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Abstract— In this paper we propose a distributed algorithm to 
solve a discrete trajectory optimization problem that occurs in 
a micro-electro-mechanical based modular surface context.
The method computes the shortest path between two points of 
the modular surface using a strategy based on minimum hop 
count. Our scalable approach is based on distributed 
asynchronous iterative elections. A multithreaded Java Smart 
Blocks Simulator used to validate our distributed algorithm is 
presented and some results obtained with the simulator are
commented on.  
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I. INTRODUCTION  

Several solutions have been proposed in order to sort and 
convey objects in production lines; most of them are contact-
based technologies that can raise some problems. Fragile 
objects can be damaged or even scratched during 
manipulations which lower the production line efficiency. 
For example medicines [1], micro-electronics parts or even 
food can be contaminated. Conveyors which avoid contact 
with the parts conveyed solve most of these problems for
transport and sorting.

Conveyors are usually designed as monolithic entities that 
are well suited to a specific problem with fixed type of 
environment. If for some external reason, the environment of 
the conveyor changes, e.g., a change of the usual input or 
output point of parts to convey, then the conveyor has to be 
reconfigured or even replaced. Self-reconfigurable systems
[2-4] made of small Micro-Electro-Mechanical Systems
(MEMS) modules can address this problem and can bring
flexibility in future productions lines. In particular, MEMS-
based devices with embedded intelligence, also referred to as 
Smart Blocks, have great potential for manipulating micro 
parts in many industries like semiconductor industry and 
micromechanics (see [5, 6]).

The Smart Blocks project [7] aims at designing a self-
reconfigurable MEMS-based modular surface for fast 
conveying of fragile micro parts and medicinal products. The 
goal of this project is to tackle all related problems in order 
to increase the efficiency of future production lines. The 
reader is referred to [8] for a complete and detailed 
presentation of the Smart Blocks project. In this paper, we 

concentrate on the design of a scalable distributed algorithm 
that is well suited to the solution of a discrete trajectory 
optimization problem that occurs in a MEMS-based modular 
surface context where fragile micro parts have to be  
conveyed. 

The modular surface is composed of blocks. A block 
embeds a MEMS actuator array [8], see also [9], in the upper 
face in order to move the parts, a motion actuator for block 
motion, a sensor on each of its four side to detect
neighboring blocks, a processing unit and ports for 
communication with neighbors (see Fig. 1). Blocks move on 
the surface via electro-permanent magnet technology. Parts 
are moved on top of blocks via a two dimensional  
pneumatic actuator (see [8]). 

Figure 1. The Smart Blocks modular conveyor. 

The proposed distributed algorithm deals with distributed 
MEMS computing paradigms [10, 11] and solves two 
discrete optimization problems simultaneously: the shortest 
path between two points of the modular surface (that will be 
used to convey parts) and the associated optimal moving of 
blocks necessary to build the shortest path. To achieve this
task, we use a distributed iterative election method. At any 
iteration, a block whose number of hops to reach a given 
position on the surface is minimal is elected in a distributed 
manner and the elected block triggers the next iteration 
before it optimally moves to its final position. The 
distributed election is based on messages broadcasting with 
some control mechanisms to avoid loops and network 
flooding.
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Section II presents models of blocks and the modular 
surface. Section III deals with the principle of the distributed 
algorithm, while section IV details its design and the format 
of messages sent and received by blocks during the 
computation. Block motion is presented in section V. Section 
VI deals with SBS, a multi-threaded Java Smart Blocks 
Simulator which has permitted us to validate the proposed
distributed algorithm. Section VII deals with simulation 
results and we conclude this study in section VIII.

II. MODELS OF BLOCKS AND MODULAR SURFACE

We consider a discrete representation of the MEMS-
based modular surface with 2D grid topology. Each node of 
the grid corresponds to the center of the square that can be 
occupied by a block. The position of a node on the surface is 
given by a two dimensional vector. The first component � is 
an integer such that 0 � � < �, where � is the maximum 
width of the surface. The second component � is an integer 
such that 0 � � < �, where � is the maximum height of the 
surface (see Fig. 2). The parameters of the problem are the 
coordinates  of the input and output of parts, that are denoted 
by I and �, respectively and the current position of blocks on 
the surface. The components of I and  � are denoted by 
�	  , 
 � {1, 2} and �	 , 
 � {1, 2}, respectively.

