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Summary

This paper presents GRIDHPC, a decentralized environment dedicated to high performance

computing. It relies on the reconfigurable multi network protocol RMNP to support data

exchange between computing nodes on multi network systems with Ethernet, Infiniband,

Myrinet, and on OpenMP for the exploitation of computing resources of multicore CPU.

We report on scalability of several parallel iterative schemes of computation combined with

GRIDHPC. In particular, the experimental results show that GRIDHPC scales up when combined

with asynchronous iterative schemes of computation.
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1 INTRODUCTION

In this paper, we present the decentralized environment GRIDHPC dedicated to High Performance Computing (HPC) on grid platforms. The HPC

applications that we consider are basically loosely synchronous applications like the solution of numerical simulation problems1 that present

frequent data exchanges between computing nodes. GRIDHPC facilitates the use of large scale distributed systems and the work of programmer.

In particular, it uses a limited number of communication operations.

The GRIDHPC environment allows data exchange between computing nodes with multi network multi-core configurations. It relies on the

Reconfigurable Multi Network Protocol (RMNP) to support data exchange on multi-network systems and on OpenMP2 for the exploitation of

computing resources of multi-core CPU.

The protocol of communication RMNP is an extension of the Configurable Transport Protocol (CTP)3 that makes use of the Cactus framework.4

RMNP can configure itself automatically and dynamically in function of application requirements like scheme of computation that is implemented,

ie, synchronous or asynchronous iterative schemes and elements of context like available network interface cards and network topology by

choosing the most appropriate communication network and mode between computing nodes. It can use simultaneously several networks like

Ethernet, Infiniband, and Myrinet. These features are particularly important since we consider loosely synchronous applications that present

frequent data exchanges between computing nodes. To the best of our knowledge, these features have not been carried out previously on

environments or runtime systems in the literature.

The remainder of this paper is organized as follows. Related work is presented in Section 2. Section 3 deals with our contribution to support

communication in a multi-network context. In particular, the Reconfigurable Multi Network Protocol RMNP is presented. Section 4 presents the

architecture and task assignation of the GRIDHPC environment. Parallel programming model is given in Section 5. Computational results with

the decentralized environment GRIDHPC for the obstacle problem are displayed and analyzed in Section 6. Section 7 concludes this paper.

2 RELATED WORK

The possibility to consider heterogeneous network resources for HPC applications goes back to Madeleine and MPICH-Madeleine.5,6 Recently,

research has focused on runtime systems for HPC applications carried out on heterogeneous architectures that combine multi-core CPU and

computing accelerators.
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Heterogeneous multi-core platforms mixing CPUs and computing accelerators are nowadays widely spread. High Performance ParalleX (HPX)7,8

is a C++ runtime system for parallel and distributed applications, some of which are loosely synchronous applications. It has been developed for

systems of any scale and aims to address issues like resiliency and power efficiency. It has a programming model unifying all types of parallelism

available in HPC systems which uses the available resources to attain scalability. It is portable and easy to use. It is published under an open-source

license and has an active user community. It is built using dynamic and static data flow, fine grain future-based synchronization, and continuation

style programming. The main goal of HPX is to create an open source implementation of the ParalleX execution model9 for conventional systems

like classic Linux based Beowulf clusters, Android, Windows, Macintosh, Xeon/Phi, Blue Gene/Q, or multi-socket highly parallel SMP nodes.

HPXCL10 and APEX11 are libraries, which provide additional functionality that extend the HPX. HPXCL allows programmers to incorporate

GPUs into their HPX applications. Users write an OpenCL kernel and pass it to HPXCL, which manages the synchronization and data offloading

of the results with the parallel execution flow on the CPUs. APEX gathers arbitrary information about the system and uses it to make

runtime-adaptive decisions based on user-defined policies.

