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Abstract

A new stopping criterion is proposed for asynchronous linear fixed point methods in finite precision. The case of absolute error
is considered. The originality of this stopping criterion relies on the fact that all tests are made within the same macroiteration.
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1. Introduction

This paper deals with parallel asynchronous iterative algorithms. This issue is gaining considerable attention with the
advent of peer to peer and grid computing (see [1,14]). The paper concentrates on stopping criterion for linear parallel
asynchronous iterations in the case where successive approximations are perturbed by round off errors. This topic is
particularly important since for nonlinear problems one has to detect convergence of auxiliary linearized problems.
Stopping asynchronous iterations is a difficult topic, either with respect to computer science or to numerical analysis. As
opposed to the special situation of parallel synchronous scheme, the development of stopping criteria for asynchronous
iterations is particularly nontrivial since there is no global clock nor synchronization points between processors, and
processors go at their own pace.

Several approaches for the convergence detection of parallel asynchronous iterations have been proposed in the
literature. On what concerns approaches related to pure computer sciences aspects we can quote [2,7,18]. For mixed
approaches combining computer sciences and numerical analysis we refer to the following works [5,6,9–11,23]. We
have proposed several results in the perturbed case (See [12,21]). The perturbation of parallel asynchronous fixed point
methods in finite precision has been studied in [20], see also [24] in the linear case and [22] in the sequential linear
case. In [21] some predictive results have been given in relationship with backward and forward errors; in particular,
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stopping criteria have been proposed. In this paper, we present an original stopping criterion with respect to absolute
error whereby decision is taken on the base of data collected during the same macroiteration. More precisely, the
originality of our study consists in making the convergence test within the same macroiteration which ends up at the
given current update p, i.e., starting from the update p, we build a macroiteration going back in the sequence of events
which are related to previous updates.

Recall that when the successive approximation method is applied to the computation of the fixed point problem
associated with a contractive mapping T̃ : u ∈ Rn → T̃ (u) ∈ Rn, with constant of contraction l and fixed point u�,
then stopping the iterations when ‖up − T̃ (up)‖ = ‖up − up+1‖��, implies ‖up − u�‖��/(1 − l); namely, such a
stopping test is simply based on the implication ‖v − T̃ (v)‖�� ⇒ ‖u� − v‖��/(1 − l).

An analogous estimate can be obtained for asynchronous iterations and then used with respect to various kinds of
perturbations issued both from the intrinsic nature of asynchronous iterations and from round-off errors. Namely, our
stopping criterion, with respect to round-off errors, will be based on the following extension of the previous estimate{

max
i=1,...,n

( |yi−Ti(z
i )|

ei

)
��,

‖zi − y‖�,∞ ��, i = 1, . . . , n,
(1)

where ei, i = 1, . . . , n are the components of the Perron–Frobenius eigenvectors, u → ‖u‖�,∞ is an appropriate
weighted uniform norm (see [13]), y is the iterate vector as will be shown in the sequel and {zi} represents a family of
iterate vectors which belong to a macroiteration. In this framework, we can derive a stopping criterion distinct to our
previous works (see [12,21,24]).

The estimates in perturbed situations are presented in the following sections which include also our main result
concerning a stopping criterion for asynchronous iterations. We need mainly three kinds of informations

• the first one concerns the delays and allows to know what are the iterates included in the macroiteration, this
information permits one to have previous computed values,

• the second one is the stabilization of the algorithm with respect to a small distance between these iterates, which
then includes naturally the estimate (1), and leads to practical stopping test developed in forthcoming sections,

• the last one is the numerical value of a constant of contraction and also basic data related to round-off errors.

This paper is organized as follows. Section 2 deals with linear asynchronous iterations in the context of nonperturbed
case and also in the case of perturbation by round-off errors. A new stopping criterion for perturbed linear asynchronous
iterations is proposed in Section 3. Finally, very simple examples are presented in Section 4, in order to illustrate our
approach.

2. Mathematical background

2.1. Classical asynchronous iterations

Let n be an integer and consider two matrices A ∈ L(Rn) and B ∈ L(Rn) such that A = I − B. In the sequel,
bij , i, j = 1, . . . , n denote the entries of matrix B and |B| the matrix with entries |bij |, i, j = 1, . . . , n. Assume that the
spectral radius of the matrix |B| satisfies

�(|B|) < 1. (2)

In [15,24] it was shown that, for all real given positive numbers �, there exist a strictly positive vectors e ≡ e� and a
positive scalar � ≡ ��, satisfying

|B|.e��.e where � ∈ [�(|B|), �(|B|) + �]. (3)

The space Rn being normed by the Perron–Frobenius weighted uniform norm defined by

‖u‖�,∞ = max
1� j �n

( |uj |
ej

)
(4)
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then, we have the following estimation of the norm of the matrix B given by ‖B‖�,∞ ��, where ‖ · ‖�,∞ is derived from
the scalar norm (4) (see [24]).

