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Abstract—In this paper, we propose three approaches to
accelerate the B&B execution time using Multi and Many-
core systems to solve the NP-hard Blocking Job Shop Schedul-
ing problem (BJSS). The first approach is based on Mas-
ter/Worker paradigm where the workers independently explore
the branches sent by the master. The second approach is a
node-based parallelization that does not change the design
of the B&B algorithm, except that the bounding process is
faster since it is calculated in parallel using several threads
organized in one GPU block. The third approach is a Multi-
Core CPU/GPU hybridization that benefits from the power
of both the CPU-cores and the GPU at the same time.
This hybridization is based on concurrent kernels execution
provided by Nvidia Multi process Service (MPS) i.e. each
host process (Master or Worker) launches his own kernel to
accelerate the bounding process on GPU. The obtained results
using Taillard instances confirm the efficiency of our proposals.
The first two approaches are respectively three and eighteen
times faster compared to the sequential version. The results of
the hybrid approach show a relative speedup over ninety times
as compared to the sequential approach and therefore prove
the advantage of using both the CPU-cores and the GPU at the
same time. Keywords-Job shop; blocking with swap; GPGPU;
Multi-core CPU; parallel computing; Branch-and-Bound.

I. INTRODUCTION

The job shop scheduling problem (JSSP) consists in

scheduling a set of jobs on a set of machines. Each job

has its own sequence of crossing on machines. The classical

JSSP assumes an infinite storage space between machines

which is not realistic. The BJSS is a version of the classical

JSSP with no storage space between machines, where a job

has to wait on a current machine until the next one becomes

available. Our goal is to minimize the completion time of

all jobs (Makespan). The classical JSSP is known to be NP-

hard in the strong sense [11], and the blocking extension

of this problem BJSS appears to be even more difficult

to solve [15]. This problem has several application areas

such as: manufacturing systems with no storage space, train

scheduling, hospital resource scheduling, etc.

The B&B algorithm is an exact method based on intelli-

gent enumeration of all feasible solutions. Nevertheless, its

sequential case takes a huge amount of time to solve small

instances and remains inefficient when dealing with large

instances. Therefore, the parallelization of this method is

essential. In the literature, several CPU and GPU parallel

B&B algorithms have been proposed [6], [13], [2], [5], [4].

However, most authors exploit only the CPU-core or only

the GPU which may results in the under-utilization of these

resources and a loss of a significant computing power, hence,

a loss in performance.

In this paper, we propose three approaches to accel-

erate the B&B execution time using Multi and Many-

core systems. The first approach is a tree based paral-

lelization, exploiting Multi-core CPU-processors available

in all recent PCs. The proposed approach is based on

Master/Worker paradigm where the workers independently

explore the branches sent by the master. The performance

of this approach depends on the number of used CPU-

cores. The second approach is a node-based parallelization

(Parallel Evaluation of the Bound), exploiting the idea that

the evaluation of each node can be calculated in parallel.

Therefore, at each iteration one node will be sent for parallel

evaluation on GPU by using several threads organized in one

GPU block. Experiments show that this version is 18 times

faster than the sequential B&B version. The drawback of the

first two approaches is the underuse of the CPU and GPU

resources. To overcome this drawback, we propose a hybrid

CPU-core/GPU approach to benefit from both the multi-core

CPU and the GPU at the same time. This approach is based

on the concurrent kernels execution provided by Nvidia MPS

i.e. each host process (master or worker) launches his own

kernel to accelerate his bounding process on the GPU. The

obtained results, using the Taillard instances show a relative

speedup of 93x as compared to an optimized sequential

B&B version which confirms the efficiency of the proposed

hybridization.

The remainder of this paper is organized as follows: Sec-

tion 2 describes the blocking job shop scheduling problem,

the alternative graph model and related work. Section 3

contains a brief description of the sequential B&B algo-
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rithm and its components. Section 4 presents the proposed

parallelization approaches of the B&B algorithm. Section

5 discusses computational results. Finally conclusions and

perspectives are presented in Section 6.

