
Distributed Resolution of a Trajectory Optimization Problem
on a MEMS-based Reconfigurable Modular Surface

Serge Romaric Tembo, Didier El-Baz
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

Université de Toulouse, LAAS, F-31400 Toulouse, France
e-mail : tembo.mouafo@laas.fr elbaz@laas.fr

Abstract— In this paper we propose a distributed algorithm to
solve a discrete trajectory optimization problem that occurs in
a micro-electro-mechanical based modular surface context.
The method computes the shortest path between two points of
the modular surface using a strategy based on minimum hop
count. Our scalable approach is based on distributed
asynchronous iterative elections. A multithreaded Java Smart
Blocks Simulator used to validate our distributed algorithm is
presented and some results obtained with the simulator are
commented on.

Keywords-component; MEMS; Smart blocks; Smart
conveyor; distributed algorithm; self-reconfiguration.

I. INTRODUCTION

Several solutions have been proposed in order to sort and
convey objects in production lines; most of them are contact-
based technologies that can raise some problems. Fragile
objects can be damaged or even scratched during
manipulations which lower the production line efficiency.
For example medicines [1], micro-electronics parts or even
food can be contaminated. Conveyors which avoid contact
with the parts conveyed solve most of these problems for
transport and sorting.

Conveyors are usually designed as monolithic entities that
are well suited to a specific problem with fixed type of
environment. If for some external reason, the environment of
the conveyor changes, e.g., a change of the usual input or
output point of parts to convey, then the conveyor has to be
reconfigured or even replaced. Self-reconfigurable systems
[2-4] made of small Micro-Electro-Mechanical Systems
(MEMS) modules can address this problem and can bring
flexibility in future productions lines. In particular, MEMS-
based devices with embedded intelligence, also referred to as
Smart Blocks, have great potential for manipulating micro
parts in many industries like semiconductor industry and
micromechanics (see [5, 6]).

The Smart Blocks project [7] aims at designing a self-
reconfigurable MEMS-based modular surface for fast
conveying of fragile micro parts and medicinal products. The
goal of this project is to tackle all related problems in order
to increase the efficiency of future production lines. The
reader is referred to [8] for a complete and detailed
presentation of the Smart Blocks project. In this paper, we

concentrate on the design of a scalable distributed algorithm
that is well suited to the solution of a discrete trajectory
optimization problem that occurs in a MEMS-based modular
surface context where fragile micro parts have to be
conveyed.

The modular surface is composed of blocks. A block
embeds a MEMS actuator array [8], see also [9], in the upper
face in order to move the parts, a motion actuator for block
motion, a sensor on each of its four side to detect
neighboring blocks, a processing unit and ports for
communication with neighbors (see Fig. 1). Blocks move on
the surface via electro-permanent magnet technology. Parts
are moved on top of blocks via a two dimensional
pneumatic actuator (see [8]).

Figure 1. The Smart Blocks modular conveyor.

The proposed distributed algorithm deals with distributed
MEMS computing paradigms [10, 11] and solves two
discrete optimization problems simultaneously: the shortest
path between two points of the modular surface (that will be
used to convey parts) and the associated optimal moving of
blocks necessary to build the shortest path. To achieve this
task, we use a distributed iterative election method. At any
iteration, a block whose number of hops to reach a given
position on the surface is minimal is elected in a distributed
manner and the elected block triggers the next iteration
before it optimally moves to its final position. The
distributed election is based on messages broadcasting with
some control mechanisms to avoid loops and network
flooding.

2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber,

Physical and Social Computing

978-0-7695-5046-6/13 $26.00 © 2013 IEEE

DOI 10.1109/GreenCom-iThings-CPSCom.2013.128

707

Section II presents models of blocks and the modular
surface. Section III deals with the principle of the distributed
algorithm, while section IV details its design and the format
of messages sent and received by blocks during the
computation. Block motion is presented in section V. Section
VI deals with SBS, a multi-threaded Java Smart Blocks
Simulator which has permitted us to validate the proposed
distributed algorithm. Section VII deals with simulation
results and we conclude this study in section VIII.