Remark 1. The situation where � is equal to zero corresponds to the case where the matrix B is irreducible. In this
case, e is a suitable Perron–Frobenius eigenvector of matrix |B|, associated with the spectral radius.

Consider the following linear system Au� = c, where c ∈ Rn, to which we associate the fixed point mapping T̃

defined by ũ ∈ Rn → ṽ = T̃ (ũ)=Bũ+ c. Clearly, u� is the unique solution of the linear system Au� = c, if and only if
u� is the unique fixed point of the mapping T̃ . In order to approximate the fixed point u�, we use parallel asynchronous
iterative method which generate a sequence of vectors {ũp}p∈N defined recursively as follows (see [3]), for all p�0
and i ∈ {1, . . . , n},

ũ
p+1
i =

{
T̃i (. . . , ũ

sj (p)

j , . . .), ∀i ∈ J (p),

ũ
p
i , ∀i /∈ J (p),

(5)

where ũ0 is the initial guess and

J = {J (p)}p∈N is a sequence of nonempty subsets of {1, 2, . . . , n}, (6)

S = {(s1(p), s2(p), . . . , sn(p))}p∈N, is a sequence of elements of Nn. (7)

Moreover J and S, satisfy

∀i ∈ {1, 2, . . . , n}, Card{p ∈ N|i ∈ J (p)} = +∞, (8)

∀j ∈ {1, 2, . . . , n}, ∀p ∈ N, sj (p)�p, (9)

∀j ∈ {1, 2, . . . , n}, lim
p→∞ sj (p) = +∞. (10)

Remark 2. The reader is referred to [3,8] for some convergence results concerning asynchronous iterations (5); see
also [16] for a survey, [13,19] for convergence results using weighted uniform norm. Reference is also made to [4] for
convergence study using sequences of embedded subsets.

2.2. Perturbed asynchronous iterations by round-off errors

Let us consider now the general case of perturbed asynchronous iterations. In the framework of round-off error
perturbations and floating point computations, we must replace in (5) the exact mapping T̃ by an approximate mapping
denoted by T ; similarly the exact value of the iterate vector ũ is replaced by the perturbed one denoted now by u. In
order to deal with this perturbation, let us introduce now the following notations (see [24]). We define the real number
� = �(t + 1)	, where t is the maximum number of nonzero elements in a row of the matrix B, � is a positive constant,
� = 1.0101 . . . (see [17, p. 63]) and 	 is such that for any floating point number 
 we have fl(
) = 
(1 + ϑ), |ϑ|�	. If
� denotes the base and s the precision, then 	 is defined by 	 = 1

2�1−s in the case of rounding and 	 = �1−s in the case
of chopping (see [17]). Let us also consider a strengthened form of assumption (2) in which the spectral radius of the
matrix |B| satisfies

�(|B|) <
1

1 + �
. (11)

According to (11), � can be chosen sufficiently small so that

l = (1 + �)� < 1. (12)

Let us associate to u ∈ Rn the vectorial norm |u| with components |ui |, ∀i ∈ {1, . . . , n}. If we make the additional
assumption that the error of approximation |T u − T̃ u| is proportional to |T̃ u|, we have (see [24])

|T u − T̃ u|��(|B||u| + |c|), ∀u ∈ Rn. (13)
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We present now an important result related to approximate contraction (see [22] in the sequential case, [20,24] in the
parallel context); for the proof the reader is referred to [24].

Lemma 1. Assume that � is sufficiently small so that (12) is valid. Then, the perturbed fixed point mapping satisfies

|u� − T v|�(1 + �)|B||v − u�| + �(I − |B|)−1|c|, ∀v ∈ Rn

and we have

‖u� − T v‖�,∞ �(1 + �)�‖u� − v‖�,∞ + �

1 − �
‖c‖�,∞, ∀v ∈ Rn.

Thus, the mapping T satisfies the approximate contraction property

‖u� − T v‖�,∞ � l.‖u� − v‖�,∞ + ��, ∀v ∈ Rn,

where �� = �/(1 − �)‖c‖�,∞.
In the perturbed case, an asynchronous iterative algorithm produces a sequence of iterates, denoted by {up}p∈N,

initialized by u0 = ũ0, and defined recursively as follows for all p�0 and i ∈ {1, . . . , n},

u
p+1
i =

{
Ti(. . . ., u

sj (p)

j , . . .), ∀ i ∈ J (p),

u
p
j , ∀ i /∈ J (p),

(14)

where the sequences J and S, respectively, are defined by (6) and (7), respectively, and the conditions (8)–(10), are
satisfied. We point out that in the case of parallel asynchronous iterative methods, whereby computations are performed
in parallel without any order nor synchronizations, it is particularly important and challenging to derive stopping criteria
so that certain bounds on the error hold. These aspects will be developed in the sequel. In this context, the concept of
macroiteration will play a major role; let us recall now the classical notion of macroiteration (see [19]) which gather
several relaxations; in a macroiteration all components of the iterate vector are updated at least one time using available
values of the components associated to the previous macroiteration. Consider now

s(p) = min
r �p

min
1� j �n

(sj (r)) (15)

then, the macroiteration sequence {pk}k∈N is defined as follows:⎧⎨⎩
p0 = 0,

pk+1 = min

{
p

∣∣∣∣∣ ⋃
pk � s(r)� r �p

J (r) = {1, . . . , n}
}

.
(16)