II. BLOCKING JOB SHOP SCHEDULING PROBLEM

A. Problem Formulation

The classical JSSP can be defined by a set J of n jobs

(J1, ..., Jn) to be processed on a set M of m machines

(M1, ...,Mm). Each machine can process at most one job

at a given time. The execution of a job on a machine is

called operation. We note by O the set of all operations

(o1, ..., on∗m). Each operation oi needs to use a machine

M(i) for an uninterrupted duration called processing time

pi. Each job has its own sequence of crossing on machines

which creates precedence constraints between consecutive

operations of the same job. A solution (schedule) for this

problem consists to assign a starting and finishing times ti
and ci for each operation oi (i = 1, ..., n ∗m); while satis-

fying all constraints. Our goal is to minimize the Makespan

(Cmax). The JSSP assumes an unlimited intermediate buffer

capacity between consecutive operations of a job which is

impossible in real manufacturing. The BJSS is a version of

the classical JSSP with no intermediate buffers, where a job

has to wait on the current machine until the next machine

becomes available for processing. This problem can be

modelled as an alternative graph representation introduced

by Mascis et al. [1] which is a generalization of the

disjunctive graph of Roy and Sussman [4]. This model can

be defined as G = (N,F,A). N represents a set of nodes

(operations) with two additional dummy nodes (start and

finish) modelling the start and the finishing of the schedule.

F represents a set of fixed arcs imposed by precedence

constraints between consecutive operations of the same job

and fqp is the length of arc (q, p) ∈ F . Finally, A is a set of

alternative pairs ((i, j), (h, k)) representing the processing

order for concurrent operations on the same machine and

aij is the length of alternative arc (i, j). Each arc represents

the fact that one operation must be completed before starting

the processing of the other operation. A selection S1 is a

set of arcs obtained from A by choosing at most one arc

from each pair, and G(S1) = (N,F ∪ S1) represents the

obtained graph. We note that a selection S1 is feasible if

there is no positive length cycle in G(S1) and the evaluation

(Makespan) of S1 is the longest path in G(S1). We say

that S1 is a complete selection if exactly one arc is chosen

from each pair, therefore |A| = |S1|. We define a schedule

(solution of the problem) as a complete feasible selection.

Finally, given a feasible selection S1, let l(i, j) be the length

of the longest path from operation i to j in G(S1). We call

the last operation of each job (example or) an ideal operation

because the machine becomes immediately available after

the end of its processing time pr. If oi is a blocking

operation, we denote by σ(i) the operation immediately

following oi in the same job.

Table 1 represents a BJSS instance with two products

(jobs) and three machines. The first product (J1) has 5 min

processing time on machine M1, 3 min on M2 and 8 min on

machine M3. The second product (J2) has 8 min processing

time on machine M2, 2 min on M1 and 7 min on machine

M3.

Table 1
BJSS INSTANCE WITH TWO JOBS AND THREE MACHINES.

job sequence processing times

J1 M1,M2,M3 5, 3, 8
J2 M2,M1,M3 8, 2, 7
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Figure 1. Alternative graph for BJSSP instance of table 1.

Figure 1 represents an alternative graph of the BJSS

instance in Table 1. This graph has three alternative pairs,

two between blocking operations and one between ideal

operations. Both operations 2 and 4 need the same machine

M2 and since M2 can not process both operations at

the same time, we associate them with an alternative pair.

Since operations 2 and 4 are blocking operations the first

alternative arc (3, 4) represents the choice where operation

2 must be finished before the beginning of operation 4. His

mate, arc (2, 5) represents the choice whereby operation 4

must be finished before the beginning of operation 2. We use

the same process to generate the alternative pair ((2,5), (6,1))

between operations 1 and 5. The alternative pair between

operations 3 and 6 is ((3, 6), (6, 3) ) because both operations

3 and 6 are ideal.
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Figure 2. Schedule for BJSP in table 1 whit Cmax=26.

Figure 2 represents a feasible schedule (solution) for the

BJSS instance in Table 1, obtained by choosing one arc
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from each pair in the alternative graph of Figure 1. The

Makespan (Cmax = 26) of this schedule is the longest path

in the obtained graph.

The Gantt chart in Figure 3 represents both the processing

and blocking times of the solution of Figure 2.

For example, after the end of its processing time the job

J1 blocks the machine M1 until machine M2 becomes

available for processing J1.
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Figure 3. Gantt chart of the schedule in figure 2.

