J. Parallel Distrib. Comput. 117 (2018) 73-86

Contents lists available at ScienceDirect

PARALLELAND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Hybrid multi-core CPU and GPU-based B&B approaches for the A
blocking job shop scheduling problem

Adel Dabah *P* Ahcéne Bendjoudi?, Abdelhakim AitZaiP, Didier El-Baz ¢,

Nadia Nouali Taboudjemat?

2 CERIST Research Center, Algiers, Algeria

b University of Sciences and Technology Houari Boumediene (USTHB) Algiers, Algeria
¢ LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

HIGHLIGHTS

o New parallel B&B schemes for heterogeneous computing nodes.
e Increasing the GPU occupation over time using Nvidia Multi-Processes Service (MPS).
e Hybrid High-level/Low-level parallel B&B schemes that exploit both the CPU-cores and the GPU simultaneously.

ARTICLE INFO ABSTRACT
Article history: The Branch and Bound algorithm (B&B) is a well known method for solving optimally Combinatorial
Received 21 April 2017 Optimization Problems. This method is based on intelligent enumeration of all feasible solutions which

Received in revised form 8 February 2018
Accepted 17 February 2018
Available online 26 February 2018

reduce considerably the search space. Nevertheless, it remains inefficient when using the sequential
approach to deal with large problem instances due to its huge resolutions time. However, the execution
time can be reduced considerably by using parallel computing architectures. With the huge evolution of
the multi-cores CPUs and GPUs, it is quite hard to design schemes that efficiently exploit the different

Keywords: , N o o

Job shop scheduling hardware architectures simultaneously. As a result, most of the existing works focus on exploiting one
Parallel B&B algorithm hardware architecture at a time. In this paper, we propose five parallel approaches to accelerate the
Hybrid multi-core CPU and GPU B&B B&B execution time using Multi and Many-core systems. Our goal is to solve optimally the Blocking
Nvidia MPS Job Shop Scheduling problem (BJSS) which is one of the hardest scheduling problem. The first proposed

approach is a multi-search parallelization based on master/worker paradigm, exploiting the multi-Core
CPU-processors. The second and the third approaches represent a GPU-based parallelization schemes
having different level of parallelism and GPU occupancy. The fourth and fifth approaches represent a
hybridization between the Multi-core approach and the GPU-based parallelization approaches. The goal
of this hybridization is to benefit from the power of both the CPU-cores and the GPU at the same time. This
hybridization is based on concurrent kernels execution provided by Nvidia Multi process Service (MPS)
that allows multiple host processes (Master and workers) to use simultaneously the GPU to launch their
kernels in order to accelerate the bounding of one or several nodes at a time. Experiments using the well
known Taillard instances confirm the efficiency of our proposals and show a relative speedup of 160x as
compared to an optimized sequential B&B algorithm.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction infinite storage space between machines which is not realistic. The
Blocking Job Shop Scheduling problem (BJSS) is a version of the

The job shop scheduling problem (JSSP) consists in scheduling classical JSSP with no storage space between machines, where a

a set of n jobs on a set of m machines. Each job has its own jop has to wait on the current machine until the next one becomes
sequence of crossing on machines. The execution of a job ona 3yaijaple. Our goal is to minimize the completion time of all jobs
machl.ne is called operatlpn apd each one uses the machine for (Makespan). The classical JSSP is known to be NP-hard in the strong
an uninterrupted processing time. The classical]SSP assumes an sense and its search space is equal to (n!)™ [16]. The BJSS problem

which is an extension of the JSSP, appears to be even more difficult

* Corresponding author at: CERIST Research Center, Algiers, Algeria. to solve [17]. This problem has several application areas such as
E-mail addresses: adabah@cerist.dz, adabah@usthb.dz (A. Dabah),
abendjoudi@cerist.dz (A. Bendjoudi), h.aitzai@usthb.dz (A. AitZai), elbaz@laas.fr manufacturing systems with no storage space, trains scheduling,

(D. El-Baz), nnouali@cerist.dz (N.N. Taboudjemat). hospital resource scheduling, etc.

https://doi.org/10.1016/j.jpdc.2018.02.005
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.02.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.02.005&domain=pdf
mailto:adabah@cerist.dz
mailto:adabah@usthb.dz
mailto:abendjoudi@cerist.dz
mailto:h.aitzai@usthb.dz
mailto:elbaz@laas.fr
mailto:nnouali@cerist.dz
https://doi.org/10.1016/j.jpdc.2018.02.005

74 A. Dabah et al. /]. Parallel Distrib. Comput. 117 (2018) 73-86

The B&B algorithm is a well-known method to solve optimally
the combinatorial optimization problems. It is based on an intelli-
gent enumeration of all feasible solutions, which reduce consider-
ably the search space. Nevertheless, its sequential version requires
a huge execution time to solve small instances and it remains inef-
ficient when dealing with large or real-world instances. Therefore,
using parallel computing architectures such as the Multi-core CPUs
and the GPUs is unavoidable to improve the running time of this
method.

