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Abstract

The parallelization on a supercomputer of a one list dynamic programming algorithm using dominance technique and processor
cooperation for the 0–1 knapsack problem is presented. Such a technique generates irregular data structure, moreover the number of
undominated states is unforeseeable. Original and efficient load balancing strategies are proposed. Finally, computational results obtained
with an Origin 3800 supercomputer are displayed and analyzed. To the best of our knowledge, this is the first time for which computational
experiments on a supercomputer are presented for a parallel dynamic programming algorithm using dominance technique.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The 0–1 knapsack problem has been intensively studied in
the literature (see for example[1,12,14,19,21,23–26]). The
objective of this paper is to concentrate on the paralleliza-
tion on a supercomputer of a one list dynamic programming
method using dominance technique and processor cooper-
ation and to propose efficient load balancing strategies in
order to achieve good performance.

Many authors have considered dense dynamic program-
ming, i.e., an approach for which one takes into account all
possible states (see[2–5,7,15]). In this case, the number of
states is equal to the capacity of the knapsack. In this paper,
we study a different approach proposed by Ahrens and Finke
(see[1]) which permits one to limit the number of states
by using dominance technique. In this case, the number of
states or undominated pairs generated is unforeseeable. If
we compare the two approaches, then we note that the for-
mer will generate a regular data structure, from which one
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can easily deduce the total amount of work needed in order
to treat the list. This approach leads generally to an easy
parallelization; its main drawback is that it produces large
lists in the case of problems with large capacity. The later
approach presents the advantage to generate lists which are
smaller; its main drawback is the creation of an irregular
data structure. As a consequence, the parallelization of the
later approach is not easy and the design of an efficient load
balancing strategy is very important.

In [11], we have presented an original parallelization of
the one list dynamic programming method using dominance
technique. The cooperation via data exchange of processors
of the architecture is the main feature of the proposed parallel
algorithm. A first load balancing strategy was also proposed
in [11]. In this paper, we develop the parallel algorithm,
specially on a theoretical point of view and propose several
original load balancing strategies.

Our contribution is different from the other works in the
literature devoted to parallel dynamic programming for 0–1
knapsack problems. In particular, it is different from[6,18],
where the authors have considered approaches based on
massive parallelism. More precisely, in the above quoted pa-
pers, the authors have proposed solution for arrays with up
to O(2n/8) processors, wheren is the number of variables in
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the knapsack problem. Our work is also different from[8],
where the authors have studied the parallel implementation
of a two lists algorithm on an MIMD architecture for the
solution of a particular class of 0–1 knapsack problems: the
exact subset sum problem where profits are equal to weights.
In this later approach, total work is decomposed initially
and processors do not cooperate. Note that our parallel al-
gorithm is designed for a broad class of 0–1 knapsack prob-
lems including subset sum problems. Moreover, our parallel
algorithm presents better time complexity than the paral-
lel algorithm studied in[8], as we shall see in the sequel.
Reference is also made to[7,13] for different approaches
concerning the parallelization of the dynamic programming
method.

Section2 deals with the 0–1 knapsack problem and its
solution via dynamic programming. Parallel algorithm is
studied in Section3. Original load balancing strategies are
proposed in Section4. Finally, computational results ob-
tained with an Origin 3800 supercomputer are displayed and
analyzed in Section5.

2. The 0–1 knapsack problem

The 0–1 unidimensional knapsack problem is defined as
follows:

max

{
n∑

j=1

pjxj |
n∑

j=1

wjxj �C;

xj ∈ {0, 1}, j = 1, 2, . . . , n

}
, (1)

whereC denotes the capacity of the knapsack,n the number
of items considered,pj andwj , respectively, the profit and
weight, respectively, associated with thejth item. Without
loss of generality, we assume that all the data are positive
integers. In order to avoid trivial solutions, we assume that
we have:

∑n
j=1 wj > C andwj < C for all j ∈ {1, . . . , n}.

Several methods have been proposed in order to solve prob-
lem (1). We can quote for example: branch and bound meth-
ods proposed by Fayard and Plateau (see[12]), Lauriere (see
[17]) and Martello and Toth (see[19]), methods based on
dynamic programming studied by Horowitz and Sahni (see
[14]), Ahrens and Finke (see[1]) and Toth (see[27]) and
finally mixed algorithms combining dynamic programming
and branch and bound methods presented by Martello and
Toth (see[20]) and Plateau and Elkihel (see[26]).

In this paper, we concentrate on a dynamic programming
method proposed by Ahrens and Finke whose time and space
complexity areO(min{2n, nC}) (see[1]) and which is based
on the concepts of list and dominance. We shall generate re-
cursively as follows listsLk of pairs(w, p), k = 1, 2, . . . , n;
wherew is a weight andp a profit. Initially, we haveL0 =
{(0, 0)}.

Let us define the setNk of new pairs generated at stage
k; where new pairs results from the fact that a new item,

i.e., thekth item, is taken into account.

