
Heterogeneous Computing and Multi-Clustering Support via Peer-To-Peer HPC

Bilal FAKIH

LAAS-CNRS, Université de Toulouse, CNRS
Email: bfakih@laas.fr

Didier EL BAZ

LAAS-CNRS, Université de Toulouse, CNRS
Email: elbaz@laas.fr

Abstract—This paper aims at presenting Peer-To-Peer HPC
a decentralized environment that facilitates the use of hetero-
geneous multi-cluster platform for loosely synchronous appli-
cations. The goal is to exploit all the computing resources
(all the available cores of computing nodes) as well as all
networks, e.g., Ethernet, Infiniband and Myrinet. Peer-To-Peer
HPC functionality relies on a reconfigurable multi network
protocol RMNP for controlling multiple network adapters and
on OpenMP for the exploitation of all the available cores
of computing nodes. We report on efficiency obtained with
Grid5000 testbed by combining synchronous and asynchronous
iterative schemes of computation with Peer-To-Peer HPC. The
experimental results show that our environment scales well.

Keywords-computing environment, multi-cluster computing,
multi-threading, peer-to-peer computing, distributed comput-
ing, High Performance Computing, loosely synchronous appli-
cations.

I. INTRODUCTION

In this paper, we are mainly interested in the solution

on large scale distributed computing systems of High Per-

formance Computing (HPC) applications that belong to the

class of loosely synchronous applications and which exhibit

iterative compute communication stages [1]. We concentrate

on numerical simulation problem that are solved via paral-

lel synchronous or asynchronous iterative algorithms. We

propose the decentralized environment Peer-To-Peer HPC

designed to provide an efficient, scalable and portable sup-

port for high performance computing applications in a multi-

cluster, multi-core context. Peer-To-Peer HPC facilitates the

use of large scale distributed systems and the work of

programmers. In particular, it uses a limited number of

communication operations.

A first environment, called P2PDC, was proposed in 2008

(see [6], [7]). This environment presented several limitations

like the use of one type of network, i.e., Ethernet and the use

of only one CPU core per computing node. As an attempt

to overcome P2PDC limitations and in order to reduce the

solution time to solve HPC applications, the development

of Peer-To-Peer HPC is presented in this paper to take into

account two goals. The first objective is to use simultane-

ously several networks like Ethernet, Infiniband and Myrinet.

This feature is particularly important since we consider

loosely synchronous applications that present frequent data

exchanges between computing nodes. Hence we privilegiate

to use several high speed networks simultaneously, i.e.,

Infiniband and Myrinet in the same application session.

Note that the reconfigurable multi network protocol RMNP

supports data exchanges via multi-network configuration.

The second objective is to use all the computing resources

of modern muli-core CPUs, i.e., all CPU cores. The data

exchange between cores inside a computing node is made

via OpenMP [2].

In the sequel, we study the combination of Peer-To-Peer

HPC and distributed synchronous or asynchronous iterative

schemes of computation for the obstacle problem. Our

computational experiments are carried out on the Grid5000

platform [3]. They show that Peer-To-Peer HPC scales

well and that the combination of Peer-To-Peer HPC and

asynchronous iterative schemes of computation is efficient.

The remainder of the paper is organized as follows : related

work is presented in Section II. Section III presents the

RMNP protocol; it depicts the context and contribution of

our work and the different issues to be addressed in support-

ing communication in a multi-cluster, multi-core context.

Section IV presents the architecture of Peer-To-Peer HPC

and task allocation. Computational results for large scale

numerical simulation problems using Peer-To-Peer HPC are

displayed and analyzed in Section V. Finally, Section VI

concludes this paper and briefly presents future work.

II. RELATED WORK

This section presents a brief survey of works that are

related to the use of large scale distributed computing

systems for several HPC applications.

A. MPICH/Madeleine

MPICH Madeleine [4] aims at enabling an efficient and

exhaustive use of underlying communication software and

hardware functionalities for distributed applications. MPICH

Madeleine is based on a generic multi-protocol communica-

tion library called Madeleine to deal with several networks

simultaneously.

B. Software And Middleware For Peer-To-Peer and Volun-
teer Computing

Middleware like BOINC [5] have been developed in

order to exploit the CPU cycles of computers connected

to the Internet in peer-to-peer applications. Those systems

are generally dedicated to peer-to-peer applications where

292

26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

0-7695-6380-5/18/$31.00 ©2018 IEEE
DOI 10.1109/PDP2018.2018.00050

Figure 1: Example of content of Htable and test on the location of the hosts thanks to comparison of IP addresses

tasks are independent and direct communication between

machines is not needed.