Nowadays, most of the processors are based on Multi-core
architectures. They are composed of two or more independent pro-
cessing units (cores) that can run multiple instructions at the same
time. In addition to the power provided by multi-core processors,
Graphics Processing Units (GPUs) have emerged as a new popular
support for massively parallel computing. The GPUs are many-
core co-processor devices that provide a hierarchy of memories
having different sizes and access latencies and providing a highly
multi-threaded environment where the threads are scheduled and
executed as warps (a group of threads) using the SIMT model [10].

With the huge evolution of the Multi-core CPUs and GPUgs, it
is quite hard to design schemes that efficiently exploit different
hardware architectures simultaneously. As a result, most of the
proposed parallel B&B algorithms in the literature [8,19,3,11,6]
exploit only the CPU-core or only the GPU which may lead to
an under-utilization of these resources and a loss of a significant
computing power. The major contribution of this paper is the
new parallelization schemes that exploit and combine different
parallelization levels of the B&B algorithm using Multi and Many-
core systems simultaneously. The proposed schemes are based on
the Nvidia Multi-Process Service (MPS) that allows us to increase
the GPU occupation over time. Therefore, achieving a high relative
speedup for large instances.

The first approach (Multi-core B&B) is a tree-based paralleliza-
tion, exploiting the Multi-core CPU-processors available in all
recent PCs. The proposed approach is based on Master/Worker
paradigm where the workers independently explore branches
(search tree nodes) sent by the master. The performance of this
approach depends on the number of used CPU-cores.

The second and the third approaches are a GPU-based paral-
lel B&B schemes. The second approach: Parallel Evaluation of the
Bound (PEB) is a node-based parallelization exploiting the idea
that the evaluation (bounding) of each node of the search tree can
be calculated in parallel on the GPU using several GPU-threads.
The proposed scheme here is very important to reduce the B&B
execution time since the bounding phase consumes the majority of
the execution time of the algorithm. Therefore, at each iteration of
this scheme, one node is evaluated in parallel on the GPU by several
threads organized in one GPU block. Experiments validate our idea
and show the benefit of accelerating the bounding process on GPU
by achieving a speedup up to 18x. The third approach (Parallel
Evaluation of Several Bounds (PESB)) represents a generalization of
the second approach (PEB) obtained by sending at each iteration
a pool of nodes to the GPU for evaluation instead of one node
at a time in the PEB approach. The number of nodes sent varies
according to the size of instances. This approach allows us to
achieve a relative speedup of 66x.

The drawback of the previous approaches is the under-
utilization of either CPU or GPU resources which represents a waste
of significant computing power. To increase the GPU occupation
and benefit from both the multi-core CPU and the GPU at the same
time, we propose a hybridization between the CPU and GPU-based
approaches. This Hybridization is based on the concurrent kernel’s
execution provided by Nvidia MPS. i.e. Multiple host processes
(master and workers) can execute simultaneously their kernels on
the GPU. The fourth approach, H-PEB represents a hybridization be-
tween the Multi-core approach and the PEB GPU-based approach

Table 1
BJSS instance with two jobs and three machines.

Job Sequence Processing times
J1 M1, M2, M3 53,8
J2 M2, M1, M3 8,2,7
0 T o
I~ 7

Fig. 1. Alternative graph for the BJSS instance in Table 1.

which mean that several host processes (Master and workers) can
use the GPU simultaneously to accelerate the bounding of one
node on the GPU according to the PEB scheme. Increasing the
GPU occupation by this approach allows us to reach a relative
speedup of 93x as compared to an optimized sequential B&B. In
the same way, the fifth parallel approach H-PESB represents a
hybridization between the Multi-core approach and the PESB GPU-
based approach. Therefore, all host processes (Master and workers)
can use simultaneously the GPU to evaluate several nodes on the
GPU instead of one node in the H-PEB approach. The obtained
results for this last approach show a relative speedup of 160x as
compared to an optimized sequential B&B approach.

The remainder of this paper is organized as follows: Section 2
describes the blocking job shop scheduling problem and the al-
ternative graph model. Section 3 contains a brief description of
the sequential B&B algorithm and its components, in addition to
a detailed related work. Section 4 presents the proposed paral-
lelization approaches of the B&B algorithm. Section 5 discusses
computational results. Finally, conclusions and perspectives are
presented in Section 6.

