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Abstract

Hybrid implementation via CUDA of a branch and
bound method for knapsack problems is proposed. Branch
and bound computations can be carried out either on the
CPU or on the GPU according to the size of the branch and
bound list, i.e. the number of nodes. Tests are carried out on
a Tesla C2050 GPU. A first series of computational results
showing a substantial speedup is displayed and analyzed.

1 Introduction

Graphics Processing Units (GPUs) are high-performance
many-cores processors. Tools like Compute Unified De-
vice Architecture (CUDA) or Open Computing Language
(OpenCL) have been developed in order to use GPUs for
general purpose computing; this has led to GPU comput-
ing and hybrid computing. CUDA-based NVIDIA GPUs
are Single Instruction Multiple Thread (SIMT) architectures
which is akin to Single Instruction Multiple Data (SIMD)
architecture (see [17]).

In this paper, we concentrate on the implementation via
CUDA of branch and bound algorithms on GPU for an im-
portant class of integer programming problems, i.e. Knap-
sack Problems (KP).

Knapsack problems occur in many domains like logis-
tics, manufacturing, finance and telecommunications or as
subproblems of hard problems in combinatorial optimiza-
tion like multidimensional knapsack problems (see for ex-
ample [1], [10] and [16]).
The knapsack problem is among the most studied discrete
optimization problems; it is also one of the simplest proto-
types of integer linear programming problems.
Several parallel algorithms have been proposed for KP (e.g.
see [5], [7] and [15]). In particular, implementations on
a SIMD machine have been performed on a 4K processor
ICL DAP [11], a 16K Connection Machine CM-2 (see [14]
and [18]) and a 4K MasPar MP-1 machine (see [18]).

We are interested in the solution via GPU of difficult

combinatorial optimization problems like problems of the
knapsack family. We are presently developing a series of
parallel codes that will be combined in order to provide ef-
ficient parallel hybrid methods. In [3], we have presented
an original implementation via CUDA of the dynamic pro-
gramming method for KP on a CPU/GPU system with a
single GPU. Experiments carried out on a CPU with 3
GHz Xeon Quadro Intel processor and GTX 260 GPU have
shown substantial speedup. In [2], Boyer et al. have pro-
posed an implementation via CUDA of the dense dynamic
programming method on multi GPU architectures. This so-
lution is well suited to the case where CPUs are connected
to several GPUs; it is also particularly efficient. We have
also proposed parallel simplex methods that run on a GPU
or several GPUs (see [12] and [13]); these codes are par-
ticularly interesting when one wants to compute bounds of
knapsack problems. We refer also to [19], for a study on lo-
cal search methods and GPU computing for combinatorial
optimization problems.

The use of CPU-GPU systems for solving difficult com-
binatorial optimization problems is a great challenge so as
to reduce drastically the time needed to solve problems and
the memory occupancy or to obtain exact solutions yet un-
known. One of the difficulties of branch and bound meth-
ods is that they often lead to an irregular data structure that
is not well suited to GPU computing. In this paper, we pro-
pose an original hybrid implementation of the branch and
bound method via CUDA. The reader is referred to [6] for
a survey on parallel branch and bound algorithms.

The knapsack problem and the branch and bound method
are presented in Section 2. Section 3 deals with the imple-
mentation via CUDA of the branch and bound method on
the CPU-GPU system. Computational results are displayed
and analyzed in Section 4. Section 5 deals with conclusions
and future work.

2 Knapsack problem

Given a set of items i ∈ {1, ..., n}, with profit pi ∈ N∗+
and weight wi ∈ N∗+ and a knapsack with the capacity



Figure 1. Data exchange between CPU and
GPU

C ∈ N∗+, the KP can be defined as the following integer
programming problem:

(KP )


max

n∑
i=1

pi.xi,

s.t.

n∑
i=1

wi.xi ≤ C,

xi ∈ {0, 1}, i ∈ {1, ..., n}.

(1)

To avoid any trivial solution, we assume that we have
∀i ∈ {1, ..., n}, wi ≤ C,
n∑

i=1

wi > C.

