Release	-	66

1 million devices per km² ?

Agenda			
	01	NB-IoT Context : 5G & IoT	
	02	NB-IoT Inside the Communication Procedure	
	03	Our Model	
	04	Performance Evaluation	

Our Model

Modelling the use of time/frequency resources

How to compute the capacity in terms of terminal per km²?

- \rightarrow 3GPP methodology:
- Traffic definition (payload size, communication interval)
- Coverage definition (SINR distribution and cell area)
- Set a number N of device in the cell
- Implement an algorithm to compute the reliability *r*
- If *r* > 0.99 : increase N
- else: decrease N
- Loop until r matches 0.99
- Compute capacity

Our Model

Modelling the use of time/frequency resources

Outputs:

Collision and Congestion probabilities → reliability

Allocation Modelling

Found in litterature [2] – M/M/1-FIFO with impatience

- Exponential arrivals M
- Exponential services M
- FIFO

What we proposed – M/D/1-PS with impatience

- Exponential arrivals M
- Deterministic services D
- Processor Sharing PS

Idea: we use an approximation for the impatience probability

Our Model

Impatience Rates

Allocation Modelling

Ideas:

- several servers
- each communication can be segmented in *n* blocks

Our Model

Impatience in M/D/H/K

We know the duration of a block so we know when the new blocks will be served and can compute the impatience rate τ

Our Model

Allocation Modelling

Benefits of using M/D/H/K:

- Avoid modelling the possibility of zero useful traffic
- Compute the impatience probability
- Precision knowing how many blocks have been served

Traffic and Cell definition

Parameter	Value
Payload UL/DL	32 bytes / 0 bytes
Communication Interval	2 hours
Cell Radius - r	500 meters

Performance according our model

Parameter	Value
Communication per second r=0.99	22.05
Capacity per carrier	182 900 devices/km ²
Nb of carrier needed to reach 5G-IoT requirements	6
Total bandwidth needed	2 160 kHz

Performance Evaluation

User Plane Optimization

Sequence Diagram

Classic - LTE

User Plane Optimization

Performance according our model

Parameter	Value
Communication per second r=0.99	61.95
Capacity per carrier	515 000 devices/km ²
Nb of carrier needed to reach 5G-IoT requirements	2
Total bandwidth needed	720 kHz

Performance Evaluation

Early Data Transmission

Or the ultimate way to reduce connection overhead

Sequence Diagram

User Plane Optimization

Early Data Transmission

Performance according our model

Parameter	Value
Communication per second r=0.99	139.5
Capacity per carrier	1 159 800 devices/km ²
Nb of carrier needed to reach 5G-IoT requirements	1
Total bandwidth needed	360 kHz

5G and IoT

Performance Evaluation

https://www.ericsson.com/

Performance Evaluation

Overview of our other research activities

Or the teasing of the thesis defence

Performance Evaluation

I. Deep study on the limitation of NB-IoT capacity