II. MODELS OF BLOCKS AND MODULAR SURFACE

We consider a discrete representation of the MEMS-
based modular surface with 2D grid topology. Each node of
the grid corresponds to the center of the square that can be
occupied by a block. The position of a node on the surface is
given by a two dimensional vector. The first component � is
an integer such that 0 � � < �, where � is the maximum
width of the surface. The second component � is an integer
such that 0 � � < �, where � is the maximum height of the
surface (see Fig. 2). The parameters of the problem are the
coordinates of the input and output of parts, that are denoted
by I and �, respectively and the current position of blocks on
the surface. The components of I and � are denoted by
�	 ,
 � {1, 2} and �	 ,
 � {1, 2}, respectively.

The local state of a block on the surface is given by a set
of parameters shown on Fig. 3. There are three ordinary flags
denoted by TR (see section II for details), EL, CP (see section
IV), respectively and an additional flag denoted by � that
can have three states (see section IV), a local iteration
number denoted by ��, the Neighbor Table denoted by NT
that stores information regarding blocks that may be
connected to the considered block. The Waiting Message
table denoted by WM stores the labels of message that are
expected to be received from a neighbor. The QBEr table
stores the labels of messages already forwarded by a block in
order to avoid message loops and network flooding. We
assume that the input � and output � are initially known by a
block randomly chosen on the surface and denoted by �	 .
This block sends a message, which is denoted by
���[������, ��, ����, �	 , �], to all its neighbors and finally
sets its TR flag (TR = 1) in order to avoid network flooding.

Figure 2. Model of the modular surface.

The first three fields of this message represent respectively
the �� of the sender, the iteration number and the
destination �� of the message (which is NULL in this case in
order to denote multiple destinations). We also assume that a
sensor on each side of a block, which detects the presence or
departure of a neighboring block, permits one to update the
Neighbor Table (denoted by NT). Each block which receives
a ��� message, updates part its NT table and destroys the
message if TR = 1; else the block sends the ��� message to
all its neighbors, sets its TR flag and updates its NT table.
Note that the sensors of a block and the embedded image of
the block do not update the same field of the NT table. For
example if the sensor of the upper side face detects a block,
then it will set the field NT[Up]. � = 1 and if the �� of the
block considered belongs to the rectangle bounded by � and
� , then the embedded image will set the field ��[��]. �
to �(Incoming link) or � (Outgoing link) depending on the
respective positions of � and � that give the orientation of
the graph �� = (�, ��) where � is the set of blocks on the
surface within the rectangle bounded by � and � and �� is the
set of links between them. The graph is always oriented from
the input to the output. For example, we shall have a Left-Up
(LF-UP) oriented graph if the output � is at left and above
the input �(see Fig. 2). Then broadcasting the ��� message
to all blocks allows each block on the surface to receive the
input parameters of the optimization problem and to take part
to the construction of the graph ��.
In order to solve the discrete trajectory optimization problem,
we consider two metrics: the number of blocks along the
shortest path and the number of hops blocks must perform to
build the shortest path. The optimal solution is the path built
with minimum number of blocks (shortest path with
minimum hop count) in order to minimize the conveying
time of parts and with minimal block motion in order to
minimize the time needed to build the shortest path.
Now, we consider the rectangle � bounded by � and �,
 �� the union of all free positions contained in � and all
elements of � in � and � the set of links between the
elements of �� . We obtain a new oriented graph � = (�� , �)
bounded by � (see Fig. 2). On Fig. 2, the smalls gray squares
represent blocks and the smalls white squares represent some
free positions on the surface which can be occupied by
blocks.

Figure 3. Local state of a block.