C. Grid Computing

Globus [8] and Legion [9], are open source software

libraries for the grid computing community. They support

many operational grids and their applications on an in-

ternational basis. Globus and Legion are representative of

large scale meta-computing systems. They address issues

such as heterogeneity, programmability, scalability or inter-

operability and coupling of high performance architectures

or networks of computing nodes.

III. CONTEXT AND CONTRIBUTION

A. Heterogeneous Multi-Cluster Environment

Multi-cluster systems and grids generally consist of in-

terconnected stand-alone computers that can work coopera-

tively as a single integrated computing resource. Supporting

heterogeneous multi-cluster mainly consists in integrating

switching functionality to switch from one network to an-

other, according to the communication needs.

B. Reconfigurable Multi Network Protocol RMNP

The reconfigurable multi network protocol RMNP aims at

enabling an efficient use of the complete set of underlying

communication softwares and hardwares available in a given

multi-network system. It is able to deal with several net-

works via the management of several networks adapters. The

user application can dynamically switch from one network

to another, according to the communication needs.

1) Network Selection: The main function consists in man-

aging several networks adapters within the same application

session. Several network interface cards (NICs) are added to

the interface of the RMNP and information about these NICs

are stored in a data structure called Htables (see Fig.1). This

data structure permits each computing node to switch be-

tween the networks according to the communication needs.

The network management procedure has two steps. First step

corresponds to the test of the locality between the computing

nodes and the second step corresponds to the choice of

the appropriate network for data exchange depending on

their locality. The locality test is based on comparing the

IP addresses of two computing nodes and according to this

comparison, we deduce if the computing nodes are in the

same cluster or not (see Fig.1). The second step is based

on choosing the best interface network (high speed and low

latency network) from the Htables according to the result

of the locality test. In the Htables, the ip addresses that are

given on the first line correspond to Ethernet network and

the ip addresses given on the second line if any correspond

to fast network like Infiniband or Myrinet. Consequently,

if the locality test returns that the computing nodes are

in different clusters, then the Ethernet network interface is

chosen from the Htables to perform the communication since

the Grid5000 platform uses only Ethernet network between

clusters in different sites. If the locality test returns that

the computing nodes are in the same cluster, then the best

network interface in the Htables is selected.

2) Communication operations: The idea is to facilitate

programming of large scale Peer-To-Peer applications and

hide complexity of communication management as much

as possible. RMNP has a reduced set of communication

operations, there are only a send, receive and wait opera-

tions: P2P Send, P2P Receive and P2P Wait, respectively.

Contrarily to MPI communication library where communi-

cation mode is fixed by the semantics of communication

operations, the communication mode of a given communi-

cation operation which is called repetitively depends on the

context at application level like distributed iterative schemes

of computation, e.g., synchronous or asynchronous iterative

schemes and elements of context like topology at network

level, i.e., inter or intra cluster communication.

IV. ENVIRONMENT ARCHITECTURE

In this section, we detail components that support speci-

ficity of multi-core and heterogeneous-networks configura-

tion.

A. Environment architecture of Peer-To-Peer HPC

The decentralized environment Peer-To-Peer HPC na-

tively supports any combination of networks and multi-core

CPUs by using the reconfigurable multi network protocol

RMNP and OpenMP. Peer-To-Peer HPC works with tools

called helper programs that are responsible for the analysis

of the application and building the topology and routing

tables. It then spawns the session processes and connects

293

them together. The helper programs are composed of four

components : Job Initialization, Job Execution, Topology

Initialization and RMNP-OpenMP.

• Job Initialization is responsible for task splitting into

sub-tasks, sub-tasks distribution. In particular, the job

initialization manages task decomposition and assign-

ment to individual CPU cores. It decomposes the initial

task into sub-tasks and sub-sub-tasks so that they are

balanced fairly on the CPU cores. Note that this com-

ponent uses all the CPU cores in a given computing

node.

• Job Execution executes sub-tasks and takes care of

data exchanges, i.e., communication of iterates (up-

dates) of the parallel iterative method. It is responsible

for task execution on the different CPU cores and

results collection.

• Topology Initialization organizes connected comput-

ing nodes into clusters and maintains links between

clusters. In particular, it relies on a concept based on

storing in the Htable informations about the network in-

terface card (NIC) used in the application by each com-

puting node (see Figure 1). This information is needed

when making communications with a heterogeneous-

network multi-cluster configuration.

• RMNP-OpenMP provides support for directed data

exchange between computing nodes on several high

speed networks like Infiniband and Myrinet using the

Reconfigurable Multi Network Protocol RMNP and

between the cores in a computing node via OpenMP.