1) Alternative pairs generation:

Let us consider two blocking operations oi, oj and one ideal

operation or, where M(i) = M(j) = M(r). Since the three

operations cannot be executed at the same time, we associate

them with pairs of alternative arcs.

Case 1: the alternative pair between operations oi and

oj (Fig. 4): The first alternative arc (σ(i), j) having length

0 represents the situation where oi is processed before

oj . Since oi is a blocking operation, M(i) can begin the

processing of oj only after the starting time of σ(i)(when

oi leaves M(i)). The same method is followed for the other

alternative arc(σ(j), i) since oj is a blocking operation.
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Figure 4. Alternative pairs between blocking and ideal operations.

Case2: the alternative pair between operations oi and or
(Fig. 4): It is the same process as in the first case for the

alternative arc (σ(i), r) since oi is a blocking operation. The

other alternative arc depends on the fact that or is an ideal

operation therefore, we add the alternative arc(r, i) with

length pr.

B. Related works

Most of B&B methods, for the job shop problem, are

based on the resolution of single machine problems proposed

by Carlier. For solving optimally the BJSS we find the

B&B method proposed by Mascis et al. [15]. The authors

formulate the problem by means of an alternative graph

model which is a generalization of the disjunctive graph

of Roy and Sussman [19]. Based on this model, they solve

optimally the 10 × 10 benchmark instances of this problem.

Ait Zai et al. [1], proposed an original B&B method

based on graph theory to solve the BJSS. The idea of his

branching scheme relies on the implicit enumeration of all

possible combinations on a given machine. The authors gave

solutions for local instances only.

The B&B algorithms are not efficient when dealing with

large problem instances, therefore computing accelerators

like GPUs are required. Several authors have proposed to

accelerate the B&B method using GPUs. In [6] and [13].

Chakroun et al. take the classical approach of sending nodes

to be evaluated on GPU to solve the FSP problem since

this step takes more than 98% of the global execution

time. Therefore, each GPU thread supports the evaluation

of a single node of the search tree. In [2], [7] the authors

extend the approach below and propose a multi-core/GPU

scheme to exploit both multi-core CPU processors and GPU

accelerator to solve the same problem. In [5], Alami et al.

proposed a CPU-GPU based B&B applied to the knapsack

problem. In the proposed parallelization scheme the branch-

ing and bounding can be done either on the CPU or the

GPU according to the size of the search tree. This approach

uses less CPU-GPU communication and better management

of data-structures in GPU memory. In [4], Carneiro et al.

apply the B&B to the traveling salesman problem where a

pool of nodes is sent to the GPU for evaluation. Each GPU-

thread applies the branching and bounding operators to a

single node and builds its own local tree. The resulting nodes

are moved back to the CPU where the promising nodes are

inserted into the tree.

Most of the previously cited works focus on exploiting

the GPU part and ignoring the available CPU-cores. For

this reason, we propose an original hybrid CPU-core/GPU

approach based on concurrent kernels execution to exploit

both CPU and GPU parts of our workstation.

III. THE BRANCH AND BOUND ALGORITHM FOR BJSS

The B&B algorithms make an intelligent enumeration

of all feasible solutions. They are characterized by two

operators: branching and bounding. The branching is a

recursive process, which consists in replacing the search

space of a given problem by a set of smaller sub-problems.

The lower bounding operator is used to compute the lower

bound for the evaluation of all feasible solutions in the

considered sub-problem. The elimination operator uses the

bounds to eliminate the sub-problems that cannot improve

the current best solution found for the problem. Algorithm

1 describes the used B&B algorithm.
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Algorithm 1 Pseudo-code of the sequential B&B algorithm

LIST ← {original problem};
UB ←∞;
while LIST != ∅ do

R← LIST (Choose a Node R from LIST );
Generate successors Ri from R | (i = 1, ..., n);
for Each successour Ri do

if LB(Ri) < UB then
if Ri represents one solution then

UB = LB(Ri);
s∗ = solution in Ri;

else
LIST = LIST ∪Ri;

end if
end if

end for
end while
return s∗

The most effective B&B algorithms, for the JSSP, are

based on the disjunctive graph model [3]. Our B&B is based

on the adaptation of this approach to the blocking case

(alternative graph) [15]. Our method consists in fixing an

order (precedence) between every two concurrent operations,

which leads to fix the corresponding alternative pair (from

A).