Nk = {(w + wk, p + pk) | (w, p)

∈ Lk−1, w + wk �C}. (2)

According to the dominance principle, which is a conse-
quence of Bellman’s optimality principle, all pairs(w, p) ∈
Lk−1 ∪ Nk obtained by construction such that there exists a
pair (w′, p′) ∈ Lk−1 ∪ Nk, (w′, p′) �= (w, p), which satis-
fies:w′ �w andp�p′, must not belong to a listLk. In this
case, we usually say that the pair(w′, p′) dominates the pair
(w, p). As a consequence, any two pairs(w′, p′), (w′′, p′′)
of the listLk must satisfy:p′ < p′′ if w′ < w′′. Thus, we can
define the setDk of dominated pairs at stagek as follows:

Dk = {(w, p) | (w, p) ∈ Lk−1 ∪ Nk, ∃(w′, p′)
∈ Lk−1 ∪ Nk with

w′ �w, p�p′, (w′, p′) �= (w, p)}. (3)

As a consequence, for all positive integersk, the dynamic
programming recursive listLk is defined as follows:

Lk = Lk−1 ∪ Nk − Dk. (4)

Note that the listsLk are organized as sets of monotonically
increasing ordered pairs in both weight and profit. As a con-
sequence, the largest pair of the listLn, corresponds to the
optimal value of the knapsack problem. We illustrate the dy-
namic programming procedure presented in this section on
a simple example displayed as follows:

n = 6 andC = 16, (5)

(w1, . . . , wn) = (5, 3, 2, 1, 5, 9), (6)

p1, . . . , pn) = (20, 8, 5, 4, 14, 27). (7)

Table1 shows the contents of the listsNk, Dk andLk, for
k = 1–6.

We note that the optimal pair is(16, 52) ∈ N6, the optimal
solution corresponds to(x1, . . . , xn) = (1, 0, 1, 0, 0, 1). We
see that infeasible pairs with total weight greater thanC =
16, such as for example(8+9, 29+27) = (17, 56) and(9+
9, 32+ 27) = (18, 59) do not belong to the listN6. Finally,
we note that the cardinality ofDk can become relatively
large whenk increases.

3. Parallel algorithm

In this section, we detail the parallelization of the one list
dynamic programming method using dominance technique.
The parallel algorithm which was briefly presented in[11]
is designed according to the single program multiple data
(SPMD) model for a parallel architecture that can be viewed
as a shared memory machine on a logical point of view. As
we shall see in detail in Section5 experiments have been
carried out on a nonuniform memory access (NUMA) super-
computer Origin 3800 by using the Open MP environment.
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Table 1
Example in the sequential case

k Lists Content

0 L0 (0, 0)

1 N1 (5, 20)
D1
L1 (0, 0), (5, 20)

2 N2 (3, 8), (8, 28)
D2
L2 (0, 0), (3, 8), (5, 20), (8, 28)

3 N3 (2, 5), (5, 13), (7, 25), (10, 33)
D3 (5, 13)
L3 (0, 0), (2, 5), (3, 8), (5, 20), (7, 25), (8, 28), (10, 33)

4 N4 (1, 4), (3, 9), (4, 12), (6, 24), (8, 29), (9, 32), (11, 37)
D4 (3, 8), (8, 28)
L4 (0, 0), (1, 4), (2, 5), (3, 9), (4, 12), (5, 20), (6, 24), (7, 25), (8, 29),

(9, 32), (10, 33), (11, 37)

5 N5 (5, 14), (6, 18), (7, 19), (8, 23), (9, 26), (10, 34), (11, 38), (12, 39),
(13, 43), (14, 46), (15, 47), (16, 51)

D5 (5, 14), (6, 18), (7, 19), (8, 23), (9, 26), (10, 33), (11, 37)
L5 (0, 0), (1, 4), (2, 5), (3, 9), (4, 12), (5, 20), (6, 24), (7, 25), (8, 29),

(9, 32), (10, 34), (11, 38), (12, 39), (13, 43), (14, 46), (15, 47), (16, 51)

6 N6 (9, 27), (10, 31), (11, 32), (12, 36), (13, 39), (14, 47), (15, 51), (16, 52)
D6 (9, 27), (10, 31), (11, 32), (12, 36), (13, 39), (14, 46), (15, 47), (16, 51)
L6 (0, 0), (1, 4), (2, 5), (3, 9), (4, 12), (5, 20), (6, 24), (7, 25), (8, 29),

(9, 32), (10, 34), (11, 38), (12, 39), (13, 43), (14, 47), (15, 51), (16, 52)

The main feature of this parallel algorithm is that all pro-
cessors cooperate via data exchange to the construction of
the global list. The global list is partitioned into sublists.
Sublists are organized as sets of monotonically increasing
ordered pairs in both weight and profit. Each sublist is gen-
erated by one processor of the parallel architecture. In par-
ticular, all dominated pairs are removed at each stage of the
parallel dynamic programming method. More precisely, at
stagek, each processorEi generates a sublist of the global
list Lk, which is denoted byLi

k. The total work is shared
by the different processors and data exchange permits each
processor to remove all dominated pairs from its sublist
based on global information. It is important to keep in mind
that parallel algorithms whereby dominated pairs are not re-
moved at each stage do not correspond to a parallel imple-
mentation of the dynamic programming using dominance
technique algorithm, except in the special case of the subset
sum problem where profits are equal to weight. Moreover,
in the general case, the approach whereby all dominated
pairs are not removed from the sublists may not be efficient,

since the number of dominated pairs may be huge. The ben-
efit of parallelism can then be lost since parallel algorithms
will have to deal with a greater number of pairs than the se-
quential dynamic programming algorithm using dominance
technique.

Several issues must be addressed when considering the
design of a parallel algorithm: initialization of the parallel
algorithm, work decomposition, tasks assignation, data ex-
change and load balancing strategy.

3.1. Initialization, work decomposition and task assignment

The initialization of the parallel algorithm is performed
by a sequential dynamic programming algorithm using dom-
inance technique. First of all, a sequential process performs
k(0) stages of the dynamic programming algorithm. This
process generates a list which contains at leastlq pairs,
whereq denotes the total number of processors andl the
minimal number of pairs per processor. LetLk(0) be the or-
dered list which results from the sequential initialization.