708

 ���

 !�(") � �#$, % �& ' �&
� % +% �* ' �*

� % � % �& ' �(")& % +% �* ' �(")* % - ��/ �(")

 Distributed Election of the block �� 3 � among � blocks

 �� raises the next Iteration by sending a ���[�	, 1] message

 ��sends a ��[��] message to its neighbors and moves to position �

���[4� 5 �	, 1]

��&

4& 5 (�& 3 �4�,&? 4�,&: 4�,*) - �4& 5 (�& 3 �4�,&? �4�,&: �4�,*)

Distributed Election of the block �&, �& 3 � among � ' 1 blocks

�& raises and collects the results of two distributed elections of blocks:

�4�,& 3 4�,& and �4�,* 3 4�,*

�& sends a �6� [4&, 2, �4&] to �4&

�& sends a �� [�&] to its neighbors, moves to position 4&

CMR [4&, 2, (�* 5 �4&)]

��7

�7 � �$8 receives �6� [479&, >, (�7 5 �479&)], �7. �� 5 �6�. ��

�7 starts and collects the results of two distributed elections of blocks:

�479&,& 3 479&,& and �479&,* 3 479&,*

47 5 (�7 3 �479&,&? 479&,&: 479&,*) - �47 5 (�7 3 �479&,&? �479&,&: �479&,*)

�7 sends a �6� [47, > + 1, �47] to �47

�7 sends a ��[�7] to its neighbors and moves to position 47

CMR [47, > + 1, (�7@& 5 �47)]

��A9&

�D'1 � �$8 receives CMR, �D'1. �� 5 �6�. ��

�D'1 does not raise a next Iteration: �	 � {4A9*,&, 4A9*,*}

4D'1 5 (�	 = 4A9*,&? 4A9*,&: 4A9*,*)

�D'1 sends a CCP, BYE [�A9&] to all its neighbors and moves to � = 4D'1

CMR [4A9*, D ' 1, (�A9& 5 �4A9*)]

Figure 4. Distributed iterative algorithm.

709

We can easily note on Fig. 2 that all the paths
between � and �, with minimal number of blocks, are
contained in the oriented graph �. Then, the problem consists
in determining the strategy which minimizes block moves
and that gives a final shortest path in the oriented graph �.

In the proposed distributed approach, blocks cooperate to
find out the shortest path while minimizing block moves at a
global scale. Our approach is based on a distributed iterative
election algorithm whereby at each iteration, the elected
block is such that the number of hops to reach the next
position on the shortest path is minimal.

III. PRINCIPLE OF THE DISTRIBUTED ALGORITHM

Without loss of generality, we assume that a connected set
of � blocks is disposed initially on the surface and that there
are enough blocks on the surface in order to build the
shortest path between � and �. At iteration ���, the block
whose number of hops to reach the entry point � is minimal,
is elected among � blocks (see Fig. 4).

At iteration ��7, where 1 < > < D ' 1, the closest block
to the position 479& on the shortest path (this block, denoted
by �7, has been elected among the available � ' > blocks
at ��79&) , has to choose either to move to the position
479&,& or to the position 479&,* , where 479& is the final
position on the shortest path of the block that has been
elected at iteration ��79* and 479&,&, 479&,* are the two
outgoing positions from 479& in the graph �. The block �7

does not make this choice at random. The block �7starts two
distributed elections in order to obtain the position of blocks
called �479&,&

 and �479&,*, that are closest to the positions
479&,& and 479&,*, respectively. Then, �7 moves either to
the position 479&,& or to the position 479&,* depending on
the proximity of �479&,&

 and �479&,* and the
corresponding block will become �7@&.
On Fig. 4, the relation �(") 3 4 denotes that �(") is the
closest block to the position 4 among the entire set of blocks
on the surface. Moreover, the relation 47 5 (�7 3
 �479&,&? 479&,&: 479&,*) denotes that if �7 is the closest
block to position of the block �479&,&, then the value of 47

will be 479&,&, else it will be 479&,*.