This insures that each item i fits into the knapsack and the
overall weight sum of the items exceeds the knapsack ca-
pacity.

2.1 Branch and bound method

The branch and bound method is a general method that
permits one to find optimal solution of various optimiza-
tion problems like discrete and combinatorial optimization
problems (see in particular [10] and [16]). It is based on
enumeration of all candidate solutions and pruning of large
subsets of candidate solutions via computation of lower and
upper bounds of the criterion to optimize (see Figure 1).
We concentrate here on breadth-first search strategy that
is well suited to parallel implementation on GPU. We as-
sume that items are sorted according to decreasing profit
per weight ratio. At each step of the branch and bound
method, the same branching and bounding tasks are car-
ried out on a list of states called also nodes. Let k denote
the index of the current item relative to a branching step.
We denote by Nk

e the set of items in the knapsack at step
k for a given node e. A node e is usually characterized by
a tuple (we, pe, Xe, Ue, Le) where we represents the weight

of node e, pe represents the profit of the node, Xe is the
solution subvector associated with node e, Ue and Le, re-
spectively, are an upper bound and a lower bound of the
node, respectively. We have:

we =
∑
i∈Nk

e

wi, pe =
∑
i∈Nk

e

pi.

The so-called Dantzig bound (see [4]), derived from the so-
lution of the continuous knapsack problem is a classical up-
per bound; it is given as follows:

Ue = pe +

se−1∑
i=k+1

pi +

⌊
C.

pse
wse

⌋
,

where se is the so-called slack variable such that

se−1∑
i=k+1

wi ≤ C − we <

se∑
i=k+1

wi,

(we note that one can compute index se for a node e and
item k+1 via a greedy algorithm applied to a knapsack of
capacity C − we) and C is the residual capacity given by

C = C − we +

se−1∑
i=k+1

wi.

Classically, one can obtain also a lower bound of the
problem with a feasible solution of the knapsack problem
with {0, 1} variables. For example, a lower bound Le, can
be computed via a greedy algorithm after selection of all
items before the slack variable, se, since we have assumed
that items are sorted by decreasing price per weight ratio.

For the sake of simplicity and efficiency, the following
representation of a given node e will be used in the sequel:
(ŵe, p̂e, se, Ue, Le), where

ŵe = we +

se−1∑
i=k+1

wi,

and

p̂e = pe +

se−1∑
i=k+1

pi.

So, we have:

Ue = p̂e +

⌊
C.

pse
wse

⌋
.

We note that bound computation is time consuming in
the branch and bound method and obtaining this way the
bounds Ue and Le is more efficient.



2.2 Branching

If k < se, then a node generates two sons at step k :

• a node with xk = 0, ŵe = ŵe−wk and p̂e = p̂e− pk;

• a node with xk = 1 (in this case, no new node is cre-
ated and the father is just kept in the list).

The case where k = se yields only one son with xk = 0.
This comes to keep the father in the list and set se = se +1.
Indeed, item k cannot be packed into the knapsack.

2.3 Bound computation

We note that the upper and lower bounds do not change
in the case where xk = 1.

In the case where xk = 0, one has to compute the new
slack variable. So, ŵe and p̂e are updated as presented in
subsection 2.1. Consequently, the upper and lower bounds
Ue and Le, respectively, are updated.

Remark: Pruning subset of candidate solutions is then
done via comparison of the best current lower bound with
the upper bound of each node. We denote by L̄ the best
lower bound. If we have Ue ≤ L̄, then node e is discarded.

3 Hybrid computing

3.1 CPU/GPU systems and CUDA

NVIDIA GPU cards and computing systems are highly
parallel, multithreaded, many-core architectures. GPU
cards are well known for image processing applications.
NVIDIA has introduced in 2006 the Compute Unified De-
vice Architecture (CUDA). CUDA is a software develop-
ment kit that enables users to solve many complex com-
putational problems on GPU cards. Our parallel dynamic
programming code has been implemented via CUDA 3.2.

