

La Robotique au Service de l'Homme

Oussama Khatib Artificial Intelligence Laboratory Department of Computer Science Stanford University

Human-Centered Robotics

Oussama Khatib Artificial Intelligence Laboratory Department of Computer Science Stanford University

Historical Perspective

The Drawer

The Invention of "A Little Mechanical Family"

The Drawer - The Musician - The Writer

The Musician

The Writer

A Mechanical Computer

Service & Assistance

Surgical Environment

Robotically Aided Surgery

.. in human interaction

н

CTION

VIRTUAL

ACT

NTER

- digital actors
- virtual worlds
- synthetic movies
- simulated environments
- social interaction

.. in the human environment

The Challenge

Sensing and Perception real-time, unstructured world Planning and Control many degrees of freedom human-like skills, learning Human-Robot Interaction cognitive and physical Mechanisms and Actuation Safety & Performance

Interactivity & Human-Friendly

Safety

Human-Friendly Robots

Requirements

- Safety
- Performance

Technologies

Heavy structure

Conventional Geared Drive:

- Lighter structure
- Large reflected actuator inertia

Effective Inertia

 $(J_{link} + N^2 J_{motor})$

Actuation Requirements

Assumed Torque Requirements

Torque Vs Frequency: Square Wave

Distributed Macro Mini (DM²) Approach

DM2 - Human-Friendly Robot

"the high capacity of a large robot with the fast dynamics and safety of a small one"

DM² Performance

- 10x reduction in effective inertia
- 3x increase in position control bandwidth

 10x decrease in trajectory tracking error

DM² Testbed

$S2\rho$: Stanford Human-Safe Robot

artificial muscles with electrical motors and compact pressure regulators
$S2\rho$: Stanford Human-Safe Robot

$S2\rho$: Stanford Human-Safe Robot

Shape Deposition Manufacturing

Multi-material molding

Component embedding

$S2\rho_{1.5}$: New Design

$S2\rho_{1.5}$: New Design

Safety Comparison

S2p

Effective Mass: 0.5Kg

DM²

Effective Mass: 3.5Kg

Human

Effective Mass: 2.1Kg

PUMA560

Effective Mass: 25Kg

Safety Comparison

S2p(payload: 33.33N)

Normalized Effective Mass: 0.015

DM² (Payload 60N)

Normalized Effective Mass: 0.058

Human (Payload 62N)

Normalized Effective Mass: 0.034

PUMA560 (Payload 21.56N)

Normalized Effective Mass: 1.154

Simulation Condition

Impact velocity: 3 m/s (= 10.8 Km/h)

Stiffness between human and robot: 37000 N/m Head mass: 5.1kg (mean mass of U.S male)

$S2\rho$: Stanford Human-Safe Robot

The Challenge

Sensing and Perception real-time, unstructured world **Planning and Control** many degrees of freedom human-like skills, learning Human-Robot Interaction cognitive and physical Mechanisms and Actuation Safety & Performance

Interactivity & Human-Friendly

Stanford Robotic Platforms Romeo & Juliet (1993)

Mobile Manipulation Human Guided Motion & Human-Robot Interaction

Stanford Robotic Platforms - Romeo & Juliet (1993)

Humanoid Robot Control

branching and under-actuated

- Whole-body control strategies
- Constraints and Multi-contacts
- Balance, Locomotion, & Manipulation

Joint motions Inverse Kinematics

Human-like Artificial Energy

Whole-body Control

Task & Posture Decomposition

Task Dynamics and Control

Task Dynamics

$$\Lambda \ddot{x} + \mu + p = F$$

Task Control

$$\boldsymbol{F} = \hat{\Lambda}(-\boldsymbol{\nabla}\boldsymbol{V}_{\text{Task}}) + \hat{\mu} + \hat{p}$$
$$\boldsymbol{\Gamma} = \boldsymbol{J}^{T}\boldsymbol{F}$$

Task Dynamics – Branching Structures

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ x_m \end{pmatrix} \qquad A = \begin{pmatrix} A_{11} A_{12} \dots A_{1L} \\ A_{21} A_{22} \dots A_{2L} \\ \cdots \\ A_{L1} A_{L2} \dots A_{LL} \end{pmatrix} \qquad \begin{array}{c} \ddot{x}_2 \\ f_2 \\ f_3 \\ f_6 \\$$

D

Task/Posture Control Structure

Decomposition in torque space

$$\Gamma = J_{task}^{T} F_{task} + N_{task}^{T} \Gamma_{posture}$$
Task Torques:

$$\Gamma_{task} = J_{task}^{T} F_{task}$$
Task Consistent Posture Torques:

$$\Gamma_{posture|task} = N_{task}^{T} \Gamma_{posture}$$
Dynamic Consistency:

$$N_{task}^{T} \Gamma_{posture} \Rightarrow \ddot{x}_{task} = 0$$
in configuration space

$$\delta q = \overline{J}_{task} \, \delta x_{task} + N_{task} \, \delta q_{posture}$$

Task and Posture Control

Task Field

Dynamically Decoupled

> no joint trajectories

Learning from the human

Posture Field?

