
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Solving knapsack problems on GPU

V. Boyer a,b,�, D. El Baza,b, M. Elkihel a,b

a CNRS, LAAS, 7 avenue du Colonel Roche, F-31077 Toulouse, France
b Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France

a r t i c l e i n f o

Available online 8 April 2011

Keywords:

Combinatorial optimization problems

Dense dynamic programming

Parallel computing

GPU computing

CUDA

a b s t r a c t

A parallel implementation via CUDA of the dynamic programming method for the knapsack problem on

NVIDIA GPU is presented. A GTX 260 card with 192 cores (1.4 GHz) is used for computational tests and

processing times obtained with the parallel code are compared to the sequential one on a CPU with an

Intel Xeon 3.0 GHz. The results show a speedup factor of 26 for large size problems. Furthermore, in

order to limit the communication between the CPU and the GPU, a compression technique is presented

which decreases significantly the memory occupancy.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Since a few years, graphics card manufacturers have developed
technologies in order to use their cards for High Performance
Computing (HPC); we recall that Graphics Processing Units
(GPUs) are HPC many-core processors. In particular, NVIDIA has
developed the Compute Unified Device Architecture (CUDA) so as
to program efficiently its GPUs. CUDA technology is based on a
Single Instruction, Multiple Threads (SIMT) programming model.
The SIMT model is akin to Single Instruction, Multiple Data
(SIMD) model [1].

Using GPU architectures for solving large scale or difficult
optimization problems like combinatorial optimization problems
is nevertheless a great challenge due to the specificities of GPU
architectures.

We have been solving recently difficult combinatorial optimi-
zation of the knapsack family like multidimensional knapsack
problems (see [2,3]), multiple knapsack problems [4] and knap-
sack sharing problems [5]. We are presently interested in the use
of GPUs in order to speed up the solution of NP-hard problems. In
particular, we are developing a series of parallel codes on GPUs
that can be combined in order to produce efficient parallel
methods. We have studied parallel branch and bound methods
for the solution of knapsack problems (KP) on GPUs in [6]. We
have also presented a parallel simplex algorithm on GPUs for
linear programming problems and bound computation purpose
in [7]. In this paper, we propose a parallel implementation of
dynamic programming algorithm on GPU for KP (see also [8]).
A data compression technique is also presented. This technique

permits one to reduce significantly memory occupancy and
communication between the CPU and the GPU. Parallel imple-
mentation of dense dynamic programming algorithm for KP on
NVIDIA GPUs via CUDA is detailed.

The paper is structured as follows. Section 2 deals with related
work. The knapsack problem and its solution via dynamic program-
ming is presented in Section 3. Section 4 focuses on GPU computing
and the parallel dynamic programming method. In Section 5, we
propose a compression method that permits one to reduce
significantly the memory occupancy and communication between
CPU and GPU. Section 6 deals with computational experiments.
Conclusions and future work are presented in Section 7.

2. Related work

Several parallel dynamic programming methods have been
proposed for KP in the literature (see, for example: [9,10]). In
particular, implementations on SIMD machines were performed
on a 4K processor ICL DAP [11], a 16K Connection Machine CM-2
(see [12,13]) and a 4K MasPar MP-1 machine [13].

Reference is also made to [14] for a study on a parallel
dynamic programming list algorithm using dominance techni-
ques. Several load balancing methods have been proposed in
[14,15] in order to improve algorithm efficiency. The parallel
algorithm and load balancing methods have been carried out on
an Origin 3800 SGI supercomputer. The reader is also referred to
[16] for parallel dynamic programming algorithm for subset sum
problems.

3. The knapsack problem

The knapsack problem is a NP-hard combinatorial optimiza-
tion problem. It is one of the most studied discrete optimization

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cor.2011.03.014

� Corresponding author at: CNRS, LAAS, 7 avenue du Colonel Roche, F-31077

Toulouse, France.

E-mail addresses: vboyer@laas.fr (V. Boyer), elbaz@laas.fr (D. El Baz),

elkihel@laas.fr (M. Elkihel).

Computers & Operations Research 39 (2012) 42–47



Author's personal copy

problems as it is among the simplest prototypes of integer linear
programming problems and it arises as a sub-problem of many
complex problems (see, for example [2,17–19]).