B. Task allocation in Peer-To-Peer HPC

Task allocation in Peer-To-Peer HPC is based on the hier-

archical Master-Worker paradigm. The Hierarchical Master-

Worker paradigm consists of three entities: a master, several

sub-masters and several workers. The master or submitter is

the unique entry point, it gets the entire problem as a single

task, i.e., the root task. The root task decomposes the prob-

lem into sub-tasks and distributes these sub-tasks amongst a

farm of workers. The root task is responsible for gathering

the scattered results in order to produce the final result of the

computation. The sub-masters are intermediary entities that

enhance scalability. They forward sub-tasks from the master

to workers and return results to the master. The workers

run in a very simple way: they receive a message from the

sub-master that contains their assigned sub-tasks, distribute

the sub-tasks to the different cores, perform computations,

exchange data with neighboring computing nodes and in

the end of the application, when the iterative scheme has

converged, they regroup the results from all the cores and

send them back to the sub-master. Note that the number

of workers in a group cannot exceed 32 in order to ensure

efficient management of a sub-master.

V. EVALUATION AND COMPUTING RESULTS

This section presents an evaluation of the overall effi-

ciency and scalability of Peer-To-Peer HPC in a multi-core

and multi-network context for the obstacle problem.

The obstacle problem occurs in many domains like mechan-

ics and finance and can be formulated as follows:⎧⎪⎪⎨
⎪⎪⎩

Find u∗ such that
A.u∗ − f ≥ 0, u∗ ≥ ∅ everywhere in Ω,
(B.u∗ − f)(∅− u∗) = 0 everywhere in Ω,
B.C.,

(1)

where the domain Ω ∈ R
2(or R

3) is an open set, A is an

elliptic operator, ∅ a given function and B.C. denotes the

boundary conditions on σΩ.
We consider the discretization of the obstacle prob-

lem. The distributed solution of the associated fixed point

problem via the projected Richardson method combined

with several iterative schemes of computation is considered;

reference is made to [10] for the mathematical formula-

tion of synchronous and asynchronous projected Richardson

methods. The interest of asynchronous iterations for various

problems including boundary value problems and optimiza-

tion has been shown in [11].

Several experiments are carried out via Peer-To-Peer HPC

to solve the 3D obstacle problem with different schemes of

computation, i.e. synchronous and asynchronous schemes of

computation. We consider cubic domains with n = 256 points

where n denotes the number of points on each edge of the

cube. In the distributed context, i.e., for several machines, we

have considered the case where machines either belong to a

single cluster or to several clusters connected via Internet.

A. Experiments

We display on Figure 2 and 3 the computing time

and computing gain of the parallel synchronous and asyn-

chronous iterative algorithms. The computing gain is given

as follows:

Computing gain Cg = t1/ts (2)

where t1 is the parallel time on one multi-core computing

node and ts is the parallel time on several computing nodes.

The different iterative methods are denoted by :

Syn-ETH-IB-MYRI and Asyn-ETH-IB-MYRI in Figure

2 and Syn-ETH and Asyn-ETH in Figure 3 where Syn

and Asyn denote synchronous and asynchronous iterative

schemes, respectively; ETH, IB and MYRI denotes the

type of network that is used in the test, i.e., Ethernet,

Infiniband and Myrinet, respectively. Table I displays the

characteristics of the machines used in the computational

experiments.

The results displayed in Figure 2 are obtained with a

multi-cluster configuration located in Lille, i.e., Chinqchint

294

Site Cluster Processors Type Cores Interconnection Networks Speed Ghz RAM GB Time sec problem size

Lille Chinqchint Intel Xeon E5440 QC 8 Ethernet and Myrinet 2.83 8 3298 2563

Nancy Graphene Intel Xeon X3440 4 Ethernet and Infiniband 2.53 16 3119 2563

Rennes Paravance Intel Xeon E5-2630v3 32 Ethernet 2.4 128 1131 2563

Table I: Characteristics of machines and parallel time on one multi-core computing node on each site

Figure 2: Computation results over Ethernet + Infiniband + Myrinet on Chinqchint cluster in Lille

(eight cores per computing node) and Graphene cluster in Nancy (four cores per computing node) in the case

of the obstacle problem with size 2563

Figure 3: Computation results over Ethernet on Paravance cluster in Rennes (32 cores per computing node)

in the case of the obstacle problem with size 2563

295

cluster and Nancy, i.e., Graphene cluster of the Grid5000

testbed. Lille and Nancy are two French towns three hundred

kilometers apart. The experiments are carried out with up to

128 cores. We note that there is the same number of cores

in the different clusters, i.e., 64 cores in Graphene cluster

and 64 cores in Chinqchint cluster. Data exchange is made

via Infiniband network in Graphene cluster and via Myrinet

network in Chinqchint cluster and the communications be-

tween clusters are done via 10 Gb/s Ethernet network.