D. El Baz, M. Elkihel / J. Parallel Distrib. Comput. 65 (2005) 74–84 77

The listLk(0) is partitioned as follows:Lk(0) = ⋃q−1
i=0 Li

k(0),

with |Li
k(0)| = l, for i = 1, . . . , q − 1 and|L0

k(0)|� l, where

|Li
k(0)| denotes the number of pairs of the sublistLi

k(0).

If all processorsEi generate independently their sublist
Li

k without sharing data with any other processor, then, on
a global point of view, some dominated pairs may belong to
the sublistsLi

k, which induces finally an overhead. Thus, in
the beginning of each stage, it is necessary to synchronize
all the processors which must then share part of the data
produced at the previous stage in order to discard all dom-
inated pairs in a global way. The use of global dominance
technique can reduce the cardinality of the sublistsLi

k. At
each stage, the contents of the union of the generated sub-
lists is the same as the contents of the list generated by a se-
quential dynamic programming algorithm using dominance
technique as we shall see in detail in the next subsection.

3.2. Parallel processes

We detail now the parallel algorithm. We present first the
process of construction of the sublistsLi

k generated at each
stage. We introduce the various sublists that are created by
the different processorsEi, i = 0, . . . , q−1, at each stagek
in order to generate the sublistsLi

k. For alli ∈ {0, . . . , q−1},
the smallest pair ofLi

k in both weight and profit will be

denoted by(wi,0
k , p

i,0
k ). The various sublists are defined as

follows. For all i = 0, . . . , q − 2,

Ni
k = {(wi,.

k−1 + wk, p
i,.
k−1 + pk) | (wi,.

k−1, p
i,.
k−1)

∈ Li
k−1, w

i,.
k−1 + wk < w

i+1,0
k−1 }, (8)

and

N
q−1
k = {(wq−1,.

k−1 + wk, p
q−1,.
k−1 + pk) | (wq−1,.

k−1 , p
q−1,.
k−1 )

∈ L
q−1
k−1, w

q−1,.
k−1 + wk �C}. (9)

The sublistNi
k corresponds to the new list of pairs created

at stagek by processorEi from its sublistLi−1
k and thekth

item and which are assigned to processorEi. Some pairs
clearly do not belong to the sublistNi

k, i.e., the pairs for

which the weightwi,.
k−1 + wk is greater than or equal to the

weightwi+1,0
k−1 of the smallest pair of the listLi+1

k−1 generated
by processorEi+1. Those discarded pairs which are stored
as shared variables are used by processorsEj with i < j,

in order to generate their sublistsLj
k as we shall see in the

sequel. It is important to note at this point that for alli ∈
{0, . . . , q − 1}, data exchange can then occur only between
processorEi and processorsEj with i < j. For this purpose,
consider now the series of setsCi

k defined as follows. For
all i ∈ {1, . . . , q − 2},
Ci

k = {(wj,.
k−1 + wk, p

j,.
k−1 + pk) | (wj,.

k−1, p
j,.
k−1)

∈ L
j
k−1, j < i,

w
i,0
k−1�w

j,.
k−1 + wk < w

i+1,0
k−1

or w
j,.
k−1 + wk < w

i,0
k−1, p

j,.
k−1 + pk �p

i,0
k−1}, (10)

C0
k = ∅ (11)

and

C
q−1
k = {(wj,.

k−1 + wk, p
j,.
k−1 + pk) | (wj,.

k−1, p
j,.
k−1)

∈ L
j
k−1, j < q − 1,

w
q−1,0
k−1 �w

j,.
k−1 + wk < C or w

j,.
k−1

+wk < w
q−1,0
k−1 , p

j,.
k−1 + pk �p

q−1,0
k−1 }. (12)

The sublistCi
k is in fact the set of pairs that are exchanged

between all processorsEm, with m < i and processorEi,

either in order to complete the sublistLi
k that will be pro-

duced by processorEi at stagek or to permit processorEi

to discard from its sublist some dominated pairs, at stagek.

This last decision being made on a global point of view. In
particular, it is important to note that all processorsEj , with
j > i, must share with processorEi all the pairs created
by Ei that will permit Ej to eliminate dominated pairs. In
order to discard all the pairs which must not belong to the
sublist Li

k and particularly dominated pairs, we introduce
the series of setsDi

k. For all i = 0, . . . , q − 2,

Di
k = D̂i

k ∪ {(w, p) | w < w
i+1,0
k−1 and p�p

i+1,0
k−1 }, (13)

with

D̂i
k = {(w, p) | (w, p) ∈ Li

k−1 ∪ Ni
k ∪ Ci

k and

∃ (w′, p′) ∈ Li
k−1 ∪ Ni

k ∪ Ci
k,

(w′, p′) �= (w, p) and w′ �w, p�p′} (14)

and

D
q−1
k = {(w, p) | (w, p) ∈ L

q−1
k−1 ∪ N

q−1
k ∪ C

q−1
k ,

∃ (w′, p′) ∈ L
q−1
k−1 ∪ N

q−1
k ∪ C

q−1
k ,

(w′, p′) �= (w, p), w′ �w, p�p′}. (15)