3.1. Problem formulation

Given a set of n items i, with profit piAN�þ and weight
wiAN�þ , and a knapsack with capacity CAN�þ , KP can be defined
as the following integer programming problem:

ðKPÞ

max
Xn

i ¼ 1

pixi,

s:t:
Xn

i ¼ 1

wixirC,

xiAf0,1g, iAf1, . . . ,ng:

8>>>>>>><
>>>>>>>:

ð3:1Þ

To avoid any trivial solution, we assume that

8iAf1, . . . ,ng, wirC,Xn

i ¼ 1

wi4C:

8><
>:

3.2. Dynamic programming

Bellman’s dynamic programming [20] was the first exact
method to solve KP. It consists in computing at each step
kAf1, . . . ,ng, the values of fkðĉÞ, ĉAf0, . . . ,Cg, using the classical
dynamic programming recursion:

fkðĉÞ ¼
fk�1ðĉÞ for ĉ ¼ 0, . . . ,wk�1,

maxffk�1ðĉÞ,fk�1ðĉ�wkÞþpkg for ĉ ¼wk, . . . ,C,

(
ð3:2Þ

with f0ðĉÞ ¼ 0,ĉAf0, . . . ,Cg.
The algorithm, presented in this section, is based on the

Bellman’s recursion (3.2). A state corresponds to a feasible
solution associated with the fkðĉÞ value. Toth [21] has proposed
an efficient recursive procedure in order to compute the states of
a stage and used the following rule to eliminate states:

Proposition 1 (Toth [21]). If a state defined at k-th stage with total

weight ĉ satisfies:

ĉoC�
Xn

i ¼ kþ1

wi,

then the state will never lead to an optimal solution and can be

eliminated.

The dynamic programming procedure of Toth is described in
Algorithm 1. The matrix M stores all the decisions and is used to
build a solution vector, corresponding to the optimal value, by
performing a backward procedure. The entries of M are denoted
by Mi,ĉ with iAf1, . . . ,ng and ĉAf1, . . . ,Cg. The time and space
complexities are OðnCÞ.

Algorithm 1. (Dynamic programming).

for ĉAf0, . . . ,Cg,f ðĉÞ :¼ 0,

for iAf1, . . . ,ng and ĉAf1, . . . ,Cg, Mi,ĉ ¼ 0,

sumW :¼
Pn

i ¼ 1

wi,

for k from 1 to n do

sumW :¼ sumW�wk,
c ¼maxfC�sumW ,wkg,

for ĉ from C to c do

if f ðĉÞo f ðĉ�wkÞþpk then

f ðĉÞ :¼ f ðĉ�wkÞþpk,
Mk,ĉ :¼ 1,

end if,
end for,

end for.
return f(C) (the optimal value of the KP)

The high memory requirement is frequently cited as the main
drawback of dynamic programming. However, this method has a
pseudo-polynomial time complexity and is insensitive to the type
of instances, i.e. with correlated data or not.

In order to reduce the memory occupancy, the entries of the
matrix M, with value 0 or 1, are stored in integers of 32 bits (see
Fig. 1), i.e. 32 lines of 0/1 entries are stored in 1 line of integers of
32 bits. This permits one to divide by 32 the number of lines of
the matrix and the memory needed. However, the memory
occupancy is still important and an efficient compression method
will be presented in Section 5.

4. GPU computing

GPUs are highly parallel, multithreaded, many-core architec-
tures. They are better known for image processing. Nevertheless,
NVIDIA introduced in 2006 CUDA, a technology that enables users
to solve many complex computational problems on GPU cards. At
the time we have made this study, CUDA 2.0 was available.

NVIDIA’s GPUs are SIMT (Single Instruction, Multiple Threads)
architectures, i.e. the same instruction is executed simultaneously
on many data elements by different threads. They are especially
well-suited to address problems that can be expressed as

Fig. 1. Storage of matrix M.

V. Boyer et al. / Computers & Operations Research 39 (2012) 42–47 43



Author's personal copy

data-parallel computations since GPUs devote more transistors to
data processing than data caching and flow control. GPUs can
nevertheless be used for task parallel applications with success.

As shown in Fig. 2, a parallel code on GPU, the so-called device,
is interleaved with a serial code executed on the CPU, the
so-called host. On the top level, threads are grouped into blocks.
These blocks contain up to 512 threads and are organized in a grid
which is launched via a single CUDA program, the so-called kernel.