Remark 1: Note that, in order to avoid any deadlock during
an election due to the fact that it may exist more than one
block at the same distance of a given position, we follow a
strategy that favors a block that satisfies �7 / �("), " �
{1, … , � ' >}, where the relation �7 / �(") denotes:�7 3
� F �&

7 < �(")& F �*
7 < �(")* ,
G �&

7 = �(")& ! �("), " �
{1, … , � ' >}.

At iteration ��A9*, where D is the maximum number of
blocks necessary to build the optimal trajectory, the closest
block to the output � is elected among � ' D + 1 blocks on
the surface. This block will move to the output � at the last
iteration ��A9&.

Remark 2: Note also that the blocks already elected, i.e,

with flag � = 1, may participate to the next iterations by
propagating messages.

Remark 3: At the beginning of the iteration ��7, 0 < > <
D, the set of � blocks on the surface is separated into two
subsets. The first subset �$8 of > blocks already elected at
previous iterations and a second subset of � ' > blocks not
elected, denoted by �#$.

IV. DISTRIBUTED ASYNCHRONOUS ITERATIVE
ALGORITHM

In this section, we focus on the design of the distributed
iterative election algorithm including transitions between
consecutives iterations and message broadcasting
mechanisms that are well suited to the grid topology of the
modular surface.

A. Iteration ���
��� is the first iteration of the distributed iterative

algorithm. It performs the initialization of blocks and
modular surface (see section II), it elects the block �� closest
to the input �. Any block � participates to this election when
it receives a ���[������, 0, ����, �	 , �] message. The
behavior of the block � depends on its context.

Case 1: Block � is closer to the input � than ������ .
If TR = 0, then the block � sends ���[�, 0, NULL, �	 , �]
to all its neighbors, sets the flag TR to 1, updates the NT
table in order to participate to the construction of the graph
G, updates the (Waiting Message) WM table, i.e., it adds a
label of a ��� message denoted by ���I��J, 0K into the
WM[�] table, � � {Up, Rg, Dw, Lf} and � S �VXYZ,
where ��J is the neighboring block located at the position �.
The block � adds also the label of a message denoted by
��� [������, 0, �] into WM[�VXYZ] (which means that block
� is waiting for a ��� message from ������ that will indicate
if ������ has found out a block closer to the input � than �).
The block � has a transition of its CE flag to the next state
CE = 01 if CE = 0. Note that the transition order of the CE
flag states is: 0 \ 01 \ 010 .
If �� = 1 , then the Block � updates the WM table. It
removes the label ���[������, 0] from the WM[�����].

Case 2: Block � is farther to the input � than ������ .
If �� = 0, then the block � sends ��� [�, 0, ����, �	 , �]
to all its neighbors, sets the flag TR to 1, updates the NT
table in order to participate to the construction of the graph
�, updates the WM table by adding a label ���I��J, 0K into
the WM[�] table with � � {��, �^, �_, �G} and � S ����� .
If block � does not have any neighbor other than the sender
of the ��� message, then it must build and send a
��� [�, 0, ������, ������] message to the ��� sender, i.e.,
������ . The last field of the ��� message contains the
position of one block known by � as a block closest to the
input � than ������ . If the block � has at least one neighbor
other than the ��� sender, then it builds a message denoted

710

by ��[�, 0, ����, `�Da�bc, ������, �	, �] and sends it to
all these neighbors, adds a ��[��J, 0, ������] label into
each corresponding WM [�] table, where � S ����� . The
field Senders is an ordered list of three ��c: the ��
initiator (�	, in this case), the penultimate forwarder (NULL
in this case since the block � is the initiator) and the last
forwarder of the �� message (NULL in this case) and
������ is here the so-called ��de of the �� message.
Note also the input parameters �	 and �	 in the �� message
format in order to avoid deadlock if a block receives a ��
message without receiving and processing a ��� message.
The block � sets its � flag to the next state � = 010 if
� = 01. Note that this last action will be performed only if
the block � has already received and completed the
processing of a ��� message from an outgoing position (if
any), otherwise the � flag state transition will be delayed
until the block � has taken into account a ��� message
coming from an outgoing position.
If �� = 1 then, block � behaves like in the previous case
except that, it does not send a ��� message to its neighbor
since it is already done.
The queries ��[������, 0, ��h��i, `�Da�bc, ��de, �	,