We note thatD̂i
k is the subset ofDi

k which contains all
dominated pairs in processorEi at stagek. A similar remark
can be made for the setD

q−1
k . We note also that copies of

the same pair may be present in different processors. These
copies permit processors to check dominance relation. All
copies must be removed at each stage but one, i.e., the last
one. As a consequence, the dynamic programming recursive
sublistsLi

k are defined as the following sets of monotonically
increasing ordered pairs in both weight and profit. For all
positive integerk and alli = 0, . . . , q − 1,

Li
k = Li

k−1 ∪ Ni
k ∪ Ci

k − Di
k. (16)

Initially, note that we haveLk(0) = ⋃q−1
i=0 Li

k(0), as it was
stated in the beginning of Section3.1. Assume now that for
a givenk, we haveLk−1 = ⋃q−1

i=0 Li
k−1, then it follows

clearly from the definition ofNk, Ni
k andCi

k that
⋃q−1

i=0 (Ni
k∪

Ci
k) = Nk, i.e., no pair is lost in the construction and data

exchange processes. Moreover it follows from the definitions
of D̂i

k and D
q−1
k that

⋃q−2
i=0 D̂i

k ∪ D
q−1
k = Dk, i.e., no

dominated pair remains in the sublistsLi
k. We note that the
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elimination of all dominated pairs in each processor is not
local. The elimination is rather based on global information.
Thus, it follows from (4) and (16) that

⋃q−1
i=0 Li

k = Lk.

We present now the parallel dynamic programming algo-
rithm designed according to the SPMD model. The paral-
lel algorithm was carried out on an NUMA shared memory
Origin 3800 supercomputer by using the Open MP environ-
ment. More details about the machine can be found in Sec-
tion 5. All the variables are local, otherwise it is said in the
algorithm.

Parallel algorithm

FORk = k(0) + 1 TO n

DO
FOR i = 0 TO q − 1
DO IN PARALLEL

BEGIN
IF i �= q − 1
THEN

IF the pair(wi+1,0
k−1 , p

i+1,0
k−1 ), is available

THEN
BEGIN

Ei generatesNi
k;

Ei stores as shared variables all pairs
(w

i,.
k−1 + wk, p

i,.
k−1 + pk) |

(w
i,.
k−1, p

i,.
k−1) ∈ Li

k−1, w
i+1,0
k−1 ≤ w

i,.
k−1+

wk ≤ C;
Ei stores as shared variables all pairs
(w

i,.
k−1 + wk, p

i,.
k−1 + pk) |

(w
i,.
k−1, p

i,.
k−1) ∈ Li

k−1, w
i,.
k−1 +wk < w

i+1,0
k−1 ,

p
i,.
k−1 + pk ≥ p

i+1,0
k−1 ;

END
ELSE

Eq−1 generatesNq−1
k ;

BARRIER OF SYNCHRONIZATION;
Ei generatesCi

k;
Ei generatesDi

k;
Ei generatesLi

k;
IF i �= 0
THEN

Ei stores(wi,0
k , p

i,0
k ) as a shared variable;

END

We note that all processorsEj , j = 1, . . . , q − 1, store
the smallest pair(wj,0

k−1, p
j,0
k−1) of their sublistLj

k−1 as a
shared variable since this value is used by processorsEi

with i < j to determine what pairs must be stored as a
shared variable in order to be exchanged withEj . We note
also that pair exchange between processors occurs always
between a processorEi and a processorEj , with j > i.

Thus, processorEq−1 plays a particular part with this type
of data exchange since, generally, it tends to accumulate
more pairs than any other processor.

The particular data structure chosen in order to store ex-
changed pairs as shared variables is a table with three entries.
Typically, processorEi will read data exchanged ini lists
which are generated, respectively, by processorsE0–Ei−1.

In order to illustrate the parallel algorithm proposed in
this section, we consider the same simple example as in
Section2, for which the data are given in Eqs. (5)–(7) and
the number of processorsq = 3.

Table 2 displays the content of the sublistsLi
k, Ni

k, Ci
k

andDi
k, i = 0, 1, 2, in function of the stagek. In order to

maximize the parallel part of the program, we have chosen
a value ofk(0) which as small as possible, while permitting
processors to get nonvoid sublistsLi

k, i.e., k(0) = 2. Thus,
|Li

k(0)| = l = 1, for i = 1, 2 and|L0
k(0)| = 2. We note that

processorE0 stores the pair(3 + 2, 8 + 5) = (5, 13) as a
shared variable in order to be used by processorE1, at stage
3, sincew

1,0
2 = 5 and 5�w

2,0
2 = 8. As a result, the pair

(5, 13) will belong to the setC1
3. However, the pair(5, 13) is

dominated by the pair(5, 20). Thus, the pair(5, 13) will not
belong to the sublistL1

3. Similarly, processorE0 stores the
pair (0+9, 0+27) = (9, 27) as a shared variable in order to
be used by processorE2, at stage 6, since 9�w

2,0
5 = 8. The

pair (9, 27) will belong to the setC2
6. However, once again

the pair(9, 27) is dominated by the pair(8, 29). Thus, the
pair (9, 27) will not belong to the sublistL2

6. We note also
that some load unbalancing can appear, such as for example
at stage 5 and can increase during the following stages.

4. Load balancing strategies

In order to obtain good performance, it is necessary to
design an efficient load balancing strategy. As a matter of
fact, if no load balancing technique is implemented, then
it results in particular from the data exchange process de-
scribed in the previous section that processorEq can become
overloaded.