A. Branching

The B&B algorithm can be represented by a search

tree. The tree is rooted by the original problem; no alter-

native pairs are fixed (|S0|=0). A search tree node R is

characterized by (SR, AR) and represented by the graph

G(SR)=(N,F ∪SR). SR denotes the set of fixed alternative

arcs and AR represents a set of unselected alternative

pairs in this node. The branching creates two immediate

successors (R1, R2) of R by fixing an alternative pair

((i, j), (h, k)) ∈ AR that has a direct impact on the longest

path in the graph. The node R1 (resp. R2) is characterized

by SR1 = SR ∪ (i, j) (resp. SR2 = SR ∪ (h, k)) and ARi

= AR − {((i, j), (h, k))}. The corresponding successors

represent the sub-search space related to the fixed alternative

arc. After this, each successor is handled recursively in the

same way until we find a complete selection or eliminate

sub-problems and prune the tree if the lower bound value

of the current sub-problem is bigger than the upper bound.

Finally, our exploration strategy after a branching process is

to choose the node which has the bigger Makespan, which

allows to reach rapidly feasible solutions and also leads to

improve the UB and eliminate a large number of branches.

B. Evaluation (Bounding)

Any solution of the problem can be considered as an

initial value for an upper bound (in our case UB=+∞) which

is updated as soon as a new better solution is found. The

lower bound (Evaluation) used in our case is the one used

by Carlier et al. [8] to solve optimally the JSSP. It is based

on the one machine scheduling problem. To do a link with

alternative graph model, each search tree node represents

an alternative graph. The lower bound used is similar to

the Makespan of the sub-problem obtained by adjusting the

head and tail structures (Hi = l(0, i), Ti = l(i, n ∗m)) for

each operation oi (i = 1, ..., n∗m); in the graph representa-

tion. This process is very expensive and consumes 70% of

global execution time of the method. This process is done

sequentially for all operations affected by the change made

and can be repeated several times for the same operation if

there are multiple paths that lead to this operation.

The complexity of the evaluation process depends on

the number of operations (n × m) in the treated instance,

therefore, the evaluation time increases by increasing the

size of the instances. The implementation of the evaluation

process, as illustrated below, requires six data structures. The

matrix MP (n ∗ m) × (n ∗ m) represents the length of all

alternative arcs, MP[i][j]=aij if the arc exists and -1 if not.

The matrix Succ ((n ∗m) × n) contains the successors of

each operation, therefore, row i represents the successors

of operation oi. Similarly, the matrix Pred ((n ∗ m) × n)
contains the predecessors of each operation.

C. Immediate selection

The immediate selection represents several techniques

which allows to accelerate the B&B algorithm by reducing

the number of branching necessary to obtain the optimal

solution. This process is done sequentially and costs 18%

of the global processing time since there is a large number

of alternative pairs (99000) for big instances. This process

uses the head and tail values computed in the bounding

process. Given a sub-problem R with a feasible selection

SR and a set of unselected pairs AR. For each unselected

pair ((i, j), (h, k)) ∈ AR: if l(0, h) + ahk + l(k, n) ≥ UB

then SR=SR∪(i, j). This rule expresses the fact that adding

the arc (k, h) (resp. (i, j)) to SR will produce a sub-

problem with a lower bound greater than the upper bound.

Consequently the arc (i, j) (resp. (h, k)) is added to SR.

IV. THE PROPOSED PARALLELIZATION APPROACH FOR

THE B&B ALGORITHM

The fact that each node of the B&B search-tree can be

explored independently amplifies the parallelization of these

algorithms. The only global information in the algorithm is

the value of the upper bound.

The algorithm parallelization may depend on the architec-

ture of the processing machine, synchronization, granularity

of tasks and communication between different processes.

There are several classes of parallelization strategies, ac-

cording to the degree of parallelization. For more details the

reader may refer to [12].