In several works dealing with asynchronous iterations (see in particular [5,20]), the convergence of the successive
iterates is based on the relations up ∈ Ek, ∀p�pk , where {Ek}k∈N is a sequence of nested Cartesian products sets

Ek
j , verifying on the one hand the nested inclusion property Ek+1 ⊂ Ek, ∀k ∈ N and the convergence condition

T (Ek) ⊂ Ek+1, ∀k ∈ N, and on the other hand the box condition given in [5, p. 431], Ek = ∏n
j=1E

k
j , ∀k ∈ N.

The above approach is well suited to the study of perturbed asynchronous iterations which converge to a limit set
denoted in the sequel E∞ (see [20,21,24]); this last approach will be also used in the present study. Note that the only
norm compatible with the so called box condition is the weighted uniform norm.

In the context of nonperturbed asynchronous iterations, weighted uniform norm (see [13]) is also used. In such a
framework (see [13,19]), when considering the convergence of asynchronous iterations (5) associated with a contracting
fixed point mapping T̃ , the nested sets can be defined as follows:

Ek = {u ∈ Rn|‖u� − u‖�,∞ � lk.‖u� − u0‖�,∞} with l < 1. (17)

In the case of asynchronous iterations (14) associated with approximate contracting perturbed fixed point mapping T ,
the nested sets are given as follows (see [20,24]):

Ek =
{
u ∈ Rn|‖u� − u‖�,∞ � lk.‖u� − u0‖�,∞ + 1 − lk

1 − l
��

}
, (18)
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where �� = �/(1 − �)‖c‖�,∞ and with limit set

E∞ =
⋂
k∈N

Ek =
{
u ∈ Rn|‖u� − u‖�,∞ � ��

1 − l

}
. (19)

3. Stopping criterion with respect to absolute error

In the case of linear asynchronous iterations in finite precision, we propose an original stopping criterion with respect
to a given bound of the error.

3.1. Preliminary results

Let us state first some technical results.

Lemma 2. Assume that (11) holds and that � is sufficiently small so that (12) is valid; assume also that (3) is valid.
Then, using the previous notations, for any two positive real numbers � and �, let us consider a n-dimensional vector
y and a set of n-dimensional vectors {zi}, i = 1, 2, . . . , n, such that,

max
i=1,...,n

|yi − Ti(z
i)|

ei

� � and ‖y − zi‖�,∞ ��, ∀i = 1, . . . , n. (20)

Then,

‖y − u�‖�,∞ � 1

1 − �
(� + l.� + �(�‖y‖�,∞ + ‖c‖�,∞)) (21)

and

‖y − u�‖�,∞ � 1

1 − l

(
� + l.� + �

1 − �
‖c‖�,∞

)
. (22)

Proof. For all i = 1, . . . , n, let us consider the following relation:

|yi − Ti(z
i)|

ei

= |yi − T̃i (z
i) + T̃i (z

i) − Ti(z
i)|

ei

then

|yi − Ti(z
i)|

ei

� |yi − T̃i (z
i)|

ei

− |T̃i (z
i) − Ti(z

i)|
ei

. (23)

According to (13) we have

|T̃i (z
i) − Ti(z

i)|
ei

�‖|T̃i (z
i) − Ti(z

i)|‖�,∞ ��(‖|B|‖�,∞‖|zi |‖�,∞ + ‖|c|‖�,∞)

thus, for every i = 1, . . . , n

|T̃i (z
i) − Ti(z

i)|
ei

��(�‖|zi |‖�,∞ + ‖|c|‖�,∞). (24)

Therefore (23) and (24) imply that, for all i = 1, . . . , n

|yi − Ti(z
i)|

ei

� |yi − T̃i (z
i)|

ei

− �(�‖|zi |‖�,∞ + ‖|c|‖�,∞)

since ‖|zi |‖�,∞ = ‖zi‖�,∞ and ‖|c|‖�,∞ = ‖c‖�,∞, according to (20), we obtain for all i = 1, . . . , n

|yi − Ti(z
i)|

ei

� |yi − T̃i (z
i)|

ei

− ��(‖y‖�,∞ + �) − �‖c‖�,∞. (25)
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Moreover

|yi − T̃i (z
i)|

ei

= |yi − T̃i (y) + T̃i (y) − T̃i (z
i)|

ei

� |yi − T̃i (y)|
ei

− |T̃i (y) − T̃i (z
i)|

ei

note that for all i = 1, . . . , n

|T̃i (y) − T̃i (z
i)|

ei

�‖T̃ (y) − T̃ (zi)‖�,∞ = ‖B(y − zi)‖�,∞ ��‖y − zi‖�,∞.