The local state of a block on the surface is given by a set 
of parameters shown on Fig. 3. There are three ordinary flags 
denoted by TR (see section II for details), EL, CP (see section 
IV), respectively and an additional flag denoted by � that 
can have three states (see section IV), a local iteration 
number denoted by ��, the Neighbor Table denoted by NT
that stores information regarding blocks that may be 
connected to the considered block. The Waiting Message
table denoted by WM stores the labels of message that are 
expected to be received from a neighbor. The QBEr table 
stores the labels of messages already forwarded by a block in 
order to avoid message loops and network flooding. We
assume that the input � and output � are initially known by a
block randomly chosen on the surface and denoted by �	 .
This block sends a message, which is denoted by 
���[������, ��, ����, �	 , �	], to all its neighbors and finally
sets its TR flag (TR = 1) in order to avoid network flooding. 

Figure 2. Model of the modular surface. 

The first three fields of this message represent respectively 
the �� of the sender, the iteration number and the 
destination �� of the message (which is NULL in this case in 
order to denote multiple destinations). We also assume that a
sensor on each side of a block, which detects the presence or
departure of a neighboring block, permits one to update the 
Neighbor Table (denoted by NT). Each block which receives 
a ��� message, updates part its NT table and destroys the 
message if  TR = 1; else the block sends the ��� message to 
all its neighbors, sets its TR flag and updates its NT table. 
Note that the sensors of a block and the embedded image of 
the block do not update the same field of the NT table. For 
example if the sensor of the upper side face detects a block, 
then it will set the field NT[Up]. � = 1 and if the �� of the 
block considered belongs to the rectangle bounded by � and
� , then the embedded image will set the field ��[��]. �
to �(Incoming link) or � (Outgoing link) depending on the 
respective positions of  � and � that give the orientation of 
the graph �� = (�, �� ) where � is the set of blocks on the 
surface within the rectangle bounded by � and � and �� is the 
set of links between them. The graph is always oriented from 
the input to the output. For example, we shall have a Left-Up 
(LF-UP) oriented graph if the output � is at left and above 
the input �(see Fig. 2). Then broadcasting the ��� message
to all blocks allows each block on the surface to receive the 
input parameters of the optimization problem and to take part 
to the construction of the graph ��. 
In order to solve the discrete trajectory optimization problem, 
we consider two metrics: the number of blocks along the
shortest path and the number of hops blocks must perform to 
build the shortest path. The optimal solution is the path built 
with minimum number of blocks (shortest path with 
minimum hop count) in order to minimize the conveying 
time of parts and with minimal block motion in order to 
minimize the time needed to build the shortest path.
Now, we consider the rectangle � bounded by � and �,
 �� the union of all free positions contained in � and all 
elements of � in � and � the set of links between the 
elements of �� . We obtain a new oriented graph � = (�� , �)
bounded by � (see Fig. 2). On Fig. 2, the smalls gray squares 
represent blocks and the smalls white squares represent some 
free positions on the surface which can be occupied by 
blocks.

Figure 3. Local state of a block. 

708



  

       

                   ���

    !�(") � �#$, % �& ' �&
� % +% �* ' �*

� % � % �& ' �(")& % +% �* ' �(")* % - ��/ �(") 

               Distributed Election of the block �� 3 �  among  �  blocks

                 �� raises the next Iteration by sending a ���[�	, 1] message

                  ��sends a ��[��] message to its neighbors and moves to position  �

���[ 4� 5 �	, 1]

��&

4& 5 (�& 3 �4�,&? 4�,&: 4�,*) - �4& 5 (�& 3 �4�,&? �4�,&: �4�,*)

Distributed Election of the block  �&, �& 3 �  among  � ' 1  blocks

�& raises and collects the results of two distributed elections of blocks:

�4�,& 3 4�,& and  �4�,* 3 4�,*

�& sends a �6� [4&, 2, �4&] to �4&

�& sends a �� [�&] to its neighbors, moves to position 4&

CMR [4&, 2, (�* 5 �4&)]