When a kernel is launched, the blocks within a grid are
distributed on idle multiprocessors. Threads that belong to different
blocks cannot communicate explicitly; they can nevertheless share
their results by means of a global memory. A multiprocessor
executes threads in groups of 32 parallel threads called warps.
Threads composing a warp start together at the same program
address, they are nevertheless free to branch and execute indepen-
dently. However, a divergent branch may lead to poor efficiency.

Threads have access to data from multiple memory spaces (see
Fig. 2). Each thread has its own register and private local memory.
Each block has a shared memory (with high bandwidth) only
visible to all threads of the block and which has the same lifetime
as the block. Finally, all threads have access to a global memory.
Furthermore, there are two other read-only memory spaces
accessible by all threads which are cache memories:

� the constant memory, for constant data used by the process;
� the texture memory space, optimized for 2D spatial locality.

In order to have a maximum bandwidth for the global memory,
memory accesses have to be coalesced. Indeed, the global mem-
ory access by all threads within a half-warp (a group of 16
threads) is done in one or two transactions if:

� the size of the words accessed by the threads is 4, 8, or 16 bytes;
� all 16 words lie:

3 in the same 64-byte segment, for words of 4 bytes;
3 in the same 128-byte segment, for words of 8 bytes;
3 in the same 128-byte segment for the first eight words and

in the following 128-byte segment for the last eight words,
for words of 16 bytes;

� threads access the words in sequence (the kth thread in the
half-warp accesses the kth word).

Otherwise, a separate memory transaction is issued for each
thread, which degrades significantly the overall processing time.
The reader is referred to [1] for further details on the NVIDIA
cards architecture and how to optimize the code.

4.1. Parallel dynamic programming

The parallel implementation of the dynamic programming
method has been especially designed for NVIDIA GPU architec-
tures. The main computing part of this method is the loop that
processes the values of f ðĉÞ, ĉAf0, . . . ,Cg. This step has been
parallelized on GPU and each thread computes a value of f. Many
efforts have been made in order to limit the communication
between the CPU and the GPU and to ensure coalesced memory
access in order to significantly reduce the processing time. The
procedures implemented on the CPU and the GPU, respectively,
are described in Algorithms 2 and 3, respectively.

Algorithm 2. (CPU processing).

n_lines :¼ dn=32e,
Variables stored in the device (GPU):

for ĉAf0, . . . ,Cg do

f 0_dðĉÞ :¼ 0 and f 1_dðĉÞ :¼ 0,

m_dĉ :¼ 0,
end for

Variables stored in the host (CPU):

for iAf1, . . . ,n_linesg and ĉAf1, . . . ,Cg, Mi,ĉ :¼ 0,

sumW :¼
Pn

i ¼ 1

wi,

bit_count:¼ 0,
for k from 1 to n do

sumW :¼ sumW�wk,
c :¼ maxfC�sumW ,wkg,

bit_count:¼bit_countþ1,
if k is even then

Compute_f_and_m_on_device(f0_d,f1_d,m_d,c ),
else

Compute_f_and_m_on_device(f1_d,f0_d,m_d,c ),
end if

if bit_count¼32 then

bit_count:¼ 0,
copy m_d in the host and update M,

for ĉAf0, . . . ,Cg, m_dĉ :¼ 0,
end if

end for.
if n is even then

return f1_d(C),
else

return f0_d(C).

In Algorithm 2, the vector m_d corresponds to a line of the matrix
M, it is stored in the global memory of the device. Since the
entries of M are stored in integers of 32 bits, the variable bit_count

is used to determine when to retrieve the data saved in m_d

from the device in order to update M (this is done every 32
iterations).

On the GPU, The launching of the threads is done via the
following function:

Compute_f_and_m_on_device(input_f,output_f,output_m,c_min)

Fig. 2. Thread and memory hierarchy in GPUs.

V. Boyer et al. / Computers & Operations Research 39 (2012) 42–4744



Author's personal copy

where

� input_f are the values of f processed at the previous step,
� output_f are the output values of f,
� output_m are the output values of the decisions stored as

integers of 32 bits and
� c_min denotes the minimum value of ĉ .

In order to avoid a copy of output_f in input_f and to save
processing time, these vectors are switched at each iteration.
That is the reason why the kernel Compute_f_and_m_on_device

appears twice in Algorithm 2 since at iteration k:

� input_f¼ f0_d and output_f¼ f1_d, if k is even;
� input_f¼ f1_d and output_f¼ f0_d, otherwise.

This function creates C�c_minþ1 threads for the GPU and groups
them into blocks of 512 threads (the maximum size of a block of
one dimension), i.e. dðC�c_minþ1Þ=512e blocks. All threads carry
out on the GPU the procedure described in Algorithm 3.