A. Multi-core parallel B&B

In this section, we describe the proposed parallel B&B

algorithm, exploiting the CPU-core available in our work-

station. The proposed approach (see Fig. 5) is based on
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Figure 5. Global architecture of the proposed parallel B&B algorithm.

the master/worker paradigm. The exploration of the search-

tree is done simultaneously by the master and workers, the

results given by a worker can influence others. Therefore,

our approach can be seen as a multi-search parallelization.

A work pool represents a set of active sub-problems.

There are two types of work pools: a unique global work

pool managed by the master and several local work pools

owned by the different workers. Each worker has its own

local work pool (see Fig. 5). Therefore, a collegial strategy is

considered. The master initializes the search tree by creating

the root, launches his own B&B algorithm which generates

a set of active sub-problems stored in the global (master)

work pool and wakes up the blocked workers by sending

a sub-problem from the global work pool. After that, each

worker launches his own B&B algorithm. During the search,

the local pools evolve continuously and when they become

empty, the corresponding workers send a request to the

master and wait for sub-problems. The workers perform

a worst-first strategy in order to reach feasible solutions

more quickly or eliminate the branches if the lower bound

is greater than the upper bound. A worker which finds a

better solution than the current best one broadcasts it to all

workers via the master to ensure efficient branching process.

An extended version of this approach that exploits the

computing power provided by cluster architectures will be

presented in [5].

B. The Proposed GPU-based B&B algorithm

We have seen in section 3 that the evaluation process and

the immediate selection consume together more than 85% of

the global execution time, therefore, it is crucial to accelerate

this phase in order to reduce the B&B execution time.

The GPU architectures are based on SIMT (Single In-

struction, Multiple Threads) paradigm. According to this

paradigm, the same program called kernel is executed si-

multaneously by a set of parallel threads with different

data. The threads are organized according to a grid of

thread-blocks hierarchy specified in the kernel call. The

grid represents a set of thread-blocks. Threads of the same

block can cooperate by using a private shared memory

and barrier of synchronization. Threads can access multiple

memory spaces: constant memory and texture memory

are read-only cached memory accessible by all threads. The

global memory is a read-write memory, also accessible by

all threads. Unlike the global memory the shared memory

is a cached memory accessible only by threads in the same

block [22];

In the following, we present our proposed node-based

parallelization scheme for the B&B algorithm, exploiting

GPU-based architectures. The proposed scheme exploits the

idea that the evaluation and immediate-selection steps can

be done in parallel for each node.

GPU

Selection Process

Branching Process

Creation of two nodes

Elimination Process

Begin

End

CPU

Evaluation of Node i

G
P

U
 M

em
o

ry

Block 0

Immediate−Selection node i

Node i

Node i’

Evaluation Node i

Figure 6. First level PEB scheme.

This approach uses the same design as the sequential B&B

algorithm except that the evaluation (bounding) is done in

parallel on GPU for each node as shown in Figure 6. As

already presented, each node of the search tree represents a

graph of n×m operations. The evaluation process consists

in updating the head and tail values for each operation in the

graph. At the PEB level, we propose a parallel evaluation

scheme based on the idea that each GPU-thread supports

updating head and tail values for a single operation in the

graph, exploiting the fact that the updating can be done

independently for each operation. Therefore, the GPU block

size equals n×m, the number of operations in the graph. As

shown in Figure 7, at each iteration, only one node is sent to

the GPU for evaluation and immediate selection using one

thread-block. Each thread updates the head and tail values

for one operation. The new values are sent back to the CPU

to be used in the branching and elimination process. As can

be seen in Figure 7, a single block is used on the GPU

to evaluate one node while the others block are idle. The
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Figure 7. GPU evaluation of a single node.

weakness of this solution resides in the under-utilization

of the GPU capacity and thus a waste of a significant

computing power. To overcome this drawback, we propose

a hybridization of the first two approaches (Master/Worker

and the GPU based) to increase the GPU occupation.