��7

�7 � �$8  receives �6� [479&, >, (�7 5 �479&)], �7. �� 5 �6�. ��

�7 starts and collects the results of two distributed elections of blocks:

�479&,& 3 479&,& and �479&,* 3 479&,*

47 5 (�7 3  �479&,&? 479&,&: 479&,*) - �47 5 (�7 3 �479&,&? �479&,&: �479&,*)  

�7 sends a  �6� [47, > + 1, �47] to �47

�7 sends a  ��[�7] to its neighbors and moves to position 47

CMR [47, > + 1, (�7@& 5 �47)]

��A9&

�D'1 � �$8  receives CMR, �D'1. �� 5 �6�. ��

�D'1 does not raise a next Iteration:  �	 � {4A9*,&, 4A9*,*}

4D'1 5 (�	 = 4A9*,&? 4A9*,&: 4A9*,*)  

�D'1 sends a CCP, BYE [�A9&] to all its neighbors and moves to � = 4D'1

CMR [4A9*, D ' 1, (�A9& 5 �4A9*)]

Figure 4.  Distributed iterative algorithm.
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We can easily note on Fig. 2 that all the paths
between  � and  �, with minimal number of blocks, are
contained in the oriented graph �. Then, the problem consists 
in determining the strategy which minimizes block moves 
and that gives a final shortest path in the oriented graph �. 

In the proposed distributed approach, blocks cooperate to 
find out the shortest path while minimizing block moves at a
global scale. Our approach is based on a distributed iterative 
election algorithm whereby at each iteration, the elected 
block is such that the number of hops to reach the next 
position on the shortest path is minimal.

III. PRINCIPLE OF THE DISTRIBUTED ALGORITHM

Without loss of generality, we assume that a connected set 
of � blocks is disposed initially on the surface and that there 
are enough blocks on the surface in order to build the 
shortest path between � and �. At iteration ���, the block 
whose number of hops to reach the entry point � is minimal, 
is elected among � blocks (see Fig. 4).

At iteration  ��7,  where  1 < > < D ' 1, the closest block 
to the position 479& on the shortest path (this block, denoted 
by �7, has been elected among the available  � ' > blocks
at ��79& ) , has to choose either to  move to the position
479&,&  or to the position 479&,* , where 479& is the final 
position on the shortest path of the block that has been
elected at iteration ��79* and   479&,&, 479&,*  are the two 
outgoing positions from 479& in the graph �. The block �7

does not make this choice at random. The block �7starts two 
distributed elections in order to obtain the position of blocks 
called �479&,&

  and �479&,*, that are closest to the positions
479&,&  and 479&,*, respectively. Then,  �7 moves either to 
the position  479&,& or to the position 479&,* depending on 
the proximity of �479&,&

  and �479&,* and the 
corresponding block will become �7@&.
On Fig. 4, the relation  �(") 3 4 denotes that �(") is the
closest block to the position 4 among the entire set of blocks 
on the surface. Moreover, the relation 47 5 (�7 3
 �479&,&? 479&,&: 479&,*) denotes that if �7 is the closest 
block to position of the block �479&,&, then the value of 47

will be 479&,&, else it will be 479&,*.

Remark 1: Note that, in order to avoid any deadlock during 
an election due to the fact that it may exist more than one 
block at the same distance of a given position, we follow a 
strategy that favors a block that satisfies �7 / �("), " �
{1, … , � ' >}, where the relation �7 / �(") denotes:�7 3
� F �&

7 < �(")&  F  �*
7 < �(")* , 
G  �&

7 = �(")& ! �("), " �
{1, … , � ' >}.        

At iteration ��A9*, where  D is the maximum number of 
blocks necessary to build the optimal trajectory, the closest 
block to the output � is elected among � ' D + 1 blocks on 
the surface. This block will move to the output � at the last 
iteration ��A9&. 

Remark 2: Note also that the blocks already elected, i.e, 

with flag � = 1, may participate to the next iterations by 
propagating messages.

Remark 3: At the beginning of the iteration ��7, 0 < > <
D, the set of  �  blocks on the surface is separated into two 
subsets. The first subset �$8 of > blocks already elected at 
previous iterations and a second subset of � ' > blocks not 
elected, denoted by �#$ .   