StarPU12 is a runtime system that provides an interface to execute parallel tasks over heterogeneous hardware (multi-core processors and

computing accelerators) and develop easily powerful scheduling algorithms. It is based on the integration of the data-management facility with

a task execution engine. The main components of StarPU are a software distributed shared memory (DSM) and a scheduling framework; DSM

enables task computations to overlap and avoid redundant memory transfers. The scheduling framework maintains an up-to-date and a self-tuned

database of kernel performance models over the available computing tasks to guide the task mapping algorithms. We note that middle layers

tools like programming environments and HPC libraries can build up on top of StarPU to allow programmers to make existing applications exploit

different accelerators with limited effort.

To the best of our knowledge, the aforementioned runtime systems do not handle multi-network contexts that we find typically in grids. In the

next sections, we show how we have addressed this issue and we propose a decentralized environment for multi-network and multi-core grid

platforms.

3 COMMUNICATION PROTOCOL

This section presents the mechanisms that support multi-network communications.

3.1 Heterogeneous multi-cluster environment

Figure 1 displays a multi-network platform with interconnected stand-alone computing nodes that can work cooperatively as a single integrated

computing resource. In particular, Figure 1 shows the architecture of typical sets of computing nodes built around low-latency high bandwidth

FIGURE 1 Example of multi-network distributed platform
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TABLE 1 Example of content of Htable and test on the location of the hosts thanks to the comparison of IP addresses

interconnection network like Infiniband and Myrinet. Supporting heterogeneous networks mainly consists in integrating a functionality in order

to switch from one network to another, according to the communication needs.

3.2 Htable

3.2.1 Distance metric

We consider a distance metric that is based on IP address. In particular, it concentrates on the third group of the IP address. For example,

in the case of three computing nodes, ie, A1 having IP address 192.16.64.10, A2 having IP address 192.16.64.11, and B1 having IP address

192.16.34.20, the value of third group of A1 and A2 is equal to 64, while the value of third group of B1 is 34. Consequently, it is deduced that

A1 and A2 have the same location (they are in the same cluster), while A1 and B1 are in different locations (see Table 1).

3.2.2 Definition of Htable

Htable is designed to manage several network adapters within the same application session. In particular, Htable permits each computing node

to switch between the networks according to the communication needs.

Several network interface cards (NICs) are added to the interface of the RMNP communication protocol and information about these NICs are

stored in the Htable. In the Htable (see Table 1), the IP addresses displayed in the first line correspond to Ethernet network and the IP addresses

given in the second line, if any, correspond to fast network like Infiniband or Myrinet.

3.3 Reconfigurable multi-network protocol RMNP

The Reconfigurable Multi-Network Protocol RMNP aims at enabling an efficient use of the complete set of underlying communication software

and hardware available in a given multi-network system that uses, eg, Ethernet, Infiniband, and Myrinet. It is able to deal with several networks

via the management of several networks adapters.

3.3.1 Choice of networks

The network management procedure has two steps (see Algorithm 1). The first step corresponds to the test of the locality between the computing

nodes thanks to the comparison of IP addresses and the second step corresponds to the choice of the appropriate network for data exchange

depending on the locality of computing nodes. In particular, the second step is based on choosing the best interface network (high bandwidth

and low latency network) from the Htable according to the result of the locality test. Consequently, if the locality test returns that the considered

computing nodes have different locations, then the Ethernet network interface is chosen to perform the communication between the two

computing nodes. If the locality test returns that the computing nodes have the same location, then the best network interface in the Htable is

selected, eg, Infiniband or Myrinet.