�] eventually sent by blocks while processing of a ���
message are used to find out at least one block on the surface
that is closest to the input � than the ��� sender (the so-
called ��de). Each block � on the surface which receives
a �� message first checks if it has not already treated this
��. If it is not the case, i.e., the ��b table of the block �
contains a ��de entry, then block � deletes the ��
message and sends a Leave off Listening State message
denoted by ��`[�, 0, ������, ��, ��de] to the ��
sender i.e., ������ , else block � has the following
behavior.

Case 1: Block � is closest to the input � than ��de.
Then block � builds and sends a message ��[�, 0,
������, �	, ��de, ��	A	i] to the sender of the ��
message. The fourth field of this message is the answer
denoted by ��j#k (�	 in this case) to the �� request
message received by the block. Note the �� intiator ��
(��	A	i) in the �� message format.

Case 2: Block � is farther to the input � than ��de.
If the length of the `�Da�bc list is equal to 3, then the block
� removes the second �� from the list and adds its own ��,
i.e., � at the end of the list, else the block simply adds its ��.
The block � forwards the request message
��[�, 0, ����, `�Da�bc, ��de, �	 , �] to its neighbors
other than the ������ , ��de , ��	A	i, the penultimate
�� message forwarder and any common neighboring block
to one of these positions and � (this rule permits one to
avoid unnecessary �� and ��` messages processing).
Block � adds a ��[��J, 0, ��de] label into each
corresponding WM[�] where � S ����� and adds a ��de
entry into the ��b table.
If the block � does not have other neighbors, then it sends a
�� [�, 0, ������, ����, ��de, ��	A	i] to the ��

sender. The ��j#k is NULL here since the block � does
not know a block closest to � than ��de.

Case 3: Block � and ��de are equidistant from the input �.
The block � behaves like in the previous case except that
transmission of a �� message to the �� sender has rather
the �� of the block �, than a NULL ��j#k field.

A block � which has initiated or forwarded a �� request
message must collect all corresponding �� response
messages from its neighbors before to build its own ��
message or a ��� message if it is a �� forwarder or a
�� initiator respectively. Note here the importance of the
Leave off Listening State, ��`[��`����, 0, �	, ��, ��de],
to avoid deadlock. If the block � is waiting for a ��
message from the block ��`���� , i.e., WM[�����] table
contains the ��[��`����, 0, ��de] label) and it receives a
��` message from the block ��`����, then the block �
removes this label from the WM[�����] table and stops
waiting for �� message from the neighbor ��`����.
If all �� messages collected contains a NULL ��j#k
field, then the block � sends a �� containing also a NULL
��j#k field to the �� sender or a ��� [�, 0, �������,
�������] message to the ��� sender, else the block � builts
a �� with the ��j#k field containing the closest �� to the
input � among the ��j#k fields received or a ��� message
with this closest �� as the value of the fourth field in the ���
message format. Note that the ��� sender block which
receives a ��� message performs a transition the state of its
� flag according to the value of this fourth field. If this
field contains the �� of the receiver block, then this block
performs a transition of its � flag state from the current
state 0 to the next state 01, else � flag state has a transition
from 01 to 010.

A block is elected as being the closest to the input � when
its current context is as follows: the flag �� has the value 1,
the current state of the flag � is 01 and the WM table is
empty (it does not contain a message label). The block
elected at this first iteration raises the second iteration by
sending the (Next Iteration Request) ���[�	, 1] message to
one of its neighbors and starts moving to the input �.