IV. DISTRIBUTED ASYNCHRONOUS ITERATIVE
ALGORITHM

In this section, we focus on the design of the distributed
iterative election algorithm including transitions between 
consecutives iterations and message broadcasting 
mechanisms that are well suited to the grid topology of the 
modular surface.    

A. Iteration ���  
��� is the first iteration of the distributed iterative 

algorithm. It performs the initialization of blocks and 
modular surface (see section II), it elects the block �� closest
to the input �. Any block � participates to this election when 
it receives a ���[������, 0, ����, �	 , �	] message. The 
behavior of the block � depends on its context.  

Case 1: Block � is closer to the input � than ������ . 
If TR = 0, then the block � sends ���[�, 0, NULL, �	 , �	]
to all its neighbors, sets the flag TR to 1, updates the NT
table in order to participate to the construction of the graph 
G, updates the (Waiting Message) WM table, i.e., it adds a 
label of a ��� message denoted by ���I��J, 0K into the 
WM[�] table, � � {Up, Rg, Dw, Lf} and � S �VXYZ,  
where ��J is the neighboring block located at the position �.  
The block � adds also the label of a message denoted by
��� [������, 0, �] into WM[�VXYZ] (which means that block 
� is waiting for a ��� message from ������ that will indicate 
if ������ has found out a block closer to the input � than �).
The block � has a transition of its CE flag to the next state 
CE = 01 if CE = 0.  Note that the transition order of the CE
flag states is: 0 \ 01 \ 010 . 
If �� = 1 , then the Block � updates the WM table. It     
removes the label ���[������, 0] from the WM[ �����]. 

Case 2: Block � is farther to the input � than ������ . 
If �� = 0, then the block � sends ��� [�, 0, ����, �	 , �	]
to all its neighbors, sets the flag TR to 1, updates the NT 
table in order to participate to the construction of the graph 
�, updates the WM table by adding a label ���I��J, 0K into 
the WM[�] table with � � {��, �^, �_, �G} and � S ����� .
If block � does not have any neighbor other than the sender 
of the  ��� message, then it must build and send a
��� [�, 0, ������, ������] message to the ��� sender, i.e.,  
������ . The last field of the ��� message contains the 
position of one block known by � as a block closest to the 
input � than ������ . If the block � has at least one neighbor 
other than the ��� sender, then it builds a message denoted 
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by ��[�, 0, ����, `�Da�bc, ������, �	, �	] and sends it to 
all these neighbors, adds a ��[��J, 0, ������] label into 
each corresponding WM [�] table, where � S ����� . The 
field Senders is an ordered list of three ��c: the ��
initiator (�	, in this case), the penultimate forwarder (NULL
in this case since the block � is the initiator) and the last 
forwarder of the �� message (NULL in this case) and
������ is here the so-called ��de of the �� message.
Note also the input parameters �	 and �	 in the �� message 
format in order to avoid deadlock if a block receives a ��
message without receiving and processing a ��� message. 
The block � sets its � flag to the next state � = 010 if
� = 01. Note that this last action will be performed only if 
the block � has already received and completed the 
processing of a ��� message from an outgoing position (if 
any), otherwise the � flag state transition will be delayed
until the block � has taken into account a ��� message 
coming from an outgoing position.
If �� = 1 then, block � behaves like in the previous case 
except that, it does not send a ��� message to its neighbor
since it is already done. 
The queries ��[������, 0, ��h��i, `�Da�bc, ��de, �	,

�	] eventually sent by blocks while processing of a ���
message are used to find out at least one block on the surface
that is closest to the input � than the ��� sender (the so-
called ��de ). Each block � on the surface which receives 
a �� message first checks if it has not already treated this 
��. If it is not the case, i.e., the ��b table of the block �
contains a ��de entry, then block � deletes the ��
message and sends a Leave off Listening State message 
denoted by  ��`[�, 0, ������, ��, ��de] to the ��
sender i.e., ������ , else block �  has the following 
behavior.