3.3.2 Example of scenario

We present now a simple scenario for the RMNP communication protocol so as to illustrate its behavior. We consider a high performance

computing application, like for instance a large scale numerical simulation application, solved on the network composed of two clusters shown

in Figure 1. Computing nodes in cluster A own both a Fast-Ethernet card, ie, 192.16.64.x, and Infiniband card, ie, 192.18.64.x (see Table 1) and

computing nodes in cluster B own both a Fast-Ethernet card, ie, 192.16.34.x, and Myrinet card, ie, 192.18.34.x where x is a value between 1

and 255. We suppose that we have a communication network between computing nodes like A1 ↔ A2, A2 ↔ B1, and B1 ↔ B2, where X ↔ Y
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means that there is bidirectional link between X and Y. The value of third group of A1 and A2 is equal to 64. Consequently, the communication

between A1 and A2 that share the same high speed networks is made via Infiniband network. The values of third group of A2 and B1 are 64 and

34, respectively. Hence, the communication between the considered computing nodes is made via Ethernet network. The value of third group of

B1 and B2 is equal to 34. Consequently, the communication between the considered computing nodes is made via Myrinet network.

4 THE DECENTRALIZED ENVIRONMENT GRIDHPC

4.1 Environment architecture of GRIDHPC

The decentralized environment GRIDHPC natively supports any combination of networks and multi-core CPUs by using the reconfigurable multi

network protocol RMNP and OpenMP. Figure 2 shows the architecture of GRIDHPC. It consists of five main components.13

4.1.1 Interface environment component

It is the interaction interface between the application like obstacle problem and the environment. It allows users to submit their tasks and retrieve

final results.

FIGURE 2 Environment architecture of GRIDHPC
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4.1.2 Helper programs

GRIDHPC works with tools called helper programs that are responsible for the analysis of the application, task assignation, and building the

network topology. The helper programs rely on two pillars, namely, the CPU manager and the Network selection manager (see Figure 2). The

CPU manager is composed of Job Initialization and Job Execution. The Network selection manager is composed of Topology Initialization and

RMNP-OpenMP components. In the CPU manager module, there are two components.

• Job Initialization Component is responsible for problem decomposition and assignment of tasks to individual CPU cores.

• Job Execution Component executes sub-tasks on the different CPU cores and takes care of data exchange, ie, communication of updates

produced by the parallel iterative method. At the end of the application, it regroups the results from all the computing cores.

In the Network selection manager module, there are two components.

• Topology Initialization Component organizes connected computing nodes into clusters and maintains links between clusters. It is based on

storing in the Htable information regarding the network interface cards (NIC) used in the application by the different computing nodes.

• RMNP Component provides support for directed data exchange between computing nodes on several networks like Infiniband, Myrinet, and

fast Ethernet using the reconfigurable multi-network protocol RMNP.

We note that the CPU manager is in charge of data exchange between computing cores, ie, read/write, while the network selection manager is in

charge of data exchange between computing nodes via the best underlying network, ie, high speed and low latency network like Infiniband and

Myrinet. The combination of the CPU manager and the Network selection manager permits us to use the decentralized environment GRIDHPC

in a multi-network and multi-core context.

4.2 Processor hierarchy and GRIDHPC

Task assignation in GRIDHPC13 is based on a hierarchical Master-Worker paradigm that relies on three entities, ie, a master, several sub-masters

(coordinators), and several workers.

The master or submitter is the unique entry point; it gets the entire application as a single original task, ie, root task. The master decomposes

the root task into sub-tasks and distributes these sub-tasks amongst a farm of workers. The master takes also care of gathering the scattered

results in order to produce the final result of the computation.

The sub-masters or coordinators are intermediary entities that enhance scalability. They forward sub-tasks from the submitter to workers and

return results to the submitter limiting network congestion.

The workers run in a very simple way. They receive a message from the sub-master that contains their assigned sub-tasks and they distribute

them to their computing cores. They perform computations and data exchange with neighboring computing nodes. At the end of the application,

when the iterative schemes have converged, they regroup the results from all their computing cores and send them back to the coordinator.

The coordinators transfer results to the submitter. Note that the number of workers in a group cannot exceed 32 in order to ensure efficient

management of a sub-master. Figure 3 shows an example of processor hierarchy.