2. Blocking job shop scheduling problem

In this section, we describe the problem treated in this paper
namely The Blocking Job Shop Scheduling Problem (BJSS). Before
describing formally the BJSS problem in Sections 2.2 and 2.3, we
begin this section by presenting a small BJSS example of two jobs
and three machines.

2.1. Example

Table 1 represents a BJSS instance with two products (jobs) and
three machines. The first product (J1) has 5 min processing time on
machine M1, 3 min on M2 and 8 min on machine M3. The second
product (J2) has 8 min processing time on machine M2, 2 min on
M1 and 7 min on machine M3.

Fig. 1 represents an alternative graph of the BJSS instance in
Table 1. This graph has three alternative pairs, two between block-
ing operations and one between ideal operations. Both operations
2 and 4 need the same machine M2 and since M2 cannot process
both operations at the same time, we associate them with an
alternative pair. Since operations 2 and 4 are blocking operations
the first alternative arc (3, 4) represents the choice where operation
2 must be finished before the beginning of operation 4. Its mate, arc
(2, 5) represents the choice whereby operation 4 must be finished
before the beginning of operation 2. We use the same process to

A. Dabah et al. /]. Parallel Distrib. Comput. 117 (2018) 73-86 75

{175

\4Jﬁ<5

Fig. 2. Schedule for BJSS Problem in Table 1 with Cmax = 26.

Processing time
Machines

2]
lir__]
Blocking time
M3 | |
M2
M1 NN |
time
4 3 12 16 2 26

Fig. 3. Gantt chart of the schedule in Fig. 2.

generate the alternative pair ((2, 5), (6, 1)) between operations 1
and 5. The alternative pair between operations 3 and 6 is ((3, 6), (6,
3)) because both operations 3 and 6 are ideal.

Fig. 2 shows a alternative graph representation of a feasible
schedule (solution) for the BJSS instance in Table 1. This schedule
is obtained by choosing one arc from each alternative pair in Fig. 1.
The Makespan (Cmax = 26) of this schedule is the longest path in
the obtained graph.

The Gantt chart in Fig. 3 represents both the processing and
blocking times of the solution in Fig. 2. For example, after the end of
its processing time, the job J 1 blocks the machine M 1 until machine
M2 becomes available for processing J1.

2.2. Problem formulation

The classical JSSP can be defined by a setJ of n jobs (J1, ..., Jn)
to be processed on a set M of m machines (M1, ..., Mm). Each
machine can process at most one job at a given time. The execution
of a job on a machine is called operation. We note by O the set
of all operations (01, ..., 0n4m). Each operation o; needs to use a
machine M(i) for an uninterrupted duration called processing time
pi. Each job has its own sequence of crossing on machines, which
creates precedence constraints between consecutive operations of
the same job. A solution (schedule) for this problem consists to
assign a starting and finishing times t; and c¢; for each operation
0; (i = 1,...,n % m); while satisfying all constraints. Our goal
is to minimize the Makespan (Cmax), which is the ending time
of a schedule. The JSSP assumes an unlimited intermediate buffer
capacity between consecutive operations of a job which is impos-
sible in real manufacturing. The BJSS is a version of the classical
JSSP with no intermediate buffers, where a job has to wait on
the current machine until the next machine becomes available for
processing. This problem can be presented as an alternative graph
model introduced by Mascis et al. [17]. This model represents a
generalization of the disjunctive graph of Roy and Sussman [28]. It
can be defined as a graph G = (N, F, A). N represents a set of nodes

.\ Pi N P -
i)0 (Wi > (a())

(j)———»lo0) (r
_/ ,Dj _/
Case 1. Case 2.

Fig. 4. Alternative pairs between blocking and ideal operations.

(operations) with two additional dummy nodes (start and finish)
modeling the start and the finishing of the schedule. F represents
a set of fixed arcs imposed by precedence constraints between
consecutive operations of the same job and fy, is the length of
arc (q, p) € F. Finally, A is a set of alternative pairs ((i, j), (h, k))
representing the processing order for concurrent operations on
the same machine and a; is the length of alternative arc (i, j).
Each alternative pair contains two alternative arcs and each one
of them expresses the fact that one operation must be completed
on the target machine before starting the processing of the other
operation. Moreover, Section 2.3.1 describes the alternative arcs
generation. A selection S; is a set of alternative arcs obtained from
A by choosing at most one alternative arc from each alternative
pair. We denote by G(S1) = (N, F U S7) the graph representation
of the selection S;. We note that a selection S; is feasible if there
is no positive length cycle in G(S1) and the evaluation (Makespan)
of this selection (S7) is the longest path in G(S;). We say that S,
is a complete selection if exactly one arc is chosen from each pair,
therefore |A| = |S;|. We define a schedule (solution of the problem)
as a complete feasible selection. Finally, given a feasible selection
S1,let I(i, j) be the length of the longest path from operationitojin
G(S1). We call the last operation of each job (example o,) an ideal
operation because the machine becomes immediately available
after the end of its processing time p,. In all other cases, o; is called
a blocking operation. In this case, we denote by o (i) the operation
immediately following o; in the same job.