In this section, we propose and compare several load bal-
ancing strategies which are designed in order to obtain a
good efficiency while presenting a small overhead. With
these load balancing strategies the time complexity of the
parallel algorithm presented in Section3 is O(min{2n

q
, nC

q
}),

since the number of pairs will be fairly distributed on the dif-
ferent processors. These strategies are different from the one
considered in[11], which is an adaptive strategy whereby
a load balancing is made if any processor which is over-
loaded can take benefit of it and a decision is taken every two
stages according to measures and estimations of the load. For
more details concerning this strategy, the reader is referred
to [11].

4.1. A dynamic load balancing strategy

The first strategy considered in this paper does not nec-
essarily balance loads at each stage; this strategy is based
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Table 2
Example in the parallel case without load balancing

i 0 1 2

k Lists

2 Li
2 (0, 0), (3, 8) (5, 20) (8, 28)

3 Ni
3 (2, 5) (7, 25) (10, 33)

Ci
3 (5, 13)

Di
3 (5, 13)

Li
3 (0, 0), (2, 5), (3, 8) (5, 20), (7, 25) (8, 28), (10, 33)

4 Ni
4 (1, 4), (3, 9), (4, 12) (6, 24) (9, 32), (11, 37)

Ci
4 (8, 29)

Di
4 (3, 8) (8, 28)

Li
4 (0, 0), (1, 4), (2, 5), (5, 20), (6, 24), (7, 25) (8, 29), (9, 32), (10, 33),

(3, 9), (4, 12) (11, 37)

5 Ni
5 (13, 43), (14, 46), (15, 47),

(16, 51)
Ci

5 (5, 14), (6, 18), (7, 19) (8, 23), (9, 26), (10, 34),
(11, 38), (12, 39)

Di
5 (5, 14), (6, 18), (7, 19) (8, 23), (9, 26), (10, 33),

(11, 37)
Li

5 (0, 0), (1, 4), (2, 5), (5, 20), (6, 24), (7, 25) (8, 29), (9, 32), (10, 34),
(3, 9), (4, 12) (11, 38), (12, 39), (13, 43),

(14, 46), (15, 47), (16, 51)

6 Ni
6

Ci
6 (9, 27), (10, 31), (11, 32),

(12, 36), (13, 39), (14, 47),
(15, 51), (16, 52)

Di
6 (9, 27), (10, 31), (11, 32),

(12, 36), (13, 39), (14, 46),
(15, 47), (16, 51)

Li
6 (0, 0), (1, 4), (2, 5), (5, 20), (6, 24), (7, 25) (8, 29), (9, 32),(10, 34),

(3, 9), (4, 12) (11, 38), (12, 39), (13, 43),
(14, 47), (15, 51), (16, 52)

upon a test which is made at each stage. The load balancing
test is based upon a comparison of the work needed for
performing the load balancing on the one hand, and the work
resulting from the load unbalancing on the other hand. The
later work is related to the difference of number of pairs
between the largest sublist and the other lists. If the load
balancing work is more expensive than the work needed for
processing pairs, then the loads are not balanced, otherwise
they are balanced. The load balancing process will assign
fairly loads to processors, i.e., it will give approximatively
an equal number of pairs to all processors as we shall see
in what follows.

In the sequel,Tp, Tw andTr, respectively, denote the pro-
cessing time, the writing time and the reading time relative
to one pair, respectively. At any given stagek, the number
of pairs of the largest sublist is denoted byNl and the to-
tal number of pairs assigned to all processors is denoted by

Nt. The load unbalancing cost which is denoted bycu is
given by

cu = Tp.

(
Nl − Nt

q

)
. (17)

The load balancing cost which is denoted bycb is
given by

cb = Nl .(Tr + Tw), (18)

since read and write are made in parallel in each processor.
Thus, the test will be basically as follows. Ifcu > cb, then
we balance loads, else the loads are not balanced. The test
can be rewritten as follows:

Nl − Nt

q
> Nl .

(Tr + Tw)

Tp
, (19)
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which can also be rewritten

1 − Nt

q.Nl
>

(Tr + Tw)

Tp
(20)

or

1 − (Tr + Tw)

Tp
>

Nt

q.Nl
. (21)

In the next section, we will present computational exper-
iments carried out on the Origin 3800 parallel supercom-
puter. We have obtained the following measurements on the
Origin 3800 forTp, Tr andTw.

Tp = 2.69× 10−7 s, Tr = 4.2 × 10−8 s and

Tw = 3.6 × 10−8 s. (22)

Thus, for this machine we have

(Tr + Tw)

Tp
= 0.29 (23)

and the practical test is given as follows:

0.71 >
Nt

Nl .q
. (24)

The reader is referred to[22] for dynamic load balancing ap-
proaches which present some similarities with our dynamic
strategy and which are applied to adaptive grid-calculations
for unsteady three-dimensional problems. However, we note
that our test (19) is different from the test used in[22] (ref-
erence is also made to[9,16]). In order to illustrate the load
balancing strategy proposed in this subsection, we consider
the same simple example as in the previous section, for
which the data are given in Eqs. (5)–(7).

Table 3 displays the content of the sublistsLi
k, Ni

k, Ci
k

and Bi
k, i = 0, 1, 2, in function of k, where Bi

k denotes
the sublist assigned to processorEi after a load balancing
performed at stagek. The sublistsDi

k, i = 0, 1, 2, do not
appear in Table3 for simplicity of presentation; however,
dominance techniques are applied and as a consequence, the
resulting sublistsLi

k do not contain dominated pairs.
We note that the load balancing condition is not satisfied

before stage 5. At stages 3 and 4, respectively,Nt
Nl .q

is equal
to 0.78 and 0.8, respectively. Thus, there is no load balancing
when k is equal to 3 or 4. At stage 5, we haveNt = 17
andNl = 9. Thus, 0.71 > Nt

Nl .q
= 0.63. The load balancing

phase assigns fairly loads to processors, i.e., almost the same
number of pairs are assigned to the different processors. We
have|B1

5| = |B2
5| = �Nt

3 � = 5 and|B0
5| = |Nt| − 2.�Nt

3 � =
7, where�y� denotes the entire part ofy.