FIGURE 3 Processor hierarchy
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5 PARALLEL PROGRAMMING MODEL OF GRIDHPC

5.1 Communication operations

We aim at facilitating the use of GRID platforms as well as the programming of large scale HPC applications and hiding the complexity of

communication management. The communication protocol RMNP has a reduced set of communication operations; there are only GRID_Send,

GRID_Receive, and GRID_Wait. Contrarily to MPI communication library where communication mode is fixed by the semantics of communication

operations, the communication mode of a given communication operation depends on the context at application level like chosen parallel iterative

scheme of computation, eg, synchronous or asynchronous iterative scheme and elements of context like topology at network level, ie, inter or

intracluster communication and type of network like Ethernet, Infiniband, and Myrinet. The programming model permits us to expect scalable

performance and application flexibility. The prototype of the communication operations of our programming model are summarized in Listing 1

where:

• GRID_Send communication operation is used to send a message placed in buffer to subtask destination.

• GRID_Receive communication operation is used to receive a message from sub-task source.

• GRID_wait operation is used to wait for a message from another computing node.

Note that flags parameters in these operations are used to distinguish two types of messages, ie, CTRL_FLAG indicates control messages and

DATA_FLAG indicates data messages. Data messages are used to exchange updates between computing nodes, while control messages are used

to exchange information related to computation state like state of termination condition, termination command, etc. These data are particularly

important for the convergence detection process and termination phase.

5.2 Application programming model

Figure 4 displays the activity diagram that a parallel application must follow. The diagram consists of 13 activities.

• Task definition: First, the application is defined at the submitter, ie, setting task parameters as well as computational schemes (synchronous

iterations, asynchronous iterations, and hybrid), problem size, and the number of computing nodes required. Note that hybrid iterative scheme

is a combination of synchronous and asynchronous computation schemes, ie, synchronous iterations in the same cluster and asynchronous

iterations between clusters (at global level).

• Collect computing nodes: Based on the task definition, the submitter collects free computing nodes.

• Enough computing nodes: The submitter verifies if there are enough free computing nodes to carry out the task. If there are not enough free

computing nodes, then the computation is terminated.

• Send sub-tasks: If there are enough free computing nodes, then the submitter sends sub-tasks to coordinators.

• Forward sub-tasks: The coordinator forwards sub-tasks from submitter to workers.

• Receive sub-tasks: Computing nodes receive sub-tasks from coordinator and become workers.

• Distribute sub-tasks on the different cores: This decomposes sub-task into sub-sub-tasks and assigns each one to a core at a given computing

node. Note that the number of sub-sub-tasks is equal to the maximum number of cores in a computing node.

• Calculate: This is the module that performs computations relative to sub-tasks. Each core executes its sub-sub-task. We note that, in the case

of applications solved by iterative algorithms, a worker has to carry out many iterations; after each iteration, it has to exchange updates with

others workers. For this purpose, it uses RMNP for data exchanges between computing nodes, ie, Grid_Send and Grid_Receive communication

operations.

• Results aggregations of all the cores: Sub-sub-tasks results are aggregated into one result at a given computing node.

• Send results: Sends aggregated results to coordinator.

Listing 1 Prototype of RMNP communication operations
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FIGURE 4 Activity diagram of a parallel application with GRIDHPC

• Forward results: The coordinator forwards results from workers to submitter.

• Receive results: The submitter receives sub-tasks results from coordinators.

• Results aggregation: Sub-tasks results of all the workers are aggregated at submitter into final result.

6 COMPUTING RESULTS AND EVALUATION

This section presents an evaluation of the scalability of GRIDHPC in a multi-core and multi-network context for a loosely synchronous application,

ie, the obstacle problem.

6.1 Obstacle problem

The obstacle problem occurs in many domains like mechanics and finance and can be formulated as follows:

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Find u∗ such that

A.u∗ − f ≥ 0, u∗ ≥ ∅ everywhere in Ω,

(B.u∗ − f)(∅ − u∗) = 0 everywhere in Ω,

B.C.,

(1)

where the domain Ω ∈ R
3 is an open set, A is an elliptic operator, ∅ is a given function, and B.C. denotes the boundary conditions.