Thus, due to (20), we have for all i = 1, . . . , n

|yi − T̃i (z
i)|

ei

� |yi − T̃i (y)|
ei

− ��. (26)

Then, (25) and (26) imply for all i = 1, . . . , n

|yi − Ti(z
i)|

ei

� |yi − T̃i (y)|
ei

− �� − ��(‖y‖�,∞ + �) − �‖c‖�,∞

therefore, for all i = 1, . . . , n

|yi − Ti(z
i)|

ei

�
|yi − u�

i |
ei

− |T̃i (y) − T̃i (u
�)|

ei

− �� − �(�(‖y‖�,∞ + �) + ‖c‖�,∞)

the previous inequality can be written

|yi − Ti(z
i)|

ei

�
|yi − u�

i |
ei

− (1 + �)�� − �(�‖y‖�,∞ + ‖c‖�,∞). (27)

Let us denote by im, 1� im �n, an index such that |yim − u�
im

|/eim = ‖y − u�‖�,∞; then, for i = im, (27) reads

(1 − �)‖y − u�‖�,∞ � |yim − Tim(zi)|
eim

+ �� + �(�(‖y‖�,∞ + �) + ‖c‖�,∞)

by taking into account (20), we obtain (21). In order to prove (22), let us start from (21); since ‖y‖�,∞ �‖y −u�‖�,∞ +
‖u�‖�,∞, then

‖y − u�‖�,∞ � 1

1 − �
(� + �� + �(�(‖y − u�‖�,∞ + ‖u�‖�,∞ + �) + ‖c‖�,∞)),

which can be also written as follows:

(1 − �(1 + �))‖y − u�‖�,∞ �(� + �� + ��(‖u�‖�,∞ + �) + �‖c‖�,∞)

since ‖u�‖�,∞ = ‖(I − B)−1c‖�,∞ �‖(I − B)−1‖�,∞‖c‖�,∞ �1/(1 − �)‖c‖�,∞ and according to (12), we obtain (22)
and the proof is complete. �

In the sequel, we will use the concepts of order intervals and order interval hull. Consider two vectors w, w ∈ Rn

such that w�w and the associated order interval 〈w, w〉 = {w ∈ Rn|w�w�w}, which can also be written as follows

〈w, w〉 = {w|w
k
�wk �wk, k = 1, . . . , n}, where wk denotes a component of w.

Let us also denote, in the sequel, Diam�,∞(〈w, w〉)=‖w−w‖�,∞ the diameter, with respect to the weighted uniform

norm (4), of the order interval 〈w, w〉. Let us also consider m vectors of Rn, denoted by {w1, . . . , wm}; in the sequel

w
j
i , i = 1, . . . , n, denotes the ith component of the vector wj , j = 1, . . . , m. We introduce now the following vectors

w = (wi) and w = (wi) defined by wi = min(w1
i , . . . , w

m
i ) and wi = max(w1

i , . . . , w
m
i ), 1� i�n.

Definition 1. Consider a set of vectors {w1, . . . , wm}; then the order interval hull associated with the set of vectors
{wi}1� i �m is defined by 〈w, w〉 = {w ∈ Rn|w�w�w}.
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Lemma 3. Assume that assumptions of Lemma 2 hold. Consider a positive real number �, and an order interval
〈w, w〉,such that Diam�,∞(〈w, w〉)��. Let us consider a set of n-dimensional vectors {zi}, i = 1, 2, . . . , n, such that,

zi ∈ 〈w, w〉, ∀i = 1, . . . , n (28)

and a vector ȳ ∈ 〈w, w〉 such that

ȳ = {T1(z
1), . . . , Ti(z

i), . . . , Tn(z
n)}t . (29)

Then ∀z ∈ 〈w, w〉, we obtain

‖z − u�‖�,∞ � 1

1 − �
((1 + l)� + �(�.‖z‖�,∞ + ‖c‖�,∞)) (30)

and

‖z − u�‖�,∞ � 1

1 − l
((1 + l)� + ��). (31)

Proof. The proof follows from Lemma 2 by choosing y = z, y ∈ 〈w, w〉 and � = �; then it follows from the above
assumptions, that the first inequality of (20) is satisfied and (21) and (22), respectively, imply (30) and (31), respectively,
which achieves the proof. �

3.2. Stopping criterion

In order to define a practical stopping criterion we adapt the concept of macroiteration presented in (15,16) and we
introduce now the paradigm of sliding macroiteration defined by the following notations:


(p) = max

⎛⎝⎧⎨⎩r

∣∣∣∣∣∣
⋃

r � s(r)� r �p

J (r) = {1, . . . , n}
⎫⎬⎭

⎞⎠ , ∀p�p1

and


(p) = min({r|
(p)�s(r)�r �p}), ∀p�p1,

which permits one to take into account all necessary information used to produce the pth update; 
(p) traduces the
fact that all components of the pth update are computed using values which belong to the same sliding macroiteration.
In this framework, updates labelled by an index smaller than the value r , quoted in the definition of 
(p), are not used
anymore in the computation of the pth update.