The results in Figure 3 are obtained using a cluster located

in Rennes site, i.e., Paravance cluster of the Grid5000

testbed. The experiments are carried out with up to 1024

cores. The interconnection networks is 10 Gb/s Ethernet.

B. Discussion of the experimental results

Figures 2 and 3 show that the computing gain Cg (see

equation (2)) of the synchronous iterative schemes increases

slowly with the number of cores, the computing gain of the

asynchronous iterative schemes increases more rapidly. This

is due to the fact that in the case of synchronous iterative

schemes of computation fast computing nodes have to wait

for slow computing nodes since they are synchronized via

message exchange; this leads to idle time due to synchro-

nization. In the case of asynchronous iterative schemes of

computation there is no synchronization and communica-

tions are covered by computation; which explains the better

computing gain. Computing gains in Figure 2 are computed

by using computing time with the faster computing node,

i.e., Graphene cluster in Nancy site. Experimental results in

Figure 3 show that Peer-To-Peer HPC achieves scalability

when combined with asynchronous iterations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present the Peer-To-Peer HPC decen-

tralized environment for loosely sunchronous applications.

In particular, we detail the features induced by multi-core

and heterogeneous-networks support.

Peer-To-Peer HPC relies on OpenMP to support the speci-

ficity of multi-core computing and on RMNP communica-

tion protocol to support data exchanges via multi-network

configuration.

We display and analyze computing results on the Grid5000

platform with up to 1024 computing cores for numerical

simulation problems, i.e., the obstacle problem. Computing

results show that the combination of asynchronous iterative

schemes of computation with Peer-To-Peer HPC allows

one to solve efficiently large scale numerical simulation

problems. Also, the simulation results show that Peer-To-

Peer HPC achieves scalability. Future work will focus on

problems with large granularity that should exhibit better

computing gain. We shall carry out experiments on networks

with several thousands computing cores. Distributed appli-

cation deployment will also be considered. Other types of

parallel applications will be studied like planning problems.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using

the Grid’5000 testbed, supported by a scientific interest

group hosted by INRIA and including CNRS, RENATER

and several Universities as well as other organizations (see

https://www.grid5000.fr).

REFERENCES

[1] K. Hwang, G. Fox and J. Dongarra. Distributed and Cloud
Computing: From Parallel Processing to the Internet of Things,
Morgan kaufmann 2012.

[2] “OpenMP”,http://www.openmp.org/wp-
content/uploads/openmp-examples-4.5.0.pdf

[3] “Grid5000 platform,” http://www.grid5000.fr. [Online]. Avail-
able: http://www.grid5000.fr.

[4] O. Aumage, G. Mercier, “MPICH/Madeleine: a True Multi-
Protocol MPI for High Performance Networks,” 15th In-
ternational Parallel and Distributed Processing Symposium
(IPDPS’01), 2001.

[5] David P. Anderson,“BOINC: A System for Public-Resource
Computing and Storage,” 5th IEEE/ACM International Work-
shop on Grid Computing.November 8, 2004, Pittsburgh, USA.

[6] B. Cornea, J. Bourgeois, T. T. Nguyen, and D. El Baz,
“Performance prediction in a decentralized environment for
peer-to-peer computing,” in Proceedings of the 25th IEEE
Symposium IPDPSW 2011 / HOTP2P 2011, Anchorage, USA,
2011, pp. 16131621.

[7] D.El Baz, T. T. Nguyen, “A self-adaptive communication
protocol with application to high performance peer to peer
distributed computing,” in Proceedings of the 18th Euromicro
conference on Parallel, Distributed and Network-Base Process-
ing, Pisa, Italy, 2010.

[8] I. Foster and C. Kesselman. The Globus project: a status report.
Futur Generation Computer System, 40:3548,1999.

[9] A. Grimhaw and W. Wulf. The legion vision of a worldwide
virtual computer. Communications of the ACM, 40, Juanary
1997.

[10] T. T. Nguyen, D. El Baz, P. Spiteri, G. Jourjon, and M. Chau,
“High performance peer-to-peer distributed computing with
application to obstacle problem,” in Proceedings of the 24th
IEEE Symposium IPDPSW 2010 / HOTP2P, Atlanta, USA,
2010.

[11] D. P. Bertsekas and J. N. Tsitsiklis, “Parallel and Distributed
Computation: Numerical Methods”. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc. (republished in 1997 by Athena
Scientific), 1989.

296