We consider the discretization of the obstacle problem. The parallel solution of the associated fixed point problem via the projected Richardson

method combined with several iterative schemes of computation is studied. Reference is made to the works of Nguyen et al14,15 for the

mathematical formulation of parallel synchronous and asynchronous projected Richardson methods. The interest of asynchronous iterations for

various problems including boundary value problems has been shown in other works.16-18

The experiments are carried out via GRIDHPC in order to solve the 3D obstacle problem with different parallel iterative schemes of

computation, ie, synchronous, asynchronous, and hybrid schemes of computation. We consider cubic domains with n = 256, up to 512 points,

where n denotes the number of points on each edge of the cube.
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6.2 Domain decomposition

We illustrate the decomposition method of the obstacle problem via the simple example displayed in Figure 5, where the cubic domain is

decomposed into four sub-domains, each sub-domain being decomposed into four sub-sub-domains. This case corresponds to a decomposition

and assignation of tasks to four computing nodes, each computing node having four computing cores. The decomposition technique balances

fairly the computing tasks, ie, the number of discretization points on the different computing cores. The iterate vector of the discretized obstacle

problem is decomposed into a ∗ b sub-vectors of size n∕a ∗ n∕b ∗ n, where a denotes the number of cores per computing node and b denotes

the number of computing nodes. In the case displayed in Figure 5, we have a = b = 4.

Data exchanges between computing nodes correspond to the interfaces of the sub-domains since the domains do not overlap. To this end,

values of the components of the iterate vector at the interface that are updated by the different computing cores of a computing node are

aggregated into one message.

6.2.1 Convergence detection and termination

In the case of parallel synchronous iterative schemes, the convergence test is based on the difference between successive values of the

components of the iterate vector. The global convergence is detected when 𝜎 = maxi∈N ( |ui
k+1 - ui

k| ) < 𝜖, where ui
k is the value of the ith

component of the iterate vector at iteration k, N is the set of discretization points and 𝜖 is a positive constant. In the sequel, 𝜖 = 10−11. The

termination is detected as follows. Two global tokens are associated with update exchange between computing nodes. Token tok_convr,r + 1 is

sent from computing node Pr to Pr + 1 in order to transmit information about local termination test. Token tok_termr,r−1 is sent from Pr to Pr−1

in order to propagate the termination state (see Figure 6). Note that the message type which contains these tokens are control messages, ie,

flags = CTRL_FLAG. Note also that tok_convr,r + 1 is the logical conjunction of all the local tokens (tok_convr,r+1
q) of cores q at computing node Pr

and tok_convr−1,r. In particular, token tok_convr,r+1
q is true if 𝜎 i = maxi∈Nq

( |ui
k+1 - ui

k| ) < 𝜖, where Nq is the subset of points assigned to core q of

processor Pr, q ∈ 1, … , a and a is the number of cores.

In the case of parallel asynchronous iterative schemes, we have implemented the termination method proposed by El Baz.19 It is based on

activity graph.

FIGURE 5 Example of decomposition of the discretized obstacle problem
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FIGURE 6 Termination detection of synchronous iterations

The behavior of computing nodes is given by the finite state machine in Figure 7. It can be summarized as follows: each computing node can

have three possible states, ie, Active (A), Inactive (I), and Terminated (T). Four types of messages can be exchanged by computing nodes, ie,

activate message, inactivate message, termination message, and update message. Note that the first three message types are control messages,

ie, flags = CTRL_FLAG, and the last message type is data message, ie, flags = DATA_FLAG.

In active state (A), a computing node Pr evaluates the local termination test, ie, the local conjunction of all the token of computing cores at

Pr; if it is satisfied, and then Pr does not compute any update; otherwise, each computing core at Pr updates components of the sub-sub-vector

assigned to it. After that, Pr aggregates the values of the components of the iterate vector at the interface that were updated by its computing

cores and sends them to adjacent computing nodes.