Case 1: Block � is closest to the input � than ��de.  
Then block � builds and sends a message ��[�, 0,
������, �	, ��de, ��	A	i] to the sender of the ��
message. The fourth field of this message is the answer 
denoted by ��j#k  ( �	 in this case) to the �� request
message received by the block. Note the �� intiator ��
(��	A	i) in the �� message format.

Case 2: Block � is farther to the input � than ��de.
If the length of the `�Da�bc list is equal to 3, then the block 
� removes the second �� from the list and adds its own ��,
i.e., � at the end of the list, else the block simply adds its ��.
The block � forwards the request message 
��[�, 0, ����, `�Da�bc, ��de, �	 , �	] to its neighbors 
other than the ������ , ��de , ��	A	i, the penultimate 
�� message forwarder and any common neighboring block 
to one of these positions and � (this rule permits one to 
avoid unnecessary �� and ��` messages processing). 
Block � adds a ��[��J, 0, ��de] label into each 
corresponding WM[�] where � S ����� and adds a ��de
entry into the ��b table. 
If the block � does not have other neighbors, then it sends a 
�� [�, 0, ������, ����, ��de, ��	A	i] to the ��

sender. The ��j#k is NULL here since the block � does 
not know a block closest to � than ��de. 

Case 3: Block � and ��de are equidistant from the input �. 
The block � behaves like in the previous case except that 
transmission of a �� message to the �� sender has rather 
the �� of the block �, than a NULL ��j#k field.  

A block � which has initiated or forwarded a �� request 
message must collect all corresponding �� response 
messages from its neighbors before to build its own ��
message or a ��� message if it is a �� forwarder or a  
�� initiator respectively. Note here the importance of the 
Leave off Listening State, ��`[��`����, 0, �	, ��, ��de],
to avoid deadlock. If the block � is waiting for a ��
message from the block ��`���� , i.e., WM[�����] table 
contains the  ��[��`����, 0, ��de] label) and it receives a 
��` message from the block ��`����, then the block �
removes this label from the WM[�����] table and stops 
waiting for �� message from the neighbor ��`����.  
If all �� messages collected contains a NULL ��j#k
field, then the block � sends a �� containing also a NULL 
��j#k field to the �� sender or a ��� [�, 0,  �������,
�������] message to the ��� sender, else the block � builts 
a �� with the ��j#k field containing the closest �� to the 
input � among the ��j#k fields received or a ��� message 
with this closest �� as the value of the fourth field in the ���
message format. Note that the ��� sender block which 
receives a ��� message performs a transition the state of its
� flag according to the value of this fourth field. If this 
field contains the �� of the receiver block, then this block 
performs a transition of its � flag state from the current
state 0 to the next state 01, else � flag state has a transition
from 01 to 010.

A block is elected as being the closest to the input � when 
its current context is as follows: the flag �� has the value 1, 
the current state of the flag � is 01 and the WM table is 
empty (it does not contain a message label). The block 
elected at this first iteration raises the second iteration by 
sending the (Next Iteration Request) ���[�	, 1] message to 
one of its neighbors and starts moving to the input �. 

Remark 4: It is not the end of an iteration which raises a 
new iteration, but the election of a block at the current 
iteration. This implies that there is no synchronization 
between the end of a iteration and the beginning of the next
one. We thus have an asynchronous behavior. All the 
messages of a given iteration are obsolete at the next 
iteration. This explain why each block has a local iteration 
number and each message carries out an iteration number 
field (��) which permits a block to know if it must destroy a 
received message (an obsolete message) or reset its local 
state and update its local iteration number before processing
the message (if the local �� number is lower than the 
message �� number), or simply treat the message (if the local 
��  number is equal to the message �� number).
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B. Iteration ��&   
This iteration is started by the block �� elected at iteration

���. The same processing as at iteration ��� is used in order 
to elect the block �& which is closest to the input � . The 
block �& must move to one of the two outgoing positions 
from �. In order to choose the optimal position, �& starts and 
collects the results of two distributed elections so as to elect 
the block closest to each outgoing position. The optimal 
outgoing position 4& is the one with minimal hop count to 
one of the blocks obtained during the two elections; 
moreover, the corresponding block become the so-called 
block �*. Then, �& sends a (Controlled Moving Request) 
�6� [4&, 2, �*] message to the block �* and moves to the 
position 4&. The block �*starts the second iteration when it 
receives the �6� message.     