The new sublistsBi
5 which are assigned to processors

Ei, i = 0, 1, 2, after load balancing are used at stage 6,
by processorEi together with the sixth and last item, i.e.,
(9, 27), in order to generate the sublistsNi

6, i = 0, 1, 2.

We note that the setsNi
6, i = 0, 1, 2, are empty since the

generated pairs at stage 6 are such that their weightsw
i,.
5 +9

are greater than or equal to the weightw
i+1,0
5 of the smallest

pair of the listBi+1
5 relevant to processorEi+1 or greater

than the capacity of the knapsackC. Those discarded pairs
which are stored as shared variables are used by processors
Ej with j > i, in order to generate their sublistsC

j
6 . Finally,

new pairs resulting from the last object taken into account
and data exchange between processors permit one to build
the sublistsLi

6, i = 0, 1, 2.

In the next subsection, we present a different load balanc-
ing strategy which is simple and performant.

4.2. Implicit load balancing

Implicit load balancing has been designed in order to de-
crease overhead while performing a fair load balancing. The
principle of implicit load balancing is very simple. Since
the capacityC of the knapsack is given and the size of the
lists Lk is at most equal toC, the idea is to assign to pro-
cessorE0 the pairs with weight between 0 and�C

q
� where

q denotes the number of processors, similarly, processorE1

will be assigned the pairs with weight between�C
q
�+ 1 and

2.�C
q
� and so on.

The main advantage of this strategy is that pairs are
directly assigned to a given processor according to their
weight. As a consequence, there is no overhead like in the
case of the previous strategy. On the other hand, the main
drawback of this strategy is its inefficiency at initialization,
since idle times of some processors such as for example
Eq−1, Eq−2, . . . may be nonnegligeable. However, we
will see in the next section that this load balancing tech-
nique is performant even when the number of processors is
large. As a matter of fact, with these technique, the work
of the different processors tends to be well distributed,
since according to the strategy, the number of pairs as-
signed to all processors tends to be constant in working
regime.

In the case of implicit load balancing, it is straightforward
to deduce the contents of the lists; thus, the presentation is
skipped. Finally, we conclude this section by presenting a
last strategy the so-called cascade load balancing.

4.3. Cascade load balancing

We have seen in Section4.1 that one of the major draw-
backs of dynamic load balancing was that every processor
must write the pairs of its sublist as shared variables during
load balancing phases. This mechanism clearly generates a
nonnegligeable overhead. Moreover, the sublists assigned to
the different processors differ only by a limited number of
pairs before and after a load balancing. The cascade load
balancing concept tends to suppress this drawback. The prin-
ciple of cascade load balancing consists in the transmission
of pairs at each stage from a given overloaded processor say
Ei to the processors next to it: sayEi−1 or Ei+1. This mech-
anism tends to limit the number of communicated pairs at
each stage.
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Table 3
Example in the parallel case with load balancing

i 0 1 2

k Lists

2 Li
2 (0, 0), (3, 8) (5, 20) (8, 28)

3 Ni
3 (2, 5) (7, 25) (10, 33)

Ci
3 (5, 13)

Li
3 (0, 0), (2, 5), (3, 8) (5, 20), (7, 25) (8, 28), (10, 33)

4 Ni
4 (1, 4), (3, 9), (4, 12) (6, 24) (9, 32), (11, 37)

Ci
4 (8, 29)

Li
4 (0, 0), (1, 4), (2, 5), (5, 20), (6, 24), (7, 25) (8, 29), (9, 32), (10, 33),

(3, 9), (4, 12) (11, 37)

5 Ni
5 (13, 43), (14, 46), (15, 47),

(16, 51)
Ci

5 (5, 14), (6, 18), (7, 19) (8, 23), (9, 26), (10, 34),
(11, 38), (12, 39)

Li
5 (0, 0), (1, 4), (2, 5), (5, 20), (6, 24), (7, 25) (8, 29), (9, 32), (10, 34),

(3, 9), (4, 12) (11, 38), (12, 39), (13, 43),
(14, 46), (15, 47), (16, 51)

Bi
5 (0, 0), (1, 4), (2, 5), (7, 25), (8, 29), (9, 32), (12, 39), (13, 43), (14, 46),

(3, 9), (4, 12), (5, 20), (10, 34), (11, 38) (15, 47), (16, 51)
(6, 24)

6 Ni
6

Ci
6 (9, 27), (10, 31), (11, 32) (12, 36), (13, 39), (14, 47),

(15, 51), (16, 52)
Li

6 (0, 0), (1, 4), (2, 5), (7, 25), (8, 29), (9, 32), (12, 39), (13, 43), (14, 47),
(3, 9), (4, 12), (5, 20), (10, 34), (11, 38) (15, 51), (16, 52)
(6, 24)

