CYBER-PHYSICAL SYSTEMS AND VARIOUS COMPUTER SCIENCE ISSUES IN SMART AUTONOMOUS ROBOTS

Dr. Eng. Didier El Baz LAAS-CNRS, Toulouse France International Laboratory Information Security of Cyber-Physical Systems, ITMO, St Petersburg Russia

Outline

- 1. Introduction
- 2. Smart Conveyors
- 3. Distributed Autonomous Robotic Systems
- 4. Conclusions and Perspectives

1. Introduction

- A new industrial revolution has started;
- > 4th revolution.

Fig.1.1 Google car, USA

1.1 The first industrial revolution

- The Industrial revolution (1760 around 1840);
- from hand production to use of machines and rise of factory system;
- \rightarrow the Age of Steam (1760 around 1914).

Fig.1.2 Cugnot self-propelled vehicle, France 1770 (4 km/h)

1.2 The second industrial revolution

- Electrification (1860 1950)
- Factory, household, city & railway electrification.

Fig.1.3 Arc lamps at Avenue de l'Opera, Paris France in 1878.

1.3 The third industrial revolution

- Computer & communication age (1950 2000)
- Processors everywhere;
- Internet has changed the way people communicate and exchange information.
- Messaging applications(WeChat, WhatsApp, ...)
- > The Digital Age (1960)

Fig.1.4 *5 MB* hard drive being loaded in an airplane by IBM, 1956

1.4 The fourth revolution

■ Fusion of physical, digital world and the Internet (2010 -)

Fig.1.5 Assembly system of A380 in Toulouse, France

1.4.1 Internet Of Things

 « IOT: network of items embedded with sensors that are connected to the Internet. »

Fig.1.6 Mo-cap and assistance to people at LAAS-CNRS Toulouse

1.4.1 Internet Of Things

- Wireless sensor and actuator networks including Internet of Things (IOT) are changing the way people interact with the physical world.
- These networks have a huge potential for applications ranging from:
- Manufacturing & agriculture (including robotics), transportation, finance, security...

1.4.2 CPS

- Cyber-Physical Systems (CPS): mechanism controlled or monitored by computer-based algorithms, tightly integrated with the Internet and its users.
- CPS presents a high combination and coordination between physical and computational elements for critical applications
- Interdisciplinarity: mechatronics, cybernetics, telecommunications & systems sciences.

1.4.3 Ubiquity

- The information about the physical environment is ubiquitously available:
- Weather report, position of shuttles or trucks on roads, position of tractors in a farm, luggages at airport or people in the street.
- Information tends also to be embedded in the physical environment:
- > Intelligent highways.

1.4.4 Smart Hearth

- More than a classical industrial revolution.
- The societies and physical world tend to be a large self-organizing systems of growing complexity also called: <u>Smart Earth.</u>
- This includes in particular:
- Smart systems & autonomous cars;
- Smart factory;
- Smart cities;
- > Smart world.

1.4.5 Smart cities

- Examples of Smart cities
- Melbourne (Australia), Rio de Janeiro (Brasil),
 Madrid (Spain) Amsterdam (the Netherlands)...
- Upcoming cities:
- Xiongan (China), Dijon (France).
- Companies involved:
- > IBM, Bouygues, EDF, Suez, Berger Levrault...

2. Smart Conveyors

- Smart systems in manufacturing industry.
- Sorting, conveying, positioning parts.

2.1. New trends in computing

• New numerical revolution.

Advances in parallelism and networking.

Convergence of several domains like distributed computing and parallel computing.

New concepts like cloud computing and virtualization, volunteer computing, GPU computing ...

2.1. New trends in computing

- ➤ Internet Computing (broader, covers all computing paradigms over the Internet) → HTC.
- We need new parallel and distributed algorithms like parallel deep learning;

2.1. New trends in computing

- Where is Intelligence?
 - Embedded Intelligence (embedded systems) drawback: cost.
 - Distributed Intelligence (cyber-physical systems).
 - Hosted Intelligence (cloud).

- Illustration of modern industrial manufacturing processes:
- Carrying safely and without alteration small objects (critical applications).
- > Smart conveyors with distributed intelligence.
- Modular systems
- Smart Surface Project
 ANR 06 ROBO 0009, 2007 2010.

The Smart Surface conveyor

Fig. 2.1 Smart Surface

Goal: design of an area of cells with sensors, actuators and processors.

Fig 2.2 Smart Surface design

- Few sensors (one per cell).
 Poor definition of the item on the surface.
- Distributed iterative algorithms for state acquision of the smart surface.
- Asynchronous iterative algorithms.
- Convergence results.
- Detection of the convergence test.
 Method of Bertsekas (activity graph & acknowledgment of messages).

- Distributed methods for part differentiation.
- Assumption 1: limited number of types of parts.
- Assumption 2: there is at most one part on the smart surface.

Criteria:

contour-based differentiation criteria, like number of components of vector x_i with value 1 such that there exists

 $x_j = 0, j \in N(i)$. region-based criteria, like number of components of vector x_i with value 1, i.e. surface like criteria.

■ Offline stage: a database that contains the values of criteria used to differentiate parts is produced. Only a limited number of parts that will be called reference parts are considered. The values of the criteria are stored in cells.