2.3. Forming the graph of all possibilities (search graph)

The search graph represents the graph of all possibilities which
is used by the B&B algorithm as search tree root. This graph is
obtained by generating all alternative pairs, knowing that each
alternative pair represents the processing order between every
two concurrent operations. Therefore, if a machine has four con-
current operations, we need six alternative pairs to show all the
possibilities on how these operations are executed on the machine.
The alternative pair between every two concurrent operations is
generated as follow.

2.3.1. Alternative pair generation

Let us consider two blocking operations o0;, 0; and one ideal op-
eration o, where M(i) = M(j) = M(r). Since the three operations
cannot be executed at the same time, we associate them with pairs
of alternative arcs.

Case 1: the alternative pair between operations o; and o; (Fig. 4):
The first alternative arc (o (i),j) having length O represents the
situation where o; is processed before o;. Since o; is a blocking
operation, M(i) can begin the processing of o; only after the starting
time of o (i)(when o; leaves M(i)). The same method is followed for
the other alternative arc(o (j), i) since o; is a blocking operation.

Case 2: the alternative pair between operations o; and o, (Fig. 4):
It is the same process for the alternative arc (o (i), r) since o; is
a blocking operation. The other alternative arc depends on the
fact that o, is an ideal operation therefore, we add the alternative
arc(r, i) with length p,.

76 A. Dabah et al. /]. Parallel Distrib. Comput. 117 (2018) 73-86

Table 2

The description of the symbols used in our B & B algorithm.
Symbol Description
UB, LB Upper Bound, Lower Bound.
LIST A set of nodes (sub-problems).
Sk The optimal solution.
R; The ith successor of node R.
LB(R;) Lower bound of node R;.

3. The branch and bound algorithm for BJSS

The B&B algorithms make an intelligent enumeration of all
feasible solutions. They are mainly characterized by two operators:
branching and bounding. The branching is a recursive process,
which consists in replacing the search space of a given problem
by a set of smaller sub-problems. The bounding operator contains
two bounds: the Lower Bound (LB) and the Upper Bound (UB). The
LB represents an estimation of the lowest evaluation of all feasible
solutions in the considered sub-problem, while the UB represents
the upper limit of the evaluation of each search tree node. Any
solution to the problem can be considered as initial value for the
UB which is updated as soon as a new better solution is found by
the B&B algorithm. The B&B algorithm is based essentially on the
bounds to make an intelligent enumeration of the search space. The
elimination operator uses the bounds (LB and UB) to eliminate the
sub-problems that cannot lead to improve the current best solution
found by the algorithm.

The most effective B&B algorithms, for the JSSP, are based on
the disjunctive graph model [4]. Our sequential B&B is based on
the adaptation of this approach to the blocking case (alternative
graph) [17]. Our method which consists in fixing an order between
every two concurrent operations, which leads to fix the corre-
sponding alternative pair (from A) and a set of fixed arcs represents
a selection.

Algorithm 1 and Table 2 describe the used B&B algorithm.

Algorithm 1 Pseudo-code of the sequential B&B algorithm
LIST < {original problem};
UB <« o0;
while LIST != () do
R <« LIST (Choose a Node R from LIST);
Generate successors R; fromR | (i =1, ..., n);
for Each successor R; do
if LB(R;) < UB then
if R; represents one solution then
UB = LB(R;);
s* = solution in R;;
else
LIST = LIST UR;;
end if
end if
end for
end while
return s*

In the following, we describe the different operators of the used
B&B algorithm for the BJSS problem.