Algorithm 3. (Thread processing on GPU).

blocks_id: the ID of the belonging block,
thread_id: the ID of the thread within the belonging block,

k: the step number of the dynamic programming ðkAf1, . . . ,ngÞ,

i :¼ ðkþ31Þ%32: the rest of the division of kþ31 by 32,

ĉ :¼ blocks_id � 512þthread_id,

if ĉoc_min or ĉ4C then STOP end if,

if input_f ðĉÞo input_f ðĉ�wkÞþpk then

output_f ðĉÞ :¼ input_f ðĉ�wkÞþpk,

output_mĉ :¼ output_mĉ þ2i,
else

output_f ðĉÞ :¼ input_f ðĉÞ,
end if

In Algorithm 3, threads have to access the values of input_
f ðĉ�wkÞ; this results in un-coalesced memory accesses as
described in Section 4. In order to reduce the memory latency,
the texture memory is used to access the data stored in input_f.
We used the texture memory since this type of memory can
be allocated dynamically contrarily to the constant memory;
output_f and output_m are stored in the global memory.

5. Reducing memory occupancy

In Algorithm 2, a communication between the CPU and the GPU
occurs every 32 iterations in order to retrieve all the decisions stored
in m_d into the matrix M. This step is time consuming and we aim at
further reducing the amount of data transferred to the CPU.

The analysis of the values stored in the vector m_d shows that
its right columns are often filled with 1 and that its left columns
are filled with 0. Since these bit values are grouped as integers of
32 bits, it corresponds in practice to the value 232

�1 for the right
columns filled with 1 (and 0 for the left columns filled with 0). In
the sequel, we will take a¼232

�1. Fig. 3 gives the basic principle
of reduction of memory occupancy for a typical vector m_d.

As shown in Fig. 3, we define m_d_c, the compressed vector of
m_d as follows:

for ĉAf0, . . . ,rc�lcg,m_d_cĉ ¼m_dĉ þ lc ,

with lc¼minfĉAf1, . . . ,Cgjm_dĉ�1 ¼ 0 and m_dĉ a0g,

rc¼maxfĉAf1, . . . ,Cgjm_dĉ�1aa and m_dĉ ¼ ag:

Thus, we know that, for ĉAf0, . . . ,Cg:

� if ĉo lc, then m_dĉ ¼ 0,
� if ĉZrc, then m_dĉ ¼ a,
� else m_dĉ ¼m_d_cĉ�lc .

Then, we retrieve only the values of m_dĉ for ĉAflc, . . . ,rc�1g and
we process lc and rc directly on the GPU via the Algorithm 4.

Algorithm 4. (Thread compression on GPU).

blocks_id: the ID of the belonging block,
thread_id: the ID of the thread within the belonging block,
m_d: the input vector,
lc: shared variable initiate with the value C,
rc: shared variable initiate with the value 0,

ĉ :¼ blocks_id � 512þthread_id,

if ĉr0 or ĉ4C then STOP end if,

if m_dĉ�1 ¼ 0 and m_dĉ a0 then

lc :¼minfĉ ,lcg,
end if,

if m_dĉ�1aa and m_dĉ ¼ a then

rc :¼maxfĉ ,rcg,
end if.

This compression method permits one to reduce significantly the
memory occupancy needed to store all the decisions made
throughout the dynamic programming recursion and the amount
of data transferred from the GPU to the CPU. Computational
experiments show that the efficiency of the compression depends
on the sorting of the variables of the KP and, in average, the best
results have been obtained with the following sorting:

p1

w1
Z

p2

w2
Z � � �Z

pn

wn
:

This sorting is quite natural, since it is the one of the greedy
algorithm for KP with connections to its continuous relaxation.

6. Computational experiments

Computational tests have been carried out for randomly
generated correlated problems, i.e. problems such that:

� wi, iAf1, . . . ,ng, is randomly draw in [1,1000],
� pi¼wiþ50, iAf1, . . . ,ng,

� C ¼ 1
2 �
Pn

i ¼ 1

wi.

Indeed, dense dynamic programming is well known to be well
suited to correlated instances; nevertheless, this algorithm is not
sensible to the type of correlation.

Fig. 3. Principle of reduction of memory occupancy.