Offline stage:

the reference part is rotated several times and is also moved along several cells;

a matrix of sensor values is generated, the matrix fits the smart surface, i.e. there is one entry per sensor;

sub-matrices, i.e., masks are generated; values of the different criteria are calculated for all masks of the reference part.

The set of criteria values forms the database.

Online stage: cells try to differentiate the part on the smart surface by comparing the criteria values of this part with the values stored in the database.

2.3 Smart Surface Simulator

Multithreaded Smart Surface Java Simulator (SSS).

Fig. 2.4 Smart Surface Simulator

3. Distributed Autonomous Robotic Systems

- Reconfigurable assembly lines
- > Smart modular conveyors with distributed intelligence.
- Critical applications
- ANR project Smart Blocks.
 ANR-2011-BS03-005, 2011 2015.
- Distributed Autonomous Robotic Systems
- Modular Reconfigurable Robots (MRR)

3.1. Smart Block Project

Goal: build module with:

- Sensors on each side (blocks).
- Sensors on top (parts).
- Electro-permanent magnet-based motion actuators (block motion).
- 2D pneumatic MEMS actuator array (moves parts on top).
- Processing unit.
- Communication ports.

Fig.3.1 The modular surface

3.1. Smart Block Project

centimeter scale micropart conveyor.

Self reconfigurable. MEMS-based modular surface.

Semiconductors manufacturing, micromechanics, pharmaceutical.

Fig.3.2 The reconfigurable smart blocks modular conveyor

3.2 Discrete Model

2D Grid Topology.

Node: center of the square that can be occupied by a block.

Input, Output, Blocks.

Metrics: hop Count.

- O Exit point of objects
- I Entry point of objects
- Positions occupied by blocks
- Free Positions in the rectangle diagonal [IO]

Fig. 3.3 The discrete model of the modular surface

3.3 Block Motion

Relies on contact with other blocks.

Rectilinear block moves.

Elementary block moves.

One hop move.

Fig. 3.4 Rectilinear block motion

3.4 Distributed Algorithm

- Distributed Intelligence well suited to cyberphysical systems.
- Blocks cooperate to optimally build a shortest path between the entering point of parts and their exit point on the surface.
- Discrete trajectory optimization; distributed algorithm for the reconfigurable modular surface.
- Distributed election;
- Scalability, flexibility and optimality.

3.4 Distributed Algorithm

- Quickly set up a modular conveyor with mimimal distance between I and O.
- ➤ It computes the shortest path between *I* and *O* using a strategy based on minimum hop count.
- > Heuristics tends to minimize the number of block moves in order to build the shortest path.
- Scalable approach based on distributed asynchronous iterative elections.

3.5 Recent work (2016-2017)

- Hardware;Challenges in miniaturization.
- Software;New distributed heuristics.

3.5.1 E.P. Magnets

□Electro Permanent magnet

Fig. 3.5 Principle of EP magnets

Fig. 3.6 Principle of SEP magnets

Fig. 3.7 Permanent magnet is the rotor

- ☐Permanent magnet is the rotor
- □One system for
- Motion function
- Connection function saving energy.

Fig. 3.8 Rotor in action

a) BH curve

b) Alnico5 second quadrant demagnetisation BH

b) 3D

a) 2D Fig. 3.8 Magnetic flux density

- Process of elimination of magnetism.
- Simulation via Comsol MultiPhysics.
 Guidance for design.

3.5.3 Circuit Design

Circuit

Fig. 3.9 Circuit of the main board

3.5.3 Circuit Design

Fig. 3.10 PCB and main board for controlling the modules

3.5.4 New Block Design

Fig. 3.11 a) Block design

Fig. 3.11 b) Block test

3.5.5 Tests

Fig 3.12 a) Speed test
Prepare for distributed algorithm

Fig 3.12 b) Holding force test
Prepare for 3D motion

3.5.5 Tests

Fig. 3.13 Rectilinear motion

3.5.5 Tests

Fig. 3.14 Push and pull motion

3.5.6 Distributed algorithm & Simulator of Smart Modules

Principle of a new distributed iterative algorithm

Fig. 3.15 Distributed iterative algorithù

3.5.6 Distributed algorithm & Simulator of Smart Modules

□New distributed algorithm

Fig. 3.15 distributed algorithm & SSM

3.5.6 Distributed algorithm & Simulator of Smart Modules

New distributed algorithm

Fig. 3.16 distributed algorithm & SSM

3.6 Other Modular Reconfigurable Robots

MTRAN III __ AIST (Japan)

Robot Pebbles MIT

CUBELETS Modular Robotics

MRS__ Czech Technical University

4. Conclusions & Perspectives

- Design and development of distributed modular robotic system
- Linear motor
- Design of modules
- Distributed algorithms
- Simulator of Smart Modules

4.1 Future work

- Sensors;
- Communication;
- Fault detection.

4.1 Future work

- Develop more IoT aspects;
- Miniaturization → Cloud computing;
- Hosted intelligence:Deep learning;Data analysis:Quantity of itemsconveyed, faults
- > Security.

Fig. 3.10 IoT Architecture

4.1 Future work

- Security challenges:
- Access control;
- Dynamicity;
- > Interactions;
- Cooperation of modules;
- Sensor design;
- > Physical security.
- pharmaceutical industry
- > Micromechanics.

Fig. 3.10 IoT Architecture

4.2 Programmable Matter

4.2 Programmable Matter

Programmable matter

Intel Carnegie Mellon University