C. Iteration ��7  
The block �7 (elected at ��79&, 1 < > < D ' 1) starts and 

collects the results of two distributed elections in order to 
choose the optimal outgoing position from 479& towards 
which the block �79&   will move. The block �7@& is 
obtained as a result of this process. 

D. Iteration ��A9& ( last iteration) 
The block �A9& elected at ��A9* sends a Come Closer to 

the Path (��4) message to all its neighbors and moves to the 
output � . Each block not elected, i.e., with flag EL = 0
which receives a ��4 message deletes this message if the 
flag �4 = 1, else it propagates this message to its neighbors 
except the ��4 sender, it sets its flag �4 = 1 and moves to 
the position contained in the received ��4 message. During 
the motion of a nonelected block, if the block encounters 
another block on its trajectory, then it waits until the block 
encountered has moved. This behavior at the last iteration 
permits one to have all blocks connected.   
Remark 5: The complexity of the algorithm, i.e., the 
maximum number of block hops necessary to build the 
shortest path, is: �(�. (� + �)), where � denotes the 
number of blocks and �, � are the width and height of the 
surface, respectively.

V. BLOCK MOTION

When a block � is elected it must move from its current 
position 4 to its final position �. An actuator embedded in 
the block and controlled by the embedded image is 
responsible of block motion (see Section I). We detail in this 
section the algorithm run by the embedded image. We 
consider the rectangle bounded by the positions 4 and �. We 
note that all the optimal trajectories are contained in the 
oriented graph bounded by the considered rectangle.

At each hop, the block � updates its current position 4 and 
checks if a new hop is possible. Then, the block � moves to 
the next position. The behavior of a block can be modeled by 
a state machine whereby a block can have the following
three possible states: moving, blocked (no hop is possible) 

and stopped (block is not moving), see Fig. 5.

Figure 5. State machine for block motion. 

When a block begins to move, it leaves the stopped state and 
enters in the moving state if at least one outgoing position 
from its current position is free, otherwise the block enters in 
the blocked state and waits until a valid hop becomes 
possible; in this last case, it enters in the moving state. A 
block finally returns to the stopped state when it reaches the 
destination position 4 =  � (see Fig. 5).   

VI. SMART BLOCKS SIMULATOR

We present in this section, SBS, a multithreaded Java code 
Smart Blocks Simulator developed at LAAS-CNRS. The 
simulator SBS has permitted us to validate the proposed
distributed iterative algorithm, to solve discrete trajectory 
optimization problems and to study in details communication 
schemes between blocks including control mechanisms to 
avoid message loops and network flooding. SBS permits one 
to simulate a modular surface with any size and different 
initial physical dispositions of blocks on the surface, to 
randomly set the computational input parameters, to launch 
the computation and graphically display its step by step 
course. Each block is managed by eight threads: a first group 
of four threads called Receive Threads (RT) and another 
group of four threads called Sensor Threads (ST ). A RT
continuously pools a Receive Buffer (RB) of the  block and 
starts a new thread for processing each message retrieved 
from this buffer, implementing in this manner concurrent
processing of different messages, e.g., the top Receive Buffer 
(RBmn) is always pooled by the Receive Thread called RTmn.
A ST thread tracks one of the four neighboring positions in 
order to detect the presence/departure of a neighboring block 
to/from this position and to update the Neighbor Table. The 
blocks on the surface communicate with their neighbors via 
the Receive Buffers. The RB address of a block is known by 
the block and by the corresponding neighboring block, e.g., 
the RBmn memory space of a block is shared with the 
neighboring block located on top of this block. The thread
RThmn retrieves, treats and deletes from this space the 
messages written by a neighbor. Note that this memory 
organization does not require synchronization between two 
adjacent RT since one RT always reads and retrieves a
message from an address of the receive buffer memory space 
while the other RT thread writes a message at a different 
address. Synchronization between the four receive threads of 

712



a block is required only for processing the same type of 
message and for updating some local state variables like 
flags. 