The set of iteration numbers related to the updating of the ith component that are between 
(p) and p is defined as
follows:

∀i ∈ {1, . . . , n} → �p(i) = {r ∈ N|
(p)�r �p ∧ i ∈ J (r)} �= ∅ if p1 �p,

where a ∧ b means a and b. Therefore, for all i ∈ {1, . . . , n}, we can choose some indices �p(i) ∈ {
(p), . . . , p} such
that �p(i) = max(r ∈ �p(i)), ∀p�p1, �p(i), corresponding to the iteration number related to the last update of the
ith component. Note that

⋃
i∈{1,...,n}J (�p(i))={1, . . . , n}. Then the set of n-dimensional vectors {zi}, i = 1, 2, . . . , n,

is defined such that, zi = {. . . , usj (�p(i))

j , . . .} and ȳ ≡ up+1 defined by

up+1 = {T1(z
1), . . . , Ti(z

i), . . . , Tn(z
n)}t = {u�p(1)+1

1 , . . . , u
�p(i)+1
i , . . . , u

�p(n)+1
n }

let us define wi as follows wi = zi, i = 1, . . . , n. We label by an index p the order interval hull 〈w, w〉, which is
then denoted by 〈w, w〉p. In order to establish the main result of this section, we introduce an abstract framework
related to the sequence of embedded sets: we consider a sequence of order intervals denoted by 〈v, v〉p such that
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〈w, w〉p ⊆ 〈v, v〉p, ∀p ∈ N. Consider a positive real number � such that the diameter of the limit set E∞ defined
by (19) satisfies Diam�,∞(E∞) = 2��/(1 − l) < �. Then we can define the stopping criterion at the (p + 1)th sliding
macroiteration as follows:

Diam�,∞(〈v, v〉p)��. (32)

We present the main result of this section

Proposition 1. Assume that (11) holds and that � is sufficiently small so that (12) is valid; assume also that (3) is valid.
The real number � satisfying Diam�,∞(E∞) < �, there exists a sequence of order intervals 〈v, v〉p, p ∈ N satisfying

〈w, w〉p ⊆ 〈v, v〉p, ∀p ∈ N, such that up+1 ∈ 〈w, w〉p∀p ∈ N and such that, for p ∈ N sufficiently large, the

condition (32) is satisfied. If the condition (32) is satisfied, then ∀uq ∈ 〈v, v〉p we have the estimations

‖uq − u�‖�,∞ � 1

1 − �
((1 + l)� + �(�.‖uq‖�,∞ + ‖c‖�,∞)) (33)

and

‖uq − u�‖�,∞ � 1

1 − l
((1 + l)� + ��). (34)

Proof. Since �p(i) ∈ �p(i), ∀p�p1 and up+1 = {T1(z
1), . . . , Ti(z

i), . . . , Tn(z
n)}t , note that necessarily up+1 ∈

〈w, w〉p, ∀p ∈ N. Let us choose � such that the condition Diam�,∞(E∞) < � is satisfied and consider also 
(p)

satisfying 
(p)�
(p), ∀p ∈ N and limp→∞(
(p)) = +∞. Then, taking into account (18) and (19), there exists an
integer p̄ such that

‖uq − ur‖�,∞ ��, ∀q, r � p̄. (35)

So there exists an integer p̂ such that

‖uq − ur‖�,∞ ��, ∀q, r � p̄, ∀p� p̂, p̄�
(p)�q, r �p + 1. (36)

Let us now denote vi =uq, q =
(p), . . . , p + 1, i = q −
(p)+ 1 ≡ 1, . . . , n, to which corresponds the order interval

hull 〈v, v〉p; then 〈w, w〉p ⊆ 〈v, v〉p = 〈v, v〉p and (35) implies Diam�,∞(〈v, v〉p) = Diam�,∞(〈v, v〉p)��, ∀p� p̂.
Thus (32) is satisfied. It follows from Lemma 3 that if (32) is satisfied, then (33) and (34) hold and the proof is achieved.

�

Remark 3. Inequalities (35) and (36) give another opportunity to derive a stopping criterion in situations where a
suitable overestimation of �(p) = p − 
(p) is available.

Corollary 1. Assume that assumptions of Proposition 1 hold. Then, there exists an integer p̂, such that for any p� p̂,
the condition (36) is true; furthermore, when (36) is satisfied, for all q, such that 
(p)�
(p)�q �p + 1 with
limp→∞(
(p)) = +∞, ∀p ∈ N, the inequalities (33) and (34) are satisfied.

Proof. The previous result follows in a straightforward way from the proof and the statement of Proposition 1. �

Fig. 1 illustrates what may happen if different components of the iterate vector are updated using values of the
same component which are very dissimilar: one may have a bad convergence detection that delivers a very poor
approximation to the fixed point. In Fig. 1, computations are made by three processors. The end of each iteration is
represented by a vertical bar. Moreover each processor communicates only with adjacent processors. Communication
frequency relatively to both directions is high between processor 0 and 1 and processor 1 communicates very slowly
with processor 2. For simplicity of presentation, we have only represented the most significant communications using
arrows. It results from the important differences in communication frequencies that processors 0 and 1 converge to a
solution of a subproblem, updating the components which are assigned to them. If different components of the iterate
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Fig. 1. Pathological situation in the convergence detection of asynchronous iterative algorithms, time diagram.

vector are updated using values very dissimilar of the same component then, we note that global convergence may be
detected at time p, though processor 2 has repeated the same updating phase from time 0 to p using the same data.