3.1. Branching

The B&B algorithm can be represented by a search tree. The tree
is rooted by the original problem, i.e. no alternative pairs are fixed
(|So| = 0). Asearch tree node R is characterized by (Sg, Ag) and rep-
resented by the graph G(Sg) = (N, FUSR). Sg denotes the set of fixed
alternative arcs and Ag represents a set of unselected alternative

Fig. 5. Alternative graph for BJSS instance with two jobs and two machines.

pairs in this node. The branching creates two immediate successors
(R1, R2) of R by fixing an alternative pair ((i, j), (h, k)) € Ag that
has a direct impact on the longest path in the graph. The node R1
(resp. R2)is characterized by Sgy = SgU(i, j) (resp. Sgo = SgU(h, k))
and Ag; = Ag — {((i,), (h, k))}. Each successor represents the sub-
search space related to the fixed alternative arc. After this, each
successor is handled recursively in the same way until we find a
complete selection, or we eliminate the sub-problem (prune the
tree) if the lower bound value is bigger than the upper bound.
Finally, the exploration strategy represents the way the search tree
is explored. Several exploration strategies exist in the literature
such as best first exploration, worst first exploration, and breadth-
first exploration. The exploration strategy used in our case consists
to choose the after a branching process the node with the biggest
Makespan (worst first). Unlike the best-first exploration strategy,
the worst-first exploration strategy has more chance to reach leaf
nodes (solutions) therefore, more chance to improve the UB and
eliminate a large number of branches.

Fig. 5 represents the alternative graph of a BJSS instance with 2
jobs and 2 machines. The Figure shows also the existence of two
alternative pairs: the first pair ((2, 3), (4, 1)) is between operations
1 and 3 and the second pair ((2, 4), (4, 2)) is between operations 2
and 4.

Fig. 6 represents the search tree of the BJSS instance in Fig. 5
which contains two alternative pairs. At each level, one pair is
fixed which generate two sub-problems. This process is repeated
until a complete feasible selection is obtained or an infeasibility is
detected.

Fig. 7 represents the alternative graph of the optimal solution
obtained from the search tree in Fig. 6.

3.2. Evaluation (bounding)

Any solution of the problem can be considered as an initial value
for the Upper Bound (UB) which is updated as soon as a new better
solution is found. In our case, the UB = +o0.

After the branching operation, the bounding process consists to
calculate the Lower Bound (LB) for each sub-problem. The LB used
in our case is the one used by Carlier et al. [5] to solve optimally
the classical JSSP, it is based on the one machine scheduling problem.
Therefore, we calculate the lower bound for each machine [using
concurrent operations on it:

LB; = Minr; + Xp; + Ming;/M(i) = 1,1 = {1, ..., m}.
The LB for the sub-problem is equal to the maximum value of LB;.
LB = Max{LB}}/,1 = {1, ..., m}.

To do a link with the alternative graph model, each search tree
node represents an alternative graph. This lower bound cannot be
calculated without the new head and tail values for each operation
affected by the branching process. (H; = 1(0,i), T; = I(i,n x m)
[(i = 1,...,n % m). The process of adjusting the head and tail

A. Dabah et al. /]. Parallel Distrib. Comput. 117 (2018) 73-86 77

Initial problem no alternatives
arcs fixed (S= {¢})

S={¢}

| AS@ I D)s (492)

Upper Bound

‘ o0 >23

Branch pruned ‘

S={(42}
A={(2 34 D)}

o0 >23

‘ S={4,2); (2 3)} ‘ ‘ S={(4,2); (41} ‘
A={0} A={¢}
i New UB=23

A

Infeasible selection
LB= o

Lower Bound

23>20

‘ S={2 9}
A={(2 34 D)}

23>20 23>00

‘ S={2.4);(23)} ‘ ‘ S={(2,4); (4, 1)} ‘
A={¢} A={0}
New UB=20

4

Optimal solution

-~ new solutions """

Fig. 6. Search tree for the BJSS instance in Fig. 5.

Fig. 7. Alternative graph of the optimal solution (Cmax = 20).

values is very expensive and consumes 70% of global execution
time. This process is done sequentially for all operations affected
by the change made and can be repeated several times for the same
operation if there are multiple paths leading to this operation.

3.2.1. Immediate selection

The immediate selection represents several techniques allow-
ing to accelerate the B&B algorithm by reducing the number of
branching necessary to obtain the optimal solution. This process
is done sequentially and costs 20% of the global processing time
since there is a large number of alternative pairs (99,000 for big in-
stances). This process uses also the head and tail values computed
in the bounding process. Given a search tree node (sub-problem) R
with a feasible selection Sk and a set of unselected pairs Ag. For each
unselected pair ((i, j), (h, k)) € Ag, if (0, h) 4+ apx + I(k, n) > UB
then Sg = Sg U(i, j). This rule expresses the fact that adding the arc
(k, h) (resp. (i, j)) to Sg will produce a sub-problem with a lower
bound greater than the upper bound. Consequently the arc (i, j)
(resp. (h, k)) is added to Sg. If both alternative arcs (i, j) and (h, k)
do not satisfy the condition of LB < UB, we prune the branch by
eliminating node R, since this latter cannot contain a solution that
can improve the best solution found by the B&B algorithm.