Memory organization is displayed on Fig. 6. For a typical 
block with four neighbors, data sent by neighbors according 
to the proposed communication scheme are stored in a 
dedicated buffer, e.g., top buffer, for neighbor that is above 
the considered block and right buffer for neighbor that is 
situated on the right side of the block (see Fig. 7). Note that 
the above memory organization follows the same design as 
the one of the multithreaded Smart Surface Simulator SSS 
developed to evaluate and validate distributed algorithms for
differentiation of parts on a smart surface [12]. 

Figure 6. Basic block architecture with SBS. 

Figure 7. Block communication scheme with SBS. 

VII. SIMULATION RESULTS

In order to validate the proposed distributed iterative
algorithm, we have carried out some simulations with SBS. 
We present and analyze here some results. For facility of 
presentation, we concentrate here on a simple case of 
discrete trajectory optimization problem. The modular 
surface is composed of 10 blocks and the optimal trajectory 
necessitates 8 blocks. This small problem is solved in 8
iterations. Fig. 8a displays the initial state of the modular 
surface via SBS. Blocks are represented by blue squares; the 
green square corresponds to a block randomly chosen in 
order to start computation; the bottom and top gray squares 
represent the input position (11, 3) of the parts to convey 
and their output position (9, 8), respectively. Fig. 8b, 8c and 

8d display, the disposition of blocks at the first, intermediate
and last iterations, respectively. Fig. 9 shows the complete 
running trace of the distributed algorithm and displays the 
state of the modular surface. In Fig. 9, a small gray or dark
square represents a block not yet elected or already elected 
and moved, respectively. A small red square is used to 
represent an outgoing position from a given place. An orange
square represents a block elected at the current iteration 
which receives a �6� message in order to raise the next 
iteration from a block elected at the previous iteration (which 
is ready to move). A small blue square represents a block 
elected which is closest to a given outgoing position. Note
that from ��& to ��u , we are in the case where a block is 
close to the two outgoing positions; which leads this block to 
perform a random choice among these two outgoing 
positions. There are also some iterations at which only one 
outgoing position is valid since the other one is not in the 
rectangle bounded by � and �, e.g., ��v and ��x. In this case, 
the block which is looking for an optimal position raises only 
one distributed election in order to know the identity of the 
block to which it will send a �6� message before the
motion. Note also that when the block elected at iteration 
��x receives the �6� message from the block elected at
��v, it does not raises a new iteration since the only valid 
outgoing position from the position in �6� is the position of 
the output �. The last elected block sends a ��4 message to 
its neighbors to order all nonelected blocks to move around 
the optimal path and completes the construction of the 
optimal path by moving directly to the output �.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a distributed asynchronous
iterative algorithm that solves a discrete trajectory 
optimization problem which occurs on a MEMS-based 
reconfigurable modular surface. The modular surface is 
used to convey millimeter-scale fragile objects via MEMS 
devices called blocks. Blocks cooperate to optimally build 
the shortest path between the entering point of parts and 
their exit point on the surface. Distributed election is
implemented in order to obtain the block that can reach a 
given position on the surface with a minimum hop count; 
this block raises the next iteration before moving to its final 
position. The distributed elections are based on messages 
broadcasting with some control mechanisms to avoid 
message loops and network flooding. The proposed 
distributed approach presents the advantage to be scalable.
We have presented SBS, a multithreaded Java Smart Blocks 
Simulator that we have developed in order to validate the 
distributed algorithm. Finally, we have displayed and 
analyzed computational results obtained for the solution of a 
simple instance of the trajectory optimization problem.

The approach proposed in this paper is particularly useful 
to areas like semiconductors manufacturing, micro-
mechanics and pharmaceutical industry since it is 
characterized by flexibility, scalability and optimality that
are key issues in the development of future production lines. 
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The proposed distributed algorithm will be carried out on 
an experimental self-reconfigurable smart blocks modular 
conveyor in order to complete our study. We plan also to 
deal with fault detection, e.g., block failure, sensor failure
and distributed fault-tolerance. 
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Figure 8. SBS modular surface windows

d. Surface state at ��y

a. Initial state of the modular surface.

c. Surface state at ��z  

b. Surface state at ���  
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Figure 9.   Running trace for an instance of discrete trajectory optimization problem.
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