In inactive state (I), a computing node is waiting for messages using GRID_wait operation. Note that, if Pr′ is inactive and receives an update

message from a computing node Pr, then Pr′ becomes active (A) and it is the children of Pr. If Pr receives an inactivate message from Pr′ , then Pr

removes Pr′ from its list of children.

Terminated state (T) corresponds to the case where the computation is terminated at the computing node.

To illustrate the procedure, we consider the simple example of the evolution of the activity graph in the case of four computing nodes presented

in Figure 8. Initially, only the root, ie, computing node P1 is active and all other computing nodes are inactive. The computing nodes become

progressively active on receiving an update message from other computing nodes. An activity graph is generated; the topology of the graph

changes progressively as the messages are received and the local termination tests are satisfied; an active computing node becomes inactive if its

list of children is empty and its local termination test is satisfied; then, the computing node sends an inactivate message to its parent. The activity

graph changes as the computation progresses. At the end, the computing nodes becomes progressively inactive (the computing node P1 is the

last node to become inactive) and the global termination is detected.

6.3 Experimental results

This subsection presents an evaluation of GRIDHPC in various multi-core and multi-network contexts for the obstacle problem and several parallel

iterative methods. Table 2 gives the characteristics of the different clusters of the Grid5000 platform20 used in the computational experiments.

We study first the scalability of parallel synchronous and asynchronous iterative schemes of computation combined with GRIDHPC for a 3D

obstacle problem with size 2563. Table 3 displays computing time of parallel iterative schemes of computation for several grid configurations.

The synchronous, asynchronous, and hybrid iterative methods are denoted by Syn, Asyn, and Hybrid, respectively. We consider the Graphene

cluster, the Chinqchint cluster, and a multi-cluster configuration, ie, Graphene and Chinqchint clusters coupled via 10 Gb/s Ethernet network

(measured latency is about 5 microseconds). We note that the environment GRIDHPC selects always the best network in each cluster when

several networks are available (Infiniband network with Graphene cluster and Myrinet network with Chinqchint). As an example, synchronous

iterations takes 742 seconds with GRIDHPC on Graphene cluster with 128 computing cores, while the same iterative scheme takes 1282 seconds

with the same number of computing cores of the same cluster when using Ethernet network.

Table 4 shows the corresponding computing gains. The computing gain is given as follows:

computing gain Cg = t1∕ts, (2)

where t1 is the fastest parallel computing time on one multi-core machine and ts is the parallel computing time on several multi-core machines.

FIGURE 7 States of computing nodes in the termination detection procedure of asynchronous iterations
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FIGURE 8 Evolution of the activity graph

TABLE 2 Characteristics of machines

Site Cluster Processors Type Cores Interconnection Networks clock GHz RAM GB

Lille Chinqchint Intel Xeon E5440 QC 8 Ethernet and Myrinet 2.83 8

Nancy Graphene Intel Xeon X3440 4 Ethernet and Infiniband 2.53 16

Rennes Paravance Intel Xeon E5-2630v3 16 Ethernet 10 Gbs 2.4 128

Grenoble Edel Intel Xeon E5520 8 Ethernet and Infiniband 2.27 24

Grenoble Genepi Intel Xeon E5420 QC 8 Ethernet and Infiniband 2.5 8

TABLE 3 Computing time of parallel iterative methods applied to the obstacle problem with
size 2563 and several grid configurations

Computing time / s

Number of cores Graphene cluster Chinqchint cluster Graphene and Chinqchint clusters

Syn Asyn Syn Asyn Syn Asyn Hybrid

4 3115 - - - - - -

8 1723 1595 3298 - - - -

16 1355 971 1785 1576 2321 1369 1461

32 1012 594 1419 1001 1824 855 1119

64 841 378 1119 631 1444 536 977

128 742 272 - - 1262 386 854

TABLE 4 Computing gain of parallel iterative methods applied to the obstacle problem with
size 2563 and several grid configurations