CUDA-based GPUs and computing systems are Single-
Instruction, Multiple-Threads (SIMT) architectures, i.e. the
same instruction is executed simultaneously on many data
elements by different threads. GPUs are well suited to ad-
dress problems that can be expressed as data-parallel com-
putations since GPUs devote more transistors to data pro-
cessing than to data caching and flow control. GPUs can
nevertheless be used for task parallel applications with suc-
cess.

As shown in Figure 2, a parallel code on GPU (the so-
called device) is interleaved with a serial code executed on
the CPU (the so-called host). At the top level, the threads
are grouped into blocks. These blocks contain up to 1024
threads and are organized in a grid which is launched via a
single CUDA program (the so-called kernel).

Figure 2. Thread and memory hierarchy in
GPUs

When a kernel is launched, the blocks whithin the grid
are assigned to idle groups of processors, the so-called mul-
tiprocessors. Threads in different blocks cannot communi-
cate with each other explicitly. They can nevertheless share
their results by means of a global memory.

The multiprocessor executes threads in groups of 32 par-
allel threads called warps. Threads composing a warp start
together at the same program address, they are nevertheless
free to branch and execute independently. However, a di-
vergent branch may lead to a poor efficiency.

Threads have access to data from multiple memory
spaces (see Figure 2). Each thread has its own register
and private local memory. Each block has a shared mem-
ory with high bandwidth only visible to all threads of the
block and which has the same lifetime as the block. Finally,
all threads have access to a global memory. Furthermore,
there are two other read-only memory spaces accessible by
all threads which are cache memories:

• the constant memory, for constant data used by the pro-
cess,

• the texture memory space, optimized for 2D spatial lo-
cality.

In order to have a maximum bandwidth for the global
memory, memory accesses have to be coalesced. Indeed,



the global memory access by all threads whithin a half-warp
(a group of 16 threads) is done in one or two transactions if

• the size of the words accessed by the threads is 4, 8, or
16 bytes,

• all 16 words lie:

– in the same 64-byte segment, for words of 4
bytes,

– in the same 128-byte segment, for words of 8
bytes,

– in the same 128-byte segment for the first 8
words and in the following 128-byte segment for
the last 8 words, for words of 16 bytes;

• threads access the words in sequence (the kth thread
in the half-warp accesses the kth word).

Otherwise, a separate memory transaction is issued for
each thread. This degrades significantly the overall process-
ing time.

Reference is made to [17] for further details on the
NVIDIA GPUs and computing systems architecture and
how to optimize the code.

In this paper, we study the parallel implementation of the
branch and bound methods on a Tesla C2050 GPU.

3.2 Parallel algorithm

Bound computation is particularly time consuming in
branch and bound algorithm. Nevertheless, this task can be
efficiently parallelized on GPU.
The main tasks of our parallel algorithm are presented
below (see also Figure 3).

Task carried out on the CPU

• Perform branch and bound algorithm on CPU when the
size of the list is small.

• Transfer the current list of nodes to the GPU.

• Launch branching phase on GPU.

• Launch bound computation phase on GPU.

• Get the sublist of created nodes.

• Discard the nonpromising nodes.

Task carried out on the GPU

• Perform branching (kernel 1).

Figure 3. Data exchange between CPU and
GPU

• Perform bound computation (kernel 2).

• Find the best lower bound L̄.

In the sequel, we detail the different tasks carried out on
the host and device, respectively. We begin by the tasks
implemented on the device.

3.2.1 Computations on GPU

We note that each thread in the grid of blocks performs com-
putation on only one node of the branch and bound list, so
as to have coalesced memory access.

The table of items that contains weight w and profit p is
stored in the texture memory in order to reduce the mem-
ory latency. As a consequence, these variables will not be
referred to as arguments in the different kernels presented
below so as to simplify algorithmic notation.

Branching

The kernel 1 corresponds to the branching step carried
out on the GPU. The e-th thread branches on the node e and
creates a new node at the address e.