Remark 4. The originality of our method relies on the fact that all convergence tests are made within the same
macroiteration which ends up at the given current update p. In other words, starting from p, we build a macroiteration
going back in the sequence of events which are related to previous updates. We note that the stopping criterion ensures
that some kind of data coherency is satisfied. Note that the different components of the iterate vector can be computed
in the same macroiteration according to the parallel asynchronous iterative model (14) using values of the same
component that can be very dissimilar (see Fig. 1). The stopping criterion which must be verified using the infinite
norm guarantees part of iterate vector values coherency, i.e., data relative to a given component which are used in the
same macroiteration during the different updating phases must be close to each other. Inequality (36) achieves in some
way computed iteration values coherency by guaranteeing that convergence conditions are satisfied for all components
at the same macroiteration.

Remark 5. In the present theoretical context, the results of Proposition 1 means that the asynchronous iterations (14)
lead to a stabilization asserted by the considered stopping criterion, to which corresponds the error bounds (35) and
(36). Note also that in the nonperturbed case corresponding to � = 0, then the condition Diam�,∞(E∞) < � reduces to
the usual choice of � > 0. Moreover (35) and (36) reduce both to ‖uq − u�‖�,∞ �(1 + �)/(1 − �)�, for all q ∈ N.

3.3. Stopping criterion derived from other norms

All norms of the n-dimensional space being equivalent, the stopping criterion with respect to absolute error can be
considered with respect to another norm of Rn. Let us denote in the sequel such a norm as follows v →]|v|[, ∀v ∈ Rn

and by �, � the corresponding constants of equivalence between the considered norm ]|.|[ and the uniform weighted
norm (4); thus

0 < �� ]|v|[
‖v‖�,∞

��, ∀v ∈ Rn. (37)

In the sequel, we shall use the following notation Diam]|.|[(〈w, w〉)=max(]|u−v|[), u, v ∈ 〈w, w〉. We introduce also

a positive real number �
′

such that

�
′
>

2��

�(1 − l)(1 − �)
]|c|[� 2��

(1 − l)(1 − �)
‖c‖�,∞ = 2�

1 − l
��

and denote �=�
′
/�; �� =�

′
/�. Consider a sequence of order intervals 〈v, v〉p such that the condition Diam�,∞(E∞)=

2��/(1 − l)�� holds. In the sequel we will consider the following stopping criterion with respect to absolute error

Diam]|.|[(〈v, v〉p)��
′
. (38)
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Proposition 2. Assume that assumptions of Proposition 1 hold. Then
(1) there exists a sequence of order intervals 〈v, v〉p, p ∈ N satisfying 〈w, w〉p ⊆ 〈v, v〉p, ∀p ∈ N, and such that

up+1 ∈ 〈w, w〉p, ∀p ∈ N, for p sufficiently large, such that the condition (38) is satisfied;
(2) if the condition (38) is satisfied, then ∀uq ∈ 〈v, v〉p we have the estimations

]|uq − u�|[� �

1 − �
((1 + l)�� + �

�
(�]|uq |[+]|c|[)), ∀uq ∈ 〈v, v〉p, (39)

and

]|uq − u�|[� �

1 − l

(
(1 + l)�� + �]|c|[

�(1 − �)

)
. (40)

Proof. The proof follows by adapting the results of Proposition 1 to the actual situation. In particular, since � =
�

′
/� > 2��/(1−l)=Diam�,∞(E∞), the condition 〈w, w〉p ⊆ 〈v, v〉p, ∀p ∈ N, holds and, for p sufficiently large, by the

first point of Proposition 1 we have Diam]|.|[(〈v, v〉p)�� Diam�,∞(〈v, v〉p)���,which implies Diam]|.|[(〈v, v〉p)��
′
,

and the first part of Proposition 2 is proved. Assume now that (38) holds; it follows from Proposition 1, (37) and by
replacing � by �� that (33) and (34), respectively, imply (39) and (40) respectively, and the proof is achieved. �

Consider now the following absolute error criterion derived from the norm v →]|v|[, introduced in this section

]|uq − ur |[��
′
, ∀q, r such that 
(p)�
(p)�q, r �p + 1. (41)

Corollary 2. Assume that assumptions of Proposition 2 hold. Then,

(1) the condition (41) is satisfied for p sufficiently large,
(2) when (41) is satisfied, for all q such that 
(p)�
(p)�q �p + 1 with limp→∞(
(p)) = +∞, ∀p ∈ N, the

estimations (39) and (40) are satisfied.