Remark 4: It is not the end of an iteration which raises a
new iteration, but the election of a block at the current
iteration. This implies that there is no synchronization
between the end of a iteration and the beginning of the next
one. We thus have an asynchronous behavior. All the
messages of a given iteration are obsolete at the next
iteration. This explain why each block has a local iteration
number and each message carries out an iteration number
field (��) which permits a block to know if it must destroy a
received message (an obsolete message) or reset its local
state and update its local iteration number before processing
the message (if the local �� number is lower than the
message �� number), or simply treat the message (if the local
�� number is equal to the message �� number).

711

B. Iteration ��&
This iteration is started by the block �� elected at iteration

���. The same processing as at iteration ��� is used in order
to elect the block �& which is closest to the input � . The
block �& must move to one of the two outgoing positions
from �. In order to choose the optimal position, �& starts and
collects the results of two distributed elections so as to elect
the block closest to each outgoing position. The optimal
outgoing position 4& is the one with minimal hop count to
one of the blocks obtained during the two elections;
moreover, the corresponding block become the so-called
block �*. Then, �& sends a (Controlled Moving Request)
�6� [4&, 2, �*] message to the block �* and moves to the
position 4&. The block �*starts the second iteration when it
receives the �6� message.

C. Iteration ��7
The block �7 (elected at ��79&, 1 < > < D ' 1) starts and

collects the results of two distributed elections in order to
choose the optimal outgoing position from 479& towards
which the block �79& will move. The block �7@& is
obtained as a result of this process.

D. Iteration ��A9& (last iteration)
The block �A9& elected at ��A9* sends a Come Closer to

the Path (��4) message to all its neighbors and moves to the
output � . Each block not elected, i.e., with flag EL = 0
which receives a ��4 message deletes this message if the
flag �4 = 1, else it propagates this message to its neighbors
except the ��4 sender, it sets its flag �4 = 1 and moves to
the position contained in the received ��4 message. During
the motion of a nonelected block, if the block encounters
another block on its trajectory, then it waits until the block
encountered has moved. This behavior at the last iteration
permits one to have all blocks connected.
Remark 5: The complexity of the algorithm, i.e., the
maximum number of block hops necessary to build the
shortest path, is: �(�. (� + �)), where � denotes the
number of blocks and �, � are the width and height of the
surface, respectively.

V. BLOCK MOTION

When a block � is elected it must move from its current
position 4 to its final position �. An actuator embedded in
the block and controlled by the embedded image is
responsible of block motion (see Section I). We detail in this
section the algorithm run by the embedded image. We
consider the rectangle bounded by the positions 4 and �. We
note that all the optimal trajectories are contained in the
oriented graph bounded by the considered rectangle.

At each hop, the block � updates its current position 4 and
checks if a new hop is possible. Then, the block � moves to
the next position. The behavior of a block can be modeled by
a state machine whereby a block can have the following
three possible states: moving, blocked (no hop is possible)

and stopped (block is not moving), see Fig. 5.

Figure 5. State machine for block motion.

When a block begins to move, it leaves the stopped state and
enters in the moving state if at least one outgoing position
from its current position is free, otherwise the block enters in
the blocked state and waits until a valid hop becomes
possible; in this last case, it enters in the moving state. A
block finally returns to the stopped state when it reaches the
destination position 4 = � (see Fig. 5).