Computing gain

Number of cores Graphene cluster Chinqchint cluster Graphene and Chinqchint clusters

Syn Asyn Syn Asyn Syn Asyn Hybrid

4 1 - - - - - -

8 1.80 1.95 1 - - - -

16 2.29 3.2 1.84 2.09 1.34 2.27 2.13

32 3.07 5.24 2.32 3.29 1.70 3.64 2.78

64 3.7 8.24 2.94 5.22 2.15 5.81 3.18

128 4.19 11.45 - - 2.46 8.06 3.64

From Tables 3 and 4, we see that, in the case of a single cluster like Graphene or Chinqchint, asynchronous iterative schemes of computation

perform better than synchronous iterative schemes since there are no idle time due to synchronization or synchronization overhead. We

note also that parallel asynchronous iterations combined with GRIDHPC scale up. The multi-core multi-network configuration considered in

Tables 3 and 4 corresponds to the case where Chinqchint cluster in Lille is connected to Graphene cluster in Nancy. Lille and Nancy are two

French cities three hundred kilometers apart. The experiments are carried out with up to 24 computing nodes (16 computing nodes at Graphene

and 8 computing nodes at Chinqchint) and 128 cores. There is the same number of computing cores in the two clusters, ie, 64 cores at Graphene

and 64 cores at Chinqchint. Computing results show that, even in a heterogeneous context where the computing nodes have different number of

cores and there are several networks, the combination of GRIDHPC and asynchronous or hybrid iterative schemes of computation scales up. The

computing gain of hybrid iterations is situated in between the computing gains of synchronous and asynchronous iterations. This is due to the

fact that hybrid schemes of computation correspond to synchronous iterations in the same cluster and asynchronous iterations between clusters.



FAKIH ET AL. 11 of 13

TABLE 5 Computing time of parallel
iterative methods applied to the obstacle
problem with size 2563 on a grid with Edel
and Genepi clusters

Computing time / s

Number of cores Edel and Genepi clusters

Syn Asyn Hybrid

8 1962 - -

16 1867 1448 1494

32 1571 909 1283

64 1252 538 1132

128 1117 343 1049

256 1020 307 967

TABLE 6 Computing gain of parallel iterative
methods applied to the obstacle problem
with size 2563 on a grid with Edel and
Genepi clusters

Computing gain

Number of cores Edel and Genepi clusters

Syn Asyn Hybrid

8 1 - -

16 1.05 1.35 1.31

32 1.24 2.15 1.52

64 1.56 3.64 1.73

128 1.75 5.72 1.87

256 1.92 6.39 2.02

TABLE 7 Computing time of parallel iterative methods applied to
the obstacle problem with size 3843

, 4483 and 5123 on Paravance
cluster

Computing time / s

Number of cores 384 448 512

Syn Asyn Syn Asyn Syn Asyn

16 4200 - 8943 - 21705 -

32 4124 2242 9353 5190 21787 13344

64 3317 1785 6690 3507 11798 6643

128 2912 1099 5151 2023 8847 3529

256 2609 562 4625 1240 7608 2156

512 2357 374 4245 703 7097 1346

1024 2236 311 4065 538 6615 924

We note that the parallel time on one computing node at Chinqchint cluster is equal to 3298 seconds, while the parallel time on one computing

node at Graphene cluster is equal to 3115 seconds. The computing nodes at Chinqchint cluster compute slower than the computing nodes at

Graphene cluster though they have twice as much computing cores due to the fact that the size of RAM memory at Graphene cluster is greater

than the size of RAM memory at Chinqchint cluster and the parallel iterative methods perform frequent accesses to the memory. The more RAM

memory, the more we avoid swapping and reduce the time to solve the problem.