The complexity of the evaluation process depends on the num-
ber of operations (n x m) in the treated instance. Therefore, the
evaluation time increases by increasing the size of the instances.
The implementation of the evaluation process, requires six data
structures. The matrix Succ ((n * m) x n) contains the successors of
each operation, i.e. row i represents the successors of operation o;.
Similarly, the matrix Pred ((n*m) x n) contains the predecessors of

each operation. Vector S contains all selected and unselected pairs.
Vector H (resp. T) contains the Head (resp. Tail) of each operation.
The element H[i] = (0, i) represents the longest path from o, to
o0;. Similarly, T[i] = I(i, n * m) the longest path from o; to the last
operation in the graph 0,,.

3.3. Related works

The BJSS problem can be solved using either exact or approx-
imate methods. In the literature, several heuristics and meta-
heuristics have been proposed to solve the BJSS problem as in
[18,15,1,25,21,26,12]. In addition, heuristics as in [29,32] and stud-
ies on meta-heuristics based on multi-agent systems have proven
their efficiency in solving other optimization problems, among
them we can find [2,24,23].

In this paper, we focus on accelerating the B&B algorithm us-
ing multi-cores CPUs and GPUs simultaneously. Most of the B&B
algorithms for the job shop problem are based on the one machine
scheduling problem proposed by Carlier et al. [5].

Only a few authors tried to solve optimally the BJSS problem,
the most effective one which is the base of our sequential version is
proposed by Mascis et al. [17]. The authors formulate the problem
by means of an alternative graph model which is a generalization
of the disjunctive graph of Roy and Sussman [28]. Based on this
model, they solve optimally the 10 x 10 benchmark instances of
this problem.

Ait Zai et al. [1], proposed an original B&B method based on
graph theory to solve the BJSS problem. The idea of its branching
scheme relies on the implicit enumeration of all possible combi-
nations on a given machine. The authors gave solutions for local
instances only.

The B&B algorithms are not efficient when dealing with large
problem instances, therefore computing accelerators like GPUs are
required. Several authors have proposed to accelerate the B&B
method using GPUs. This work represents an extension of our work
in [13], in which we added three parallel approaches in order to
fully occupy the GPU. This extension allowed us to increase the
performance of our approaches by 74% to reach a speedup of 164x
compared to 90x in [13]. In [14], we propose a preliminary version
of the B&B algorithm dedicated to treat small instances (less than
50 jobs), the concept of the parallelization is kept for the two GPU
approaches. However, to treat large instances we had to redesign
the code and the GPU memory management to deal with such huge

78 A. Dabah et al. /]. Parallel Distrib. Comput. 117 (2018) 73-86

generated data. The performance obtained in this paper boost the
speedup to reach a 164X compared to 60x in [14].

Chakroun et al. [8,19], take the classical approach of sending
nodes to be evaluated on GPU to solve the Flow shop scheduling
problem since this step takes more than 98% of the global execution
time. Therefore, each GPU thread supports the evaluation of a
single node of the search tree. In [3,7] the authors extend the
approach below to exploit the Multi-core CPU processors in the
generalization of sub-problems that are going to be sent to the GPU
for evaluation.

In [11], Alami et al. proposed a CPU-GPU based B&B applied to
the knapsack problem. In this scheme, the branching and bounding
can be done either on the CPU or the GPU according to the size of
the search tree. This approach uses less CPU-GPU communication
and better management of data-structures in the GPU memory.

In [6], Carneiro et al. applied the B&B to the traveling salesman
problem where a pool of nodes is sent to the GPU for evaluation.
Each GPU-thread applies the branching and bounding operators to
a single node and builds its own local tree. The resulting nodes are
moved back to the CPU where the promising nodes are inserted
into the tree.

In [20], the authors proposed multi-core and many-core parallel
B&B for big optimization problems. The authors proposed two
parallel B&B implementations, the first one focuses on exploiting
the traditional multi-core CPU processors, while the seconds one is
dedicated for Intel Xeon Phi coprocessors considering both native
and offload modes. The reported results show that the many-core
approaches (native and offload) are twice faster as compared with
the multi-core approach.