Proof. The previous result follows by an argument similar to the one developed in Corollary 1. �

4. Examples

In order to illustrate simply the concept presented in Section 3, we consider first the classical Jacobi and Gauss–Seidel
methods.

4.1. The Jacobi and Gauss–Seidel methods

Consider the solution of the linear algebraic systemAu�=c, by the Jacobi method; classically (see [19]), this algorithm
can also be viewed as a particular case of asynchronous iterations modelled by (5)–(10), where J (p) = {1, . . . , n} and
sj (p) = p, ∀j ∈ {1, . . . , n}, ∀p ∈ N. In this context, we have 
(p) = 
(p) = p, ∀p ∈ N, �p(i) = p, i = 1, . . . , n,

zi=up, i=1, . . . , n, and ȳ={T1(z
1), . . . , Ti(z

i), . . . , Tn(z
n)}t={up+1

1 , . . . , u
p+1
i , . . . , u

p+1
n }t . Then, in the considered

method, 〈w, w〉p,is defined by w = min(up, up+1) and w = max(up, up+1); therefore Diam�,∞(〈w, w〉p) = ‖up+1 −
up‖�,∞. Thus, in this case, the results of Propositions 1 and 2 are valid.

Using the same notations as those considered in the previous example, the usual Gauss–Seidel method can also be
viewed as an asynchronous iteration defined by (5)–(10), where J (p) = {jp}, jp = 1 + p(mod n) and si(p) = p, i =
1, . . . , n, and p = 0, 1, . . . . If �p/n� denotes the integer part of p/n, satisfying p = qn + r , where p, q and r are
integers with r < n, then, we can also write jp =1+ (qn+ r)(mod n)=1+ r . Then 
(p)=
(p)=p −n+1, ∀p�p1
and

�p(i) =
{

p − jp + i if i�jp,

p − n + i − jp if i > jp.
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Then zi = u�p(i); therefore

ȳ = {T1(z
1), . . . , Ti(z

i), . . . , Tn(z
n)}t = {u�p(1)+1

1 , . . . , u
�p(i)+1
i , . . . , u

�p(n)+1
n }t ,

which can also be written as follows ȳ = {up+1
1 , . . . , u

p+1
n }t .

Lemma 4. Considern+1 vectors {w1, . . . , wi, . . . , wn, wn+1}, such thatwi−wi+1={0, . . . , wi
i−wi+1

i+1, 0, . . . , 0}, i=
1, . . . , n. Then, the order interval hull associated with {w1, . . . , wn+1} is 〈w, w〉=〈min(wn+1, w1), max(wn+1, w1)〉.

Proof. Indeed, any two vectors wi and wi+1, i = 1, . . . , n, differ only by the value of the ith component; thus, only
vectors w1 and wn+1 can differ by the value of all components. �

Consider now the vectors wi = zi ≡ u�p(i), i = 1, . . . , n, and wn+1 = ȳ; then, by a simple permutation of the index
of the components of the previous vectors, we can apply Lemma 4; and we obtain

〈w, w〉p = 〈min(up+1, wp+1−n), max(up+1, wp+1−n)〉

and Diam�,∞(〈w, w〉p) = ‖up+1−n − up+1‖�,∞. Then, once again, the results of Proposition 1 and 2 are still valid.

Remark 6. The result of Proposition 1 does not formally lead to distinct results for Jacobi and Gauss–Seidel methods.
Note that, in the common framework, the same stopping criterion does not lead nevertheless to the same numerical
value for the bounds of the two studied methods, even if these bounds have the same algebraic expressions. The Stein
Rosenberg theorem can be applied to the Gauss–Seidel method if the corresponding iteration matrix is explicitly known
with corresponding spectral radius smaller than the one of the Jacobi method.

4.2. An iterative method with delays

For the sake of simplicity, let us consider a very simple example, where B is defined and splitted as follows:

B =

∣∣∣∣∣∣∣
0 b12 0 0

b21 0 b23 0
0 b32 0 b34
0 0 b43 0

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
0 b12 0 0

b21 0 0 0
0 0 0 b34
0 0 b43 0

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
0 0 0 0
0 0 b23 0
0 b32 0 0
0 0 0 0

∣∣∣∣∣∣∣
denote I1(i) = {j ∈ {1, . . . , 4}|b1

ij �= 0} and I2(i) = {j ∈ {1, . . . , 4}|b2
ij �= 0}, ∀i ∈ {1, . . . , 4}, respectively; in this

case we have I1(i)
⋂

I2(i)=∅, ∀i ∈ {1, . . . , 4}. Consider first the nonperturbed iteration with delays ṽp+1 =B1ṽp +
B2ṽp−�(p) + c, where p → �(p) denotes the delay. Then, using the formulation (14), the corresponding perturbed
iteration with delays satisfies J (p) = {1, . . . , 4}, p = 1, 2, . . . , sj (p) = p, ∀j ∈ I1(i) and sj (p) = p − �(p), ∀j ∈
I2(i), i ∈ {1, . . . , 4}, ∀p ∈ N. We concentrate on the situation where, for a real positive given number �̄ and an
integer�̄, if

‖up+1 − up‖�,∞ > �̄ and �(p) < �̄ (42)

then we replace (p + 1) by p and �(p + 1) = �(p) + 1; else we replace (p + 1) by p and �(p + 1) = 0. Then according
to Remark 3, we can write �(p) = �̄ and 
(p) = p − �̄. Therefore, if Diam�,∞(E∞)��, then we can use the stopping
criterion (36) in the context of Remark 3 and use Corollary 1 in order to obtain the bounds (33) and (34).