VI. SMART BLOCKS SIMULATOR

We present in this section, SBS, a multithreaded Java code
Smart Blocks Simulator developed at LAAS-CNRS. The
simulator SBS has permitted us to validate the proposed
distributed iterative algorithm, to solve discrete trajectory
optimization problems and to study in details communication
schemes between blocks including control mechanisms to
avoid message loops and network flooding. SBS permits one
to simulate a modular surface with any size and different
initial physical dispositions of blocks on the surface, to
randomly set the computational input parameters, to launch
the computation and graphically display its step by step
course. Each block is managed by eight threads: a first group
of four threads called Receive Threads (RT) and another
group of four threads called Sensor Threads (ST). A RT
continuously pools a Receive Buffer (RB) of the block and
starts a new thread for processing each message retrieved
from this buffer, implementing in this manner concurrent
processing of different messages, e.g., the top Receive Buffer
(RBmn) is always pooled by the Receive Thread called RTmn.
A ST thread tracks one of the four neighboring positions in
order to detect the presence/departure of a neighboring block
to/from this position and to update the Neighbor Table. The
blocks on the surface communicate with their neighbors via
the Receive Buffers. The RB address of a block is known by
the block and by the corresponding neighboring block, e.g.,
the RBmn memory space of a block is shared with the
neighboring block located on top of this block. The thread
RThmn retrieves, treats and deletes from this space the
messages written by a neighbor. Note that this memory
organization does not require synchronization between two
adjacent RT since one RT always reads and retrieves a
message from an address of the receive buffer memory space
while the other RT thread writes a message at a different
address. Synchronization between the four receive threads of

712

a block is required only for processing the same type of
message and for updating some local state variables like
flags.

Memory organization is displayed on Fig. 6. For a typical
block with four neighbors, data sent by neighbors according
to the proposed communication scheme are stored in a
dedicated buffer, e.g., top buffer, for neighbor that is above
the considered block and right buffer for neighbor that is
situated on the right side of the block (see Fig. 7). Note that
the above memory organization follows the same design as
the one of the multithreaded Smart Surface Simulator SSS
developed to evaluate and validate distributed algorithms for
differentiation of parts on a smart surface [12].

Figure 6. Basic block architecture with SBS.

Figure 7. Block communication scheme with SBS.

VII. SIMULATION RESULTS

In order to validate the proposed distributed iterative
algorithm, we have carried out some simulations with SBS.
We present and analyze here some results. For facility of
presentation, we concentrate here on a simple case of
discrete trajectory optimization problem. The modular
surface is composed of 10 blocks and the optimal trajectory
necessitates 8 blocks. This small problem is solved in 8
iterations. Fig. 8a displays the initial state of the modular
surface via SBS. Blocks are represented by blue squares; the
green square corresponds to a block randomly chosen in
order to start computation; the bottom and top gray squares
represent the input position (11, 3) of the parts to convey
and their output position (9, 8), respectively. Fig. 8b, 8c and

8d display, the disposition of blocks at the first, intermediate
and last iterations, respectively. Fig. 9 shows the complete
running trace of the distributed algorithm and displays the
state of the modular surface. In Fig. 9, a small gray or dark
square represents a block not yet elected or already elected
and moved, respectively. A small red square is used to
represent an outgoing position from a given place. An orange
square represents a block elected at the current iteration
which receives a �6� message in order to raise the next
iteration from a block elected at the previous iteration (which
is ready to move). A small blue square represents a block
elected which is closest to a given outgoing position. Note
that from ��& to ��u , we are in the case where a block is
close to the two outgoing positions; which leads this block to
perform a random choice among these two outgoing
positions. There are also some iterations at which only one
outgoing position is valid since the other one is not in the
rectangle bounded by � and �, e.g., ��v and ��x. In this case,
the block which is looking for an optimal position raises only
one distributed election in order to know the identity of the
block to which it will send a �6� message before the
motion. Note also that when the block elected at iteration
��x receives the �6� message from the block elected at
��v, it does not raises a new iteration since the only valid
outgoing position from the position in �6� is the position of
the output �. The last elected block sends a ��4 message to
its neighbors to order all nonelected blocks to move around
the optimal path and completes the construction of the
optimal path by moving directly to the output �.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a distributed asynchronous
iterative algorithm that solves a discrete trajectory
optimization problem which occurs on a MEMS-based
reconfigurable modular surface. The modular surface is
used to convey millimeter-scale fragile objects via MEMS
devices called blocks. Blocks cooperate to optimally build
the shortest path between the entering point of parts and
their exit point on the surface. Distributed election is
implemented in order to obtain the block that can reach a
given position on the surface with a minimum hop count;
this block raises the next iteration before moving to its final
position. The distributed elections are based on messages
broadcasting with some control mechanisms to avoid
message loops and network flooding. The proposed
distributed approach presents the advantage to be scalable.
We have presented SBS, a multithreaded Java Smart Blocks
Simulator that we have developed in order to validate the
distributed algorithm. Finally, we have displayed and
analyzed computational results obtained for the solution of a
simple instance of the trajectory optimization problem.