• In the case where k < se, the e-th thread computes the
value of (ŵe, p̂e, se) of its son with xk = 0. We recall
that its son with xk = 1 is already in the list stored in
the CPU.



• The case where k = se, is treated differently: the slack
variable of the son with xk = 0 is updated as follows:

se = se + 1,

and values of ŵe and p̂e are not modified. Moreover,
node e with xk = 1 must be labelled as a nonpromising
node in the CPU; this is done by assigning

UCPU
e = 0.

Kernel 1

global void Kernel 1(int *ŵ, int *p̂, int *s, int *UCPU , int
k)
{
int e = blockIdx.x * blockDim.x + threadIdx.x ;
int s = s [e];
if (k < s)
{
AtomicSub(& ŵ [e] , w [k]);
AtomicSub(& p̂ [e] , p [k]);
}

else
{
AtomicAdd(& s [e] , 1);
UCPU [e] = 0;
}

}

Bound computation

The parallel bound computation procedure computes
bounds of new nodes, this is made via kernel 2 which is
a loop of n − h iterations; where h = max {k, s} and s
is the first slack variable computed when the knapsack is
empty. At each new iteration, a new item is considered and
the current value of ŵj and p̂j and of the lower bound Lj

are updated. Moreover, it may happen that the upper bound
Uj is computed according to some condition that will be
detailed in the sequel.

We note that the knapsack capacity C is stored in the
constant memory of the GPU since it remains constant. This
permits one to reduce memory latency.

When kernel 2 is launched, the j-th thread updates at
iteration i, (ŵj , p̂j , sj , Lj) if the item i has not been con-
sidered yet by this node i.e. if i ≥ sj .

The upper bound Uj is computed and ŵj , p̂j and sj are
updated as soon as the condition w+wi ≤ C is not satisfied.

We note that the lower bound Lj is obtained only at the end
of the procedure, i.e. at iteration n.

Kernel 2

global void Kernel 2 (int *ŵ, int *p̂, int *s, int *L, int *U,
int h)
{
int j = blockIdx.x * blockDim.x + threadIdx.x + q;
int i = h;
int w = ŵ [j];
int p = p̂ [j];
int s = s [j];
int wi, pi;
While(i ≤ n)
{
wi = w [i];
pi = p [i];
/* Update of ŵj , p̂j , sj and compute Uj*/
if (i ≥ s)
{
if (w + wi ≤ C)
{
w = w + wi;
p = p + pi;
}

else
{
U [j] = p + (C − w) ∗ pi/wi;
ŵ [j] = w;
p̂ [j] = p;
s [j] = i;
break;
}

}
i = i + 1;

}
While(i ≤ n)
{
wi = w [i];
pi = p [i];
/* Compute Lj*/
if (w + wi ≤ C)
{
w = w + wi;
p = p + pi;
}

i = i + 1;
}
L [j] = p;

}



Finding the best lower bound

The best lower bound L̄ is obtained in the GPU
via a reduction method making use of the atomic instruc-
tion atomicMax applied to the table of lower bounds (see
[8]).

Figure 4. Structure of the list of nodes and
substitution of non promising nodes

3.2.2 Computations on CPU

Branch and bound algorithm
If the size of the list is small, then it is not efficient to launch
the branch and bound computation kernels on GPU since
the GPU occupancy would be very small and computations
on GPU would not cover communications between CPU
and GPU. This is the reason why the branch and bound
algorithm is implemented on CPU in this particular context.
We note that for a given problem, the branch and bound
computation phases can be carried out several times on the
CPU according to the result of the pruning procedure. In
this study, GPU kernels are launched only when the size
of the list, denoted by q, is greater than 5000 nodes (see
Figure 3). We have noticed that this condition ensures
generally a 100 % occupancy for the GPU.

Pruning

This procedure starts after the list of nodes and the best
lower bound L̄ have been transfered from the GPU to the
CPU. The size q of the list is updated by taking a value of q
which is twice as much as its original value, then the list is
treated from e = 1 to q. A node e is considered to be non
promising (NP) if Ue ≤ L̄ otherwise it is promising (P) (see
Figure 4).