C. Hybrid Multi-core CPU/GPU parallelization (H-PEB)

We propose in this section a hybridization of the first two

approaches (Multi-core CPU and GPU) to increase the GPU

occupation. This version generalizes the idea of the PEB ap-

proach to exploit the advantages of both CPU-core and GPU

at the same time. The hybrid approach is based on concurrent

kernels execution provided by Nvidia in devices of compute

capability 2.x and higher. The maximum number of kernels

that a device can execute concurrently varies between 16 and

32 according to device compute capability [22]. Therefore,

each CPU process (Master or workers) launches his own

kernel in the default stream to accelerate his bounding of

each node on the GPU. Furthermore, Figure 8 explains the
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Figure 8. Hybrid Multi-core CPU/GPU approach.

hybrid approach. The advantage of our hybrid approach

based on concurrent kernel execution is the occupation of the

GPU over time. i.e. at each moment, our hybrid approach can

have simultaneously several workers executing instructions

on the GPU while others perform data-transfer from/to the

GPU and yet others apply the selection and elimination

operators on the CPU. This hybrid approach provides also a

way to reduce the overhead of the CPU/GPU data-transfer.

1) Nvidia Multi Processes Service (MPS) and concurrent

kernels execution:

MPS is a client-server runtime implementation of the CUDA

API used to increase the overall GPU utilization. Without

MPS, only one host process can use the GPU at a given

time, therefore, it potentially my underutilize the GPU

resources. To overcome this problem, Nvidia provides the

Multi Processes Service to enable multiple host processes

like MPI processes to use the Hyper-Q capability on the

Nvidia Kepler GPUs. Hyper-Q allows a single host process

to process multiple CUDA kernels concurrently on the same

GPU. As we can see in Figure 9 the MPS consists of several

components: the Control Daemon Process is responsible for

starting and stopping the MPS server, as well as coordinat-

ing connections between clients and the server [23]. The

� �

Figure 9. MPS compnents.

Server Process provides the connection between clients and

the GPU which allows concurrency. Each process (server,

clients) has its own CUDA context for its GPU operations.

When the MPS client connects to the control daemon, the

later creates an MPS server if no server is active, then the

client proceed to connect with the server [23]. Note that

all communications between MPS clients/server and MPS

control daemon is done using a named Pipe. Furthermore,

figure 10. shows how to use the Multi Processes Service

(MPS) to run MPI applications.

V. EXPERIMENTATIONS

In this section computational results are given using

benchmarks obtained from the well known classical job shop

instances by dropping the infinite buffer capacity constraint,

and replacing it by a zero buffer capacity.

We tested our algorithms using the large size benchmarks

proposed by Taillard’s [20]. The different instances arede-

noted by n × m, where n and m represent respectively the

number of jobs and the number of machines.
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Figure 10. Running MPI application using MPS.

The experiments have been carried out using Intel Xeon

E5640 CPU with four CPU-cores, 2.67 GHz clock speed

each and Nvidia Tesla K40 with 2280 cuda cores and 12

GB GDDR5 of global memory. The approach has been

implemented using C-CUDA 7.0. and MPI [21] as a commu-

nication tool between processes. All reported times in this

paper represent the average time to explore 700,000 nodes

for each benchmark. For the 100× 20 benchmark instances

there are 2002 operations, since the GPU hardware limit

is 1024 threads par block, we adapt the PEB approach to

enable each thread to treat 2 operations instead of one which

enables us to treat such big instances.

To find the appropriate number of workers we tested our

proposed approaches (Multi-core CPU and H-PEB) using

different number of workers to explore 700,000 nodes. For

the Multi-core version, the best time is reached for 4 work-

ers. After that, we notice an increase in execution time when

increasing workers number. This can be explained by the

limited number of CPU-cores available in our workstation (4

cores). Therefore, the workers tasks are executed sequentialy

when the workers number is above 4. For the Hybrid H-PEB

version, the best time is reached for 35 workers which is the

maximum supported since the Nvidia MPS support up to 35

connection to the MPS server. This hybrid version supports

large number of workers compared to the Multi-core version

since each worker has less than 15% of his execution time

on the CPU.

Table 2
AVERAGE EXECUTION TIME IN SECOND OF THE PROPOSED

APPROACHES TO EXPLORE 700000 NODES.