In order to implement this load balancing strategy, one
needs to compute and store in a table the number of pairs
per processor and the desired fair distribution of pairs. By
using the data of this table, it is then possible to compute the
number of pairs that must be communicated between each
processorEi and processorsEi−1 or Ei+1, starting from
processorE0, data exchange operations being considered in
sequence i.e., one at a time. A positive numberm implies
that m pairs must be sent fromEi to Ei+1. A negative
numberm implies that|m| pairs must be sent fromEi+1

to Ei. As an example, if at a given stagek, the number of
pairs of processorsE0, E1 andE2, respectively, are 18, 8
and 4, respectively, then at the first step of the cascade load
balancing,E0 will communicate 8 pairs toE1. Thus, at the
end of the first step the respective number of pairs assigned to
processorsE0, E1 andE2, will be 10, 16 and 4, respectively.
At the second step of the cascade load balancing,E1 will
communicate 6 pairs toE2. So, each processor will have the
same number of pairs, i.e., 10 pairs, at the end of step 2. As
we shall see in the sequel, very few pairs are communicated
at each stage. The ratio communicated pairs per total number

of pairs was usually one per one thousand in the numerical
experiments we have carried out. In working regime, there
are relatively few data exchanges between processors and the
phenomenon of cascade communication of pairs generally
occurs only at the beginning of computations.

Finally, we note that we have implemented many more
approaches for load balancing then the ones quoted in this
section. In particular, the approach whereby the processor
which tends to be overloaded i.e., the last processor get only
few pairs at each load balancing has not proven to be very
efficient, mainly because pair generation is expensive. We
have also tested an approach whereby exchanges occur in
the sense of the augmenting indexes at each odd stage and in
the reverse sense at each even stage. But this last approach
(see[11]) is less performant as well.

5. Numerical results

The numerical experiments presented here correspond to
difficult 0–1 knapsack problems, i.e., problems included in
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Table 4
Computing time in seconds and efficiency for a gap 10 and range 1000 with dynamic load balancing

q 1 2 4 8 16 32

Size ts tp e (%) tp e (%) tp e (%) tp e (%) tp e (%)

200 0.406 0.326 62 0.177 57 0.111 46 0.09 28 0.13 10
400 2.046 1.638 62 0.828 62 0.447 57 0.285 45 0.277 23

1000 15.099 11.571 65 5.907 64 3.034 62 1.65 57 1.111 42
5000 528.195 362.882 73 163.258 81 80.645 82 40.163 82 21.571 77

10000 2125.38 1595.35 67 699.192 76 324.488 82 160.465 83 83.066 80

Table 5
Computing time in seconds and efficiency for a gap 100 and range 1000 with dynamic load balancing

q 1 2 4 8 16 32

Size ts tp e (%) tp e (%) tp e (%) tp e (%) tp e (%)

200 0.116 0.1 58 0.063 46 0.046 32 0.053 14 0.1 4
400 0.775 0.606 64 0.325 60 0.19 51 0.148 33 0.191 13

1000 7.935 6.252 63 3.137 63 1.66 60 0.96 52 0.768 32
5000 463.48 299.352 77 137.928 84 67.866 85 34.122 85 18.014 80

10000 2109.3 1655.84 64 644.888 82 302.5 87 144.158 91 76.518 86

a range from weakly correlated problems to very strongly
correlated problems (see[10]). We have avoided treating
noncorrelated problems which induce a large number of
dominated pairs and which are thus more easy to solve.

The various instances considered are relative to problem
sizes which are equal to 200, 400, 1000, 5000 and 10000,
respectively, with data range defined as follows. The weights
wj are randomly distributed in the segment[1, 1000] and
the nonnegative profitspj in [wj − g, wj + g], where the
gap, denoted byg, is equal to 10 for the first set of data and
100 for the second set. We have considered problems such
thatC = 0.5

∑n
j=1 wj .

The parallel algorithm has been implemented in C on an
NUMA shared memory supercomputer Origin 3800 using
the Open MP environment. The architecture of the machine
is hybrid, i.e., there is some shared and distributed memory.
However, total memory can be viewed as shared on a logical
point of view. More precisely, the parallel architecture is
an hypercube constituted by 512 processors MIPS R14000
with 500 MHz clock frequency and 500 Mo of memory per
processor. The operating system is IRIX 6.5 IP35. The total
bandwidth of the communication network is 716 Go/s. We
note that generally, all processors do not have the same read
or write time for every variable. With this architecture, the
read or write time in a remote part of the memory may be
two or three times greater than the read or write time in
the local memory of a processor. However, we have made
computational tests with 2× 106 up to 8× 107 pairs; in this
range, the read time, as well as the write time were always
the same: 4× 10−8 s.

Parallel numerical experiments have been carried out with
up to 32 processors. Numerical results are displayed in
Tables4–10.

For all tables, except Table10, we give the running time in
seconds of sequential algorithms, denoted byts, and parallel

algorithms, denoted bytp, which corresponds to an average
time taken over 25 instances; we also give the efficiency of
parallel algorithms which is equal tots

q.tp
. Table 10 corre-

sponds to a single instance without load balancing strategy.
In the case of parallel algorithms with load balancing,

we note from Tables4–7 that the efficiency of the parallel
algorithm is function of several parameters such as the size
of the problem, the number of processors or the type of
correlation of the data.

If the size of the problem is small, i.e., 200, 400 or 1000,
then we do not need a large number of processors, since the
running time is of the order of just few seconds. In that case,
the efficiency of the parallel dynamic programming algo-
rithm using dynamic or implicit load balancing tends gen-
erally to decrease when the number of processors increases.
Basically, for these problems the granularity, i.e., the ratio
computation time over communication time, which is ini-
tially small, decreases whenq increases since in this case,
communications play a prominent part.