Tables 5 and 6 display the computing times and computing gains, respectively, of synchronous, asynchronous, and hybrid schemes of

computation for a different multi-cluster configuration. We consider two clusters that belong to the same site (Grenoble), ie, Edel and Genepi

clusters of the Grid5000 testbed. The experiments are carried out with up to 32 computing nodes and a total of 256 computing cores (each

computing node has 8 cores). Data exchange is made via Infiniband network in Edel and Genepi clusters and via Ethernet network (10 Gb/s)

between them. We note that asynchronous iterations perform better than synchronous or hybrid iterations and that the combination of

asynchronous iterations with GRIDHPC leads to important reduction in computing time.

Consider now multi-network configurations in Tables 3 and 5 and the respective computing times of asynchronous iterations for 128 computing

cores, and then we see that the result in Table 5 (343 seconds) is less than in Table 3 (386 seconds). Nevertheless, the respective computing gain

in Table 4 (8.06) is greater than the associated computing gain in Table 6 (5.72) since the parallel time on one computing node of Edel cluster
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TABLE 8 Computing gain of parallel iterative methods applied
to the obstacle problem with size 3843

, 4483 and 5123 on
Paravance cluster

Computing gain

Number of cores 384 448 512
Syn Asyn Syn Asyn Syn Asyn

16 1 - 1 - 1 -

32 1.01 1.8 0.95 1.72 0.99 1.62

64 1.26 2.35 1.33 2.55 1.83 3.26

128 1.44 3.82 1.73 4.42 2.45 6.15

256 1.60 7.4 1.93 7.21 2.85 10.06

512 1.78 11.22 2.10 12.72 3.05 16.1

1024 1.87 13.5 2.2 16.62 3.28 23.49

is equal to 1962 seconds (computing nodes of Edel cluster are faster than computing nodes of Genepi cluster) while the parallel time on one

computing node of Graphene cluster is equal to 3115 seconds.

We consider now a different set of the obstacle problems, ie, problems with size 3843, 4483 and 5123. In this part of the study, we concentrate

on task granularity and its effect on the computing gain of parallel iterative schemes of computation combined with GRIDHPC. The computing

tests have been carried out on the Paravance cluster located in Rennes with 10 Gbps Ethernet network that has a large number of computing

nodes and can be used to solve large instances of obstacle problem. We consider here up to 64 computing nodes and a total of 1024 computing

cores. The results are displayed in Tables 7 and 8. The experiments show that asynchronous iterative schemes of computation achieve scalability

when combined with GRIDHPC. The results show also that the computing gain generally increases when the problem size increases, ie, when the

task granularity increases.

7 CONCLUSIONS

In this paper, we have presented the GRIDHPC decentralized environment for high performance computing. GRIDHPC functionality relies on the

reconfigurable communication protocol RMNP to support data exchange between computing nodes on multi-network systems with Ethernet,

Infiniband, Myrinet, and on OpenMP for the exploitation of computing resources of multi-core CPU.

We have presented and analyzed a set of computational experiments with the decentralized environment GRIDHPC for a loosely synchronous

application. In particular, we have studied the combination of GRIDHPC and parallel synchronous and asynchronous iterative schemes of

computation for the obstacle problem in a multi-core and multi-network context. Our experiments are carried out on the Grid5000 platform with

up to 1024 computing cores for a loosely synchronous application with frequent data exchange between computing nodes. We have considered

several configurations like two Infiniband clusters connected via Ethernet or one Infiniband cluster and a Myrinet cluster connected via Ethernet.

The results show that the combination of the GRIDHPC environment with asynchronous iterative algorithms scales up even when considering

multi-cluster configurations.

In future work, we plan to use GRIDHPC for a different kind of loosely synchronous application. We shall consider the solution of large

scale nonlinear network flow optimization problems. Finally, we shall extend GRIDHPC in order to combine multi-core CPUs and computing

accelerators like GPUs.
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