In [27], the authors proposed a parallel B&B algorithm ex-
ploiting the advantage of instance-specific computing on Field
Programmable Gate Array (FPGA) which has proven to be highly
efficient in term of area, energy consumption, and performance.
In addition, the proposed parallelization is based on work stealing
strategies to ensure dynamic load-balancing between the parallel
threads. The author’s approach was applied on the reconstruction
of corrupted AES keys problem, the reported results show an
overall speedup of 47x.

In [31], Trong and Bilel proposed parallel B&B for large-scale
heterogeneous distributed platforms with several distributed CPUs
and GPUs. The proposed approaches address the critical issue of
how to map B&B workload with the different levels of parallelism
exposed by the target compute platform. The reported results
show the significant impact of the adaptive load balancing among
the heterogeneous compute resources on the performance.

Most of the previously cited works focus on exploiting the GPU
part and ignoring the available CPU-cores. Also, most authors use
the parallel evaluation of bounds model in which each GPU thread
supports the bounding of a single search tree node. This repre-
sents a lot of calculation and lot of resources for a single thread
which may limit the performance. For this reason, we propose in
this paper new parallelization schemes, that exploit and combine
different parallelization levels to accelerate the B&B execution time
using Nvidia MPS.

4. The proposed parallelization approaches for the B&B algo-
rithm

The fact that each node of the B&B search-tree can be explored
independently amplifies the parallelization of this algorithm. The
only global information in the algorithm is the value of the upper
bound.

The algorithm parallelization may depend on the architecture
of the processing machine, synchronization, granularity of tasks
and communication between different processes. There are several
classes of the B&B parallelization. For more details, the reader may
refer to [12]. In the following, we present our proposed parallel B&B
approaches for the BJSS problem.

4.1. Multi-search parallel B&B on multi-core CPU

In this section, we describe the proposed parallel B&B algorithm
exploiting the CPU-cores available in all recent computers. The
proposed approach (see Fig. 8) is based on the master/worker
paradigm. A work-pool represents a set of active sub-problems.
There is a unique master work-pool owned and managed only by
the master process which contains the sequential search tree and
several local work-pools, empty initially, owned by the different
workers. Both of the master and workers work-pools are managed
in the same way. The exploration of the search-tree is done simul-
taneously by the master and workers since each one of them has
its own instance of the B&B algorithm that uses a local work-pool.
The results given by a worker can influence others. Therefore, our
approach can be seen as a multi-search parallelization in which the
goal is to accelerate the exploration of master search tree stored
in the master pool. We call blocked worker, a worker with an
empty work-pool waiting for a sub-problem to explore. The master
process initializes the search by creating the root node, launches its
own B&B algorithm which generates a set of active sub-problems
stored in the master work-pool. After that, the master wakes up
the blocked workers by sending them sub-problems from master
work-pool. After that, each worker launches its own B&B algo-
rithm. During the search, the local work-pools evolve continuously
and when they become empty, the corresponding workers send
a request to the master and wait for sub-problems. When the
master receives a request, it satisfies the request if the global pool
is not empty. When the global work-pool is empty, the master
sends a request to all workers to send him back a sub-problem.
Two states are then reserved for each process (blocked or active).
Each time the global work-pool is empty, the master checks the
state of all workers. If all the workers are blocked, then the master
ends the calculation and frees the workers. The workers perform
a depth-first strategy in order to reach quickly feasible solutions or
eliminate the branches if the lower bound is greater than the upper
bound. A worker which finds a better solution than the current
best one broadcasts the new value to all workers via the master
to ensure an efficient pruning process. An extended version of this
approach that exploits the computing power provided by cluster-
based architectures is presented in [11].

4.2. The proposed GPU-based B&B schemes

In this section, we describe our B&B GPU-based parallelization
schemes. These schemes were firstly tested on small instances
then adapted here for large Taillard instances. To handle such
huge instances, we had to readjust the memory allocation and the
distribution of the work-units over the threads of a block since the
number of the graph operations for large instances is much bigger
than the maximum number of threads in GPU block.

The GPU architectures are based on Single Instruction, Multiple
Threads (SIMT) paradigm. According to this paradigm, the same
program called kernel is executed simultaneously by a set of paral-
lel threads with different data. The threads are organized according
to a grid of thread-blocks hierarchy specified in the kernel call.
The grid represents a set of thread-blocks. Threads of the same
block can cooperate by using a private shared memory and barrier
of synchronization. Threads can access multiple memory spaces:
constant memory and texture memory are read-only cached mem-
ory accessible by all threads. The global memory is a read-write
memory, also accessible by all threads. Unlike the global memory
the shared memory is a cached memory accessible only by threads
in the same block [10].