The approach proposed in this paper is particularly useful
to areas like semiconductors manufacturing, micro-
mechanics and pharmaceutical industry since it is
characterized by flexibility, scalability and optimality that
are key issues in the development of future production lines.

713

The proposed distributed algorithm will be carried out on
an experimental self-reconfigurable smart blocks modular
conveyor in order to complete our study. We plan also to
deal with fault detection, e.g., block failure, sensor failure
and distributed fault-tolerance.

ACKNOWLEDGMENT

Part of this study has been made possible with the
support of ANR-2011-BS03-005 grant.

REFERENCES

[1] “The Rules governing medicinal products in the European
Union,” chapter Good manufacturing practice guidelines,
Eudralex, 2010.

[2] W.-M. Shen B. Salemi, M. Moll, “Superbot: A deployable,
multi-functional, and modular self-reconfigurable robotic
system,” Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems, 2006.

[3] A. Kamimura S. Kokaji T. Hasuo S. Murata H. Kurokawa,
K. Tomita, “Distributed self-reconfiguration of M-TRAN III
modular robotic system, Intl. J. Robotics Research, Vol. 27,
2008, pp. 373–386.

[4] Desnoyer M. Lipson H. Zykov V., Mytilinaios S, “Evolved
and designed self-reproducing modular robotics,” IEEE
Transactions on Robotics, Vol. 23(2), 2007, pp. 308–319.

[5] D. Biegelsen et al., “Airjet paper mover,” Proc. SPIE
International Symposium on Micromachining and Micro
fabrication, 4176-11, 2000.

[6] Y. Fukuta, Y. Chapuis, Y. Mita, H. Fujita, “Design
fabrication and control of MEMS-based actuator arrays for
air-flow distributed micromanipulation,” IEEE Journal of
Micro-Electro-Mechanical Systems, Vol. 15 (4), 2006, pp.
912-926.

[7] http://smartblocks.univ-fcomte.fr/
[8] J. Bourgeois et al., “Using a distributed intelligent MEMS

modular and self-reconfigurable surface for fast conveying of
fragile objects and medicinal products,” Femto-st Technical
report, submitted for publication, 2012.

[9] S. Konishi, H. Fujita, “A Conveyance System using air flow
based on the concept of distributed micro motion systems,”
Journal of MicroelectroMechanical Syst., Vol. 3, 1994, pp.
54-58.

[10] A. Berlin and K. Gabriel, “Distributed MEMS: New
challenges for computation,” IEEE Computational Science
and Engineering Journal, Vol. 4(1), 1997, pp. 12–16.

[11] K. Boutoustous et al., “Distributed control architecture for
smart surface,” in: Luo RC, Asaman H, editors, Proc. IROS,
23-rd IEEE/RSJ international conference on intelligent robots
and systems. Tapei: IEEE Compute Society Press, 2010, pp.
2018-2024.

[12] D. El Baz et al., “Distributed part differentiation in a smart
surface,” Mechatronics, Vol. 22, 2012, pp. 522-530.

Figure 8. SBS modular surface windows

d. Surface state at ��y

a. Initial state of the modular surface.

c. Surface state at ��z

b. Surface state at ���

714

Figure 9. Running trace for an instance of discrete trajectory optimization problem.

715