Note that the direct use of a simpler stopping criterion, joined to (42), can lead to stop the iterations with an iterate
vector which is in the neighborhood of the fixed point of the scheme ṽ → B1ṽp + B2ṽp−�(p) + c.

4.3. A simple illustration of multiprocessing asynchronous iterations

For the sake of simplicity, let us consider a simple illustration of computational aspects related to asynchronous
iterations and concentrate on communications between two processes (P1) and (P2) carried out on two separate
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processors. Let us consider the following tridiagonal matrix B = B1 + B2 + B3, sum of three matrices Bi, i = 1, 2, 3,
defined as follows:

B =

∣∣∣∣∣∣∣
0 b12 0 0

b21 0 b23 0
0 b32 0 b34
0 0 b43 0

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
0 b12 0 0

b21 0 0 0
0 0 0 b34
0 0 b43 0

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
0 0 0 0
0 0 b23 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 b32 0 0
0 0 0 0

∣∣∣∣∣∣∣
then, consider the following asynchronous iteration up+1 =B1u

p +B2u
p−�1(p) +B3u

p−�2(p) + c, where components
(u1, u2), (u3, u4), respectively, are updated by processes (P1) and (P2), respectively, as follows:

(P1)

∣∣∣∣up+1
1

u
p+1
2

∣∣∣∣ =
∣∣∣∣ 0 b12
b21 0

∣∣∣∣ ∣∣∣∣up

1
u

p

2

∣∣∣∣ +
∣∣∣∣c1
c2

∣∣∣∣ +
∣∣∣∣ 0
b23u

p−�1(p)

3

∣∣∣∣ ,

(P2)

∣∣∣∣up+1
3

u
p+1
4

∣∣∣∣ =
∣∣∣∣ 0 b34
b43 0

∣∣∣∣ ∣∣∣∣up

3
u

p

4

∣∣∣∣ +
∣∣∣∣c3
c4

∣∣∣∣ +
∣∣∣∣b32u

p−�2(p)

2
0

∣∣∣∣ ,

where p → s3(p) = p − �1(p) and p → s2(p) = p − �2(p) satisfy (9)–(10); the algorithm corresponds to a situation
where the two processors perform synchronously their computational tasks while the exchanges between them are
completely asynchronous. In this case we have

z1 = {up

1 , up

2 , u
p

3 , u
p

4 }t, z2 = {up

1 , u
p

2 , up−�1(p)

3 , u
p

4 }t ,

z3 = {up

1 , up−�2(p)

2 , u
p

3 , up

4 }t, z4 = {up

1 , u
p

2 , up

3 , u
p

4 }t ,

where the bold-faced letters correspond to the components of the vectors zi, i = 1, . . . , 4, which are actually used
during the computation and the others are unused; in this situation the order interval hull is defined componentwise by

w1 = min(u
p+1
1 , u

p

1 ); w1 = max(u
p+1
1 , u

p

1 ),

w2 = min(u
p+1
2 , u

p

2 , u
p−�2(p)

2 ); w2 = max(u
p+1
2 , u

p

2 , u
p−�2(p)

2 ),

w3 = min(u
p+1
3 , u

p

3 , u
p−�1(p)

3 ); w3 = max(u
p+1
3 , u

p

3 , u
p−�3(p)

3 ),

w4 = min(u
p+1
4 , u

p

4 ); w4 = max(u
p+1
4 , u

p

4 )

and the corresponding order interval hull is

〈w, w〉p = {v = (v1, v2, v3, v4)|wi �vi �wi, i = 1, 2, 3, 4}
which can be splitted as follows:

〈w, w〉p =
{ 〈w, w〉1

p = {(v1, v2)|wi �vi �wi, i = 1, 2},
〈w, w〉2

p = {(v3, v4)|wi �vi �wi, i = 3, 4}
where the suborder intervals 〈w, w〉1

p, and 〈w, w〉2
p, respectively, are managed by the first and the second processor,

respectively. In this case the stopping criterion (32), i.e., Diam�,∞(〈w, w〉p)��, corresponds to

max

(
w1 − w1

e1
,
w2 − w2

e2

)
�� and max

(
w3 − w3

e3
,
w4 − w4

e4

)
��

on the first and the second processor, respectively.

Remark 7. Note that each processor is in charge of its own suborder interval, and is unaware of the state of the sub
order interval managed by the other processors. As a consequence, additional data exchanges must be carried out in
order to evaluate global criterion. Additional data exchanges can be included in the same message as numerical updates.
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