V. Boyer et al. / Computers & Operations Research 39 (2012) 42–47 45



Author's personal copy

For each problem, we display the average results obtained for
10 instances. The problems are available at [22]. A NVIDIA GTX
260 graphic card (192 cores, 1.4 GHz) has been used and the
parallel computational time is compared with the sequential one
obtained on a CPU with an Intel Xeon 3.0 GHz. Results on the
memory occupancy are also presented. CUDA 2.0 has been used
for the parallel code and gþþ for the serial one.

6.1. Memory occupancy

In this subsection, we display the results obtained with the
compression method presented in Section 5. Table 1 shows the
factor of compression computed as follows:

comp_factor¼
size of M_cþ2dn=32e

size of M
,

where M is the matrix of decision and M_c is the corresponding
compressed matrix. 2dn=32e corresponds to the values of lc and rc

needed for each line.
Table 1 shows that in the worst case the size of the com-

pressed data (size of M_cþ2dn=32e) corresponds to only 0.3% of
the size of the initial matrix M, which leads to a very small
memory occupancy as compared with the original dynamic
programming algorithm. Furthermore, the factor of compression
decreases with the size of the knapsack.

This method of compression reduces the memory occupancy
of the dynamic programming algorithm significantly and is robust
when the number of variables increases. This permits one to solve
large problems that could not be solved otherwise, like problems
with 100,000 variables.

Time spent for the compression step is presented in the next
subsection, in order to be compared with the overall processing
time.

6.2. Processing time

Table 2 presents the average processing time to solve KP
obtained with the sequential and parallel algorithms. It also gives
the corresponding average time spent during the compression
step. Table 3 provides the resulting speedup.

Without the compression method, the solution of the pre-
sented instances requires an amount of memory which exceeds
the one available on both the CPU and the GPU. Thus, no results
are presented without the compression method.

We can see that the processing time cost of the compression
step is relatively small as compared with the overall one. These
results include the compression step and the transfer of data to
the CPU. Thus, this approach is very efficient both in terms of
memory occupancy and processing time.

The comparison of the parallel implementation with the
sequential one shows that the resulting speedup factor increases

with the size of the problem and meets a level around 26. Our
parallel implementation of the dynamic programming reduces
processing time significantly and shows that solving hard knap-
sack problems is possible on GPU.

The parallel implementation of the dynamic programming
algorithm on GPU combined with our compression method
permits one to solve large size problems within a small proces-
sing time and a small memory occupancy.

7. Conclusions and future work

In this article, we have proposed a parallel implementation
with CUDA of the dynamic programming algorithm for the
knapsack problem. The presented algorithm makes use of data
compression techniques. Computational results have shown that
large size problems can be solved within small processing time
and memory occupancy.

The proposed approach, i.e. implementation on GPU and data
compression, seems to be robust since the results do not deterio-
rate when the size of the problem increases. The observed
speedup factor (around 26) appears to be stable for instances
with more than 40,000 variables. Furthermore, the reduction of
the matrix size improves when the size of the problem increases,
resulting in a more efficient compression while the overhead does
not exceed 3% of the overall processing time. The proposed
parallel algorithm shows the relevance of using GPUs and CUDA
technology for solving difficult combinatorial optimization pro-
blems in practice.

Further computational experiments are foreseen. In particular,
we plan to implement our parallel algorithm in multi-GPU
contexts. We plan also to make cooperate parallel dynamic

Table 1
Factor of data compression.

n comp_factor

10,000 0.00309

20,000 0.00155

30,000 0.00103

40,000 0.00077

50,000 0.00062

60,000 0.00051

70,000 0.00044

80,000 0.00038

90,000 0.00034

100,000 0.00031

Table 2
Processing time (s).

n t. // t. seq. t. comp. // t. comp. seq.

10,000 3.06 58.95 0.11 1.08

20,000 11.97 226.66 0.31 4.16

30,000 26.57 536.14 0.71 9.27

40,000 47.43 1225.52 1.23 18.66

50,000 73.55 1912.43 1.85 25.66

60,000 105.93 2752.81 3.25 38.14

70,000 143.98 3739.74 3.61 50.15

80,000 183.15 4771.55 4.69 64.09

90,000 238.57 6184.28 5.95 82.56

100,000 289.21 4 7200 7.16 –

t. //: total average parallel time.

t. seq: total average sequential time.

t. comp. //: average parallel time for compression.

t. comp. seq.: average sequential time for compression.