If the size of the problem is nonnegligible or great, i.e.,
5000 or 10000, then the efficiency of the parallel dynamic
programming algorithm using dynamic or implicit load bal-
ancing increases first because whenq is small the last proces-
sor tends naturally to accumulate more pairs and the prob-
lem is more unbalanced. Thus, the efficiencies are smaller
for small values ofq since the effect of load unbalancing is
relatively costly. Finally, the efficiency decreases whenq be-
comes large since the load balancing overhead in the case of
dynamic load balancing and the granularity effects in both
cases become prevalent.

A surprising result is that the performance of implicit load
balancing is quite similar to the performance of dynamic
load balancing. However, the sophisticated dynamic load
balancing strategy seems to perform better than the simple
implicit load balancing strategy for large size problems and
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Table 6
Computing time in seconds and efficiency for a gap 10 and range 1000 with implicit load balancing

q 1 2 4 8 16 32

Size ts tp e (%) tp e (%) tp e (%) tp e (%) tp e (%)

200 0.406 0.30 68 0.17 58 0.11 48 0.07 35 0.07 18
400 2.046 1.45 70 0.81 64 0.45 57 0.26 48 0.20 32

1000 15.099 10.59 71 5.77 65 3.08 61 1.68 56 1.02 46
5000 528.195 349.57 76 161.62 82 83.88 79 43.94 75 23.33 71

10000 2125.38 1597.39 67 749.33 71 347.56 76 177.71 75 92.50 72

Table 7
Computing time in seconds and efficiency for a gap 100 and range 1000 with implicit load balancing

q 1 2 4 8 16 32

Size ts tp e (%) tp e (%) tp e (%) tp e (%) tp e (%)

200 0.116 0.09 62 0.06 49 0.04 35 0.04 21 0.04 9
400 0.775 0.56 69 0.32 60 0.19 52 0.12 40 0.11 22

1000 7.935 5.67 70 3.09 64 1.68 59 0.95 52 0.64 39
5000 463.48 273.42 85 130.27 89 67.18 86 34.80 83 18.78 77

10000 2109.3 1954.24 54 773.64 68 303.8 87 154.49 85 80.12 82

Table 8
Computing time in seconds and efficiency for a gap 10 and range 1000 with cascade load balancing

q 1 2 4 8 16 32

Size ts tp e (%) tp e (%) tp e (%) tp e (%) tp e (%)

200 0.406 0.23 88 0.18 56 0.3 17 0.81 3 2.09 0.6
400 2.046 1.09 94 0.7 73 0.88 29 2.2 6 5.4 1

1000 15.099 7.6 99 4.38 86 3.63 52 6.86 14 16.29 3
5000 528.195 256.84 103 109.82 120 63.24 104 61.32 53 106.82 15

10000 2125.38 1854.95 57 682.26 78 254.75 104 199.14 67 257.25 26

Table 9
Computing time in seconds and efficiency for a gap 100 and range 1000 with cascade load balancing

q 1 2 4 8 16 32

Size ts tp e (%) tp e (%) tp e (%) tp e (%) tp e (%)

200 0.116 0.08 73 0.07 41 0.12 12 0.35 2 0.8 .5
400 0.775 0.47 82 0.32 61 0.4 24 1.03 5 2.53 1

1000 7.935 4.34 91 2.52 79 2.17 46 4.25 12 9.51 3
5000 463.48 198.63 117 90.83 128 51.79 112 49.19 59 81.19 18

10000 2109.3 1093.25 96 437.26 121 211.56 125 161.84 81 183.89 36

Table 10
A case without load balancing, computing time and efficiency for a gap 10 and range 1000

q 1 2 4 8 16 32

Size ts tp e (%) tp e (%) tp e (%) tp e (%) tp e (%)

200 0.43 0.45 48 0.48 22 0.58 9 1.27 2 1.72 1
1000 15.32 16.46 47 16.43 23 16.16 12 16.88 6 17.32 3
5000 527.69 655.30 40 672.91 20 666.82 10 792.03 4 844.34 2

10000 2163.48 2589.30 42 2716.85 20 3445.72 8 2660.50 5 3698.69 2
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large number of processors; this case being of course the
most interesting.

We note that cascade load balancing strategy is generally
very efficient for a small number of processors i.e., whenq
is smaller or equal to 8. We note also that in some cases, the
efficiency may be greater than one. Experiments were car-
ried out on a nonuniform memory architecture. Thus, several
processors can use more efficiently their fast local memory,
where local data are stored, then a single processor which
needs to access sometimes remote part of the memory in
order to use all the data of the problem. We recall that the
access to remote part of the memory costs more than the ac-
cess to local memory on a NUMA architecture. If the num-
ber of processors is large, then the performance of this strat-
egy is very poor. It seems that although there are generally
few pairs communicated as compared with the total number
of pairs (we have measured an average of 1 per 1000), the
sequentiality of data exchanges, i.e., one processor commu-
nicate at a time with another, seems particularly costly if the
number of processors is large; this phenomenon eventually
induces an important communication overhead.

Finally, we note that load balancing is really important
for parallel dynamic programming algorithms. Parallel algo-
rithms without load balancing strategy are generally totally
inefficient as shown in Table10. Parallel algorithms with
dynamic or implicit load balancing strategy whose perfor-
mance is displayed in Tables4–7 present in general a good
efficiency for a coarse granularity. This shows that the first
two load balancing strategies that we have designed are ef-
ficient. The performance of these load balancing strategies
is also better than the one of the strategy presented in one
of our previous papers (see[11]).
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