Size B&BSeq. B&B
Mcore

B&B
PEB

Hybrid
PEB

speedup

20×20 393 120 736 173 2.3
30×15 1076 375 795 180 6.0
30×20 1127 447 955 209 5.4
50×15 4246 1454 1162 270 15.7
50×20 10546 3728 1530 340 31.0

100×20 69300 19200 3760 741 93.5

Table 2 reports the average execution times of the se-

quential and proposed approaches. The first column (Size)

reports the size of the benchmark instances. Column Seq.

B&B reports the average execution time of an optimized

sequential B&B algorithm. Column B&B
M−core

gives the

execution time obtained by our Master/worker approach

exploiting only the CPU-cores of our workstation using 4

workers. Column HybridPEB reports the average execution

time for exploring 700,000 nodes by sending one node for

evaluation on GPU at each time. Column B&BH−PEB

reports the average execution time of our hybrid CPU-

core/GPU approach using Nvidia MPS i.e both master and

workers accelerate they bounding process on GPU using

PEB model. As mentioned before, 35 workers are used in

this hybrid approach and each one uses the default CUDA

Stream. Finally, column speedup reports the ratio between

the sequential and parallel execution time for the Hybrid

CPU-core/GPU B&B method.

We notice from Table 2 that the complexity and the exe-

cution time increase when increasing the size of instances.

Therefore, the need for parallelization is crucial.

The first result from table 2 is the positive impact of using

parallel architectures to reduce the execution time needed to

solve the BJSS problem.

The improvement obtained with the Multi-core version

is low which is expected since our workstation contains

only four CPU-cores. For the PEB version, we notice a

low performance for small instances against the Multi-core

and sequential approaches. This can be explained by the

high ratio of communication to computing time on the

GPU. By increasing the size of instances, we notice a

significant improvement in execution time as compared with

the sequential and multi-core cases. In addition to efficiency

in reducing the execution time, this approach (PEB) does

not depend on GPU capacity since we use less then 5% of

the GPU resources. Unlike the PEB approach, the hybrid
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Figure 11. the speedup of the proposed approaches.

approach (H − PEB) provides good acceleration even for

small instances. The results of this hybrid approach boost up
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the speedup to reach more than 90x as compared with an

optimized sequential B&B method. Also the results confirm

the advantage of using both CPU-core and GPU at the

same time by using concurrent kernels execution provided

by Nvidia MPS.

Figure 11 reports the relative speedup of our proposed

three approaches for solving 100x20 problem instances.

The speedup of our Multi-core version (3 times faster) is

expected since it depends on the number of CPU-cores

available in our workstation. The idea used in the second

approach (node based) to accelerate the bounding on GPU

using several threads organized in one GPU block gave good

results (18 times faster) compared to the multi-core version.

The speedup obtained by our proposed hybridization (H-

PEB) is around 90 times faster. This result confirms the ef-

ficiency and the benefit of using both CPU-cores and GPU at

the same time. This approach is based on concurrent kernels

execution via Nvidia Multi Processes Service (MPS) which

is rarely exploited in scientific computing. The speedup of

the hybrid approach is the result of the occupation of the

GPU over time. i.e. several workers run instructions on the

GPU while others perform data-transfer from/to the GPU

and yet others apply elimination and branching operators on

the CPU.

VI. CONCLUSION

This paper investigates the acceleration of the B&B

method using Multi and Many-core systems in order to solve

the NP-hard Blocking Job Shop Scheduling problem. This

problem represents a version of the classical JSSP with no

intermediate buffer between machines. In this paper, three

approaches have been proposed. The first approach exploits

only the CPU-core of our machine. The second one is

a GPU node based parallelization. Finally, a third one to

increase the GPU occupation by combining the first two

approaches using concurrent Kernels execution provided by

Nvidia MPS. The obtained results confirm the efficiency of

the proposed approaches and the positive impact of using

computing accelerators like GPUs to solve this problem. The

performance of the Multi-core based approach is low since

it depends on the number of available CPU-core which is

limited. The second approach is 18 times faster and does not

depend on the GPU capacity but it underutilizes the GPU

resources. The third approach increases the GPU occupation

which allows us to reach a speedup over 90 times faster for

large instances as compared with an optimized sequential

B&B version. As a future perspective, we plan to explore

heterogeneous architectures like multi-core CPU, coupled

with GPUs and Intel Xeon Phi.
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