Table 3
Speedup (t. seq./t. //).

n Speedup

10,000 18.90

20,000 19.26

30,000 20.17

40,000 25.83

50,000 26.00

60,000 25.98

70,000 25.97

80,000 26.05

90,000 25.92

100,000 –

V. Boyer et al. / Computers & Operations Research 39 (2012) 42–4746



Author's personal copy

programming algorithms with parallel branch and bound algo-
rithms in order to design efficient parallel algorithms on GPU for
NP-complete combinatorial optimization problems.

Acknowledgment

The authors would like to thank the reviewers for their
remarks. Didier El Baz wish to thank NVIDIA for providing support
through Academic Partnership.

References

[1] NVIDIA, Cuda 2.0 programming guide, /http://developer.download.nvidia.
com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdfS;
2009.

[2] Boyer V, El Baz D, Elkihel M. Heuristics for the 0–1 multidimensional
knapsack problem. European Journal of Operational Research 2009;199(3):
658–64.

[3] Boyer V, El Baz D, Elkihel M. Solution of multidimensional knapsack problems
via cooperation of dynamic programming and branch and bound. European
Journal of Industrial Engineering 2010;4(4):434–49.

[4] Lalami M, Elkihel M, El Baz D, Boyer V. A procedure-based heuristic for 0–1
multiple knapsack problems, LAAS report 10035, to appear.

[5] Boyer V, El Baz D, Elkihel M. A dynamic programming method with lists for
the knapsack sharing problem. Computers & Industrial Engineering, in press,
doi:10.1016/j.cie.2010.10.015.

[6] El Baz D, et al. Parallélisation de méthodes de programmation enti�ere sur
GPU, Congr�es de la Société Franc-aise de Recherche Opérationnelle et d’Aide �a
la Décision, ROADEF’2010, Toulouse, France; 2010.

[7] Lalami M, Boyer V, El Baz D. Efficient implementation of the simplex method
on a CPU-GPU system. In: 25th symposium IEEE IPDPSW, Anchorage, USA;
2011.

[8] Boyer V, El Baz D, Elkihel M. Programmation dynamique dense sur GPU,
Congr�es de la Société Franc-aise de Recherche Opérationnelle et d’Aide �a la
Décision, ROADEF’2010, LAAS report 09740, Toulouse, France; 2009.

[9] Lou DC, Chang CC. A parallel two-list algorithm for the knapsack problem.
Parallel Computing 1997;22:1985–96.

[10] Gerash TE, Wang PY. A survey of parallel algorithms for one-dimensional
integer knapsack problems. INFOR 1993;32(3):163–86.

[11] Kindervater GAP, Trienekens HWJM. An introduction to parallelism in
combinatorial optimization. Parallel Computers and Computations 1988;33:
65–81.

[12] Lin J, Storer JA. Processor-efficient algorithms for the knapsack problem.
Journal of Parallel and Distributed Computing 1991;13(3):332–7.

[13] Ulm D. Dynamic programming implementations on SIMD machines—0/1
knapsack problem. M.S. Project, George Mason University; 1991.

[14] El Baz D, Elkihel M. Load balancing methods and parallel dynamic program-
ming algorithm using dominance technique applied to the 0–1 knapsack

problem. Journal of Parallel and Distributed Computing 2005;65:74–84.
[15] Elkihel M, El Baz D. Load balancing in a parallel dynamic programming multi-

method applied to the 0–1 knapsack problem. In: 14th international
conference on parallel, distributed and networked-based processing, PDP
2006, Montbéliard, France; 2006.

[16] Cosnard M, Ferreira AG, Herbelin H. The two list algorithm for the knapsack
problem on a FPS T20. Parallel Computing 1989;9:385–8.

[17] Kellerer H, Pferschy U, Pisinger D. Knapsack problems. Springer; 2004.
[18] Martello S, Pisinger D, Toth P. New trends in exact algorithms for the 0–1

knapsack problem. European Journal of Operational Research 2000;123:
325–32.

[19] Martello S, Toth P. Knapsack problems—algorithms and computer imple-
mentations. Wiley & Sons; 1990.

[20] Bellman R. Dynamic programming. Princeton University Press; 1957.
[21] Toth P. Dynamic programming algorithm for the zero–one knapsack pro-

blem. Computing 1980;25:29–45.
[22] Knapsack problems benchmark, /http://www.laas.fr/laas09/cda/23-31300-

knapsack-problems.phpS.

V. Boyer et al. / Computers & Operations Research 39 (2012) 42–47 47