Non promising states are replaced via an iterative pro-
cedure that starts from the beginning of the list. The dif-
ferent steps of the procedure that permits one to replace a
non promising node with index l by a promising node are
presented below.

• search a promising node j starting form the end of the
list.

• copy data (ŵj , p̂j , sj , Uj) of the promising node j in
tuple (ŵl, p̂l, sl, Ul).

• update the size of the list as follows :

q = j − 1.

4 Computational results

The CPU/GPU system considered in this study is a
DELL Precision T7500 Westmere with processor Quad-
Core Intel Xeon E5640 2.66 GHz and 12 GB of main mem-
ory and NVIDIA Tesla C2050 GPU. The Tesla C2050 GPU,
which is based on the new-generation CUDA architecture
codenamed Fermi, has 3 GB DDR5 of memory and 448
streaming processor cores (1.15 GHz) that deliver a peak
performance of 515 Gigaflops in double precision floating
point arithmetic. The interconnection between the host and
device is done via a PCI-Express Gen2 interface. We have
used CUDA 3.2 for the parallel code and gcc for the serial
one.

We have carried out computational tests on randomly
generated correlated problems; the problems are available
at [9]. They present the following features:

• wi, i ∈ {1, ..., n}, is randomly drawn in [1, 100],

• pi = wi + 10, i ∈ {1, ..., n},

• C = 1
2 .

n∑
i=1

wi.

For each problem, the displayed results correspond to an
average of ten instances. We have ovserved that the best
number of threads per block is 192.

Table 1. time on CPU and CPU-GPU system
of the branch and bound algorithm

size n of the
problem

time on
CPU (s)

time on
CPU-GPU(s)

speedup

100 1.59 0.41 3.84
200 4.85 0.91 5.33
300 9.82 1.44 6.80
400 10.94 1.27 8.61
500 13.39 1.44 9.27

Table 1 displays computational times of the branch and
bound algorithm on the CPU and the CPU-GPU system.



We see that substantial speedup can be obtained by using
the Tesla C2050 GPU.

The proposed parallel branch and bound algorithm per-
mits one to reduce drastically the processing time. The
more streaming processor cores of the Tesla C2050 GPU are
made available for a given computation, the more threads
are executed in parallel and better is the global performance.

In general, the speedup increases with the size of the
problem. The speedup meets a level around 9.

The speedup depends greatly on the size and difficulty
of the considered instance. In particular, the best speedups
have been obtained for instances with great number of
nodes. As a matter of fact, there are few nodes that are
discarded in this case and the GPU occupancy is particu-
larly important. For example, we have experienced speedup
equal to 11 in some cases with 500 items.

We have also performed experiments for non correlated
problems that turn out to be easy. In this last case, prun-
ing is particularly important and thus sequential branch and
bound is very efficient. Thus, implementation on a CPU-
GPU system has given no speedup since all computation is
performed on the CPU.

We consider the solution of hard problems of the knap-
sack family, like multidimensional knapsack problems or
multiple knapsack problems, to become possible in reason-
able time with the help of GPU architectures.

5 Conclusions and future work

In this paper, we have proposed an original parallel im-
plementation via CUDA of the branch and bound method
for knapsack problems on a CPU-GPU system with Tesla
C2050 GPU. The proposed approach is very efficient. In
particular, computational results have shown that difficult
problems can be solved within small processing time. This
work shows the relevance of using CPU/GPU systems for
solving difficult combinatorial optimization problems.

Our approach seems to be robust since the results remain
good when the size of the problem increases.

We believe that further speedup can be obtained on multi
GPU clusters.

We are currently parallelizing a series of methods for
integer programming problems like dynamic programming
and Simplex methods. The combination of parallel methods
will permit us to propose efficient hybrid computing meth-
ods for difficult integer programming problems like multidi-
mensional knapsack problems, multiple knapsack problems
and knapsack sharing problems.
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