Human Natural Motion

Motion Capture

Motion Characteristics

Human Motion Characterization

Human motion

Marker data

Skeletal physiology

Muscular physiology

Simulation 79 DOF and 136 Muscles Biometric Data & Bone Geometry

Motion capture

Learning from the Human

In learned tasks, humans minimize muscular effort, under physical and "social" constraints

Physiology-based Posture Field

Physiology-based Posture Field

A Task, $F: \Gamma = J^T F$ Muscle actuation: $\Gamma = L^T m$ Muscle capacities: $N_c \longrightarrow Configure to route to$

Configuration-dependent torque bounds

Physiology-based Posture Field

Human posture is adjusted to reduce muscular effort

Human-muscular Energy minimized:

$$E = cm^2$$

Function of physiology, mechanical advantage, and task

$$E(q) = F^{T} [J(L^{T} N_{c}^{-2} L)^{-1} J^{T}]F$$

Data from Subjects

Data from Subjects

Validation - Arm Effort

Validation - Arm Effort

Validation – whole-body effort

SAI Environment Dynamic simulation, control, & haptics

SAI Neuromuscular Library

Human Motion Reconstruction

Injury prevention, Pathology Evaluation, and Athletics

Skill Learning – Tai Chi

Skill Learning – Tai Chi

Contact/Collision Resolution

Crash Tests

Constraints

Constraints

 $\Gamma = J J_{cristisk}^T F_{F,ristisk} + N N_{cristisk}^T (J F_{task}^T F_{task} + N_{task}^T \Gamma_{posture})$

Self Collision

Obstacles

Elastic Planning Real-time collision-free path modification

Connecting Reactive Local Avoidance with Global Motion Planning

Elastic Planning

Elastic Planning

Integration of Locomotion

Multi-Contact Whole-body Control Integration of Whole-Body Control & Locomotion

Under-actuated

Balance

Reaction forces

Multi-Contact Whole-body Control

 $\mathbf{\Gamma} = \mathbf{J}_{cttask}^{T} \mathbf{F}_{cttask} + \mathbf{N}_{ctask}^{T} (\mathbf{\Gamma}_{task}^{T} \mathbf{F}_{task} + \mathbf{N}_{task}^{T} \mathbf{\Gamma}_{posture})$

Balanced Supporting Contacts Internal Force Control – Virtual Linkage

Balanced Supporting Contacts Internal Force Control – Virtual Linkage

Unified Whole Body Control with Constraints and Contacts

Dynamics

$$\Lambda_{\otimes}\dot{g}_{\otimes} + \mu_{\otimes} + p_{\otimes} + F_{f} = F_{\otimes}$$
Control
$$F_{\otimes} = \hat{\Lambda}_{\otimes} F_{\otimes}^{*} + \hat{\mu}_{\otimes} + \hat{p}_{\otimes}$$

$$F_{\otimes}^{*} = \begin{pmatrix} F_{c|s} \\ F_{f|c|s} \\ F_{m|f|c|s} \\ F_{m|f|c|s} \\ F_{m|f|c|s} \end{pmatrix} \Gamma_{a} = (\overline{UN_{s}})^{T} J_{\otimes}^{T} F_{\otimes}$$

Architecture

Implementation on the Physical Robot?

Torque to Position Transformer

Experimental Result – hand task

Robot-Human Haptic Interaction

Francois Conti Jaeheung Park Irena Pashchenko Vince De Sapio Luis Sentis Peter Thaulad James Warren Mike Zinn Tine Lefebvre Jin-Sung Kwon Dong-Joon Shin

Alan Bowling Oliver Brock Kyong-Sok Chang Sanford Dickert **Bob Holmberg** Charity Lu **Oscar Madrigal** Sean Quinlan Diego Ruspini **Costantinos Stratelos** Sriram Viji **Dave Williams** Elena Pacchierotti Alex Broos Edwardo Fukushima Maurice Halg **Pierre-Olivier Latour** Javier Minguez Laurence Meylan Nicolas Turro