A. Dabah et al. /]. Parallel Distrib. Comput. 117 (2018) 73-86

Sub—problem
\

79

Master

CPU core
~ 7N

Master Pool

Q)‘/

MAJ UB

@O0 -0

@00

R%)
O/Q
o ©

é@

R@
O@

Worker 1 Worker 2

Fig. 8. Global architecture of the p

Worker N

roposed master/worker parallelization.

CPU GPU
Root node >
Block 0
ThO
. Thl
H I
S ' b
= \ !
§ ! !
E ; Node 1 2 | N
4 N (int { H; int * T int) g | g
§ T T i S ! :
s ! @ z !
g I S =
= | £ _L ;
kS TN 2 Thn =
{ONN GRS 2
3 - S
' » Node 1
= RN (int[* H'; int * T"; int * S°)
e [Block 1 (not used)]
I
l
[Block n (not used)]

Fig. 9. GPU Evaluation of a single node.

4.2.1. Parallel evaluation of the bound (PEB)

We have seen in Section 3 that the evaluation process and the
immediate selection consume together more than 90% of the global
execution time, therefore, it is crucial to accelerate this phase in
order to reduce the B&B execution time.

In the following, we present our proposed node-based par-
allelization scheme for the B&B algorithm exploiting the GPU-
based architectures. The proposed scheme referred to as Parallel
Evaluation of the Bound (PEB), exploits the idea that the evaluation
and immediate-selection for each node can be done in parallel
using several threads.

As shown in Figs. 9 and 10, this approach uses the same design
as the sequential B&B algorithm except that the evaluation (bound-
ing) of each node is done in parallel on GPU. As already presented,
each node of the search tree represents a graph of n x m operations.
The bounding process consists in updating the head and tail values
for each operation in the graph. The parallel PEB scheme is based on
the idea that each GPU-thread updates the head and tail values for a
single operation in the graph. This scheme exploits the fact that the
updating process can be done independently for each operation.
Therefore, the GPU block size is equal to the number of operations
in the graph (n x m). As shown in Fig. 9, at each iteration, only

80 A. Dabah et al. /]. Parallel Distrib. Comput. 117 (2018) 73-86

CPU
Begin

Selection Process

Branching Process
Creation of two nodes

Node i

GPU

Evaluation of Node i

Node i’

7[Elimination Process }

O

End

Block 0

Evaluation Node i

|

Immediate—Selection node i

GPU Memory

Fig. 10. Parallel evaluation of one bound (PEB scheme).

one node is sent to the GPU for evaluation and immediate selection
using one thread-block. The bounding begins by copying the head
and tail vectors to the shared memory, i.e. each thread copies the
head and tail values relative to its id. After that, each thread updates
the head and tail values (H[i], T[i]) for the operation relative to its
id (i) using respectively the head of its predecessors and the tail of
its successors.

H[i] = Max {H[r] + py}/r € Pred[i].
T[i] = Max {T[r] + pi}/r € Succli].

At the end of this computation, each thread waits for the other
threads of the block using a barrier of synchronization to ensure
the visibility of the new head and tail values to all threads of the
block which is important to have a valid update process.

The work is repeated several times until there is no update
of the head or the tail values for all threads or an infeasibility is
detected.

After the end of the bounding process, each thread computes
the immediate selection for a set of unselected alternative pairs
using the new head and tail values. Finally, the new results are
sent back to the CPU to be used by the branching and elimination
process.

As can be seen in Fig. 9, a single block is used on the GPU to
evaluate one node while the other blocks are idle. The weakness of
this solution lies in the under-utilization of the GPU capacity and
thus a waste of a significant computing power. To overcome this
drawback, we propose a second level of parallelization.

4.2.2. Parallel evaluation of several bounds (PESB)

We propose in this section a second level of parallelization al-
lowing to increase the occupation of the GPU. This level represents
a generalization of the first scheme (PEB) called Parallel Evaluation
of Several Bounds (PESB). The goal here is to increase the GPU

occupation by generalizing the idea of the first level (Bounding
is faster) to exploit more efficiently the GPU computing power.
Therefore, at each iteration of the B&B algorithm, a pool of nodes is
sent to the GPU for the evaluation and immediate-selection instead
of one. i.e. each GPU-block supports the evaluation of a single node.
Then, the new results of nodes are sent back to the CPU to be used
by the selection, branching, and elimination processes. As shown in
Fig. 11, this approach has only one instance of the B&B algorithm
running on the CPU. The nodes sent to the GPU for evaluation are
chosen among the nodes recently added in the B&B work-pool
which allows to avoid memory saturation by exploring the search
tree in depth-first order.

As we have already seen, five data structures are used for the
bounding of each node on the GPU. The vectors Head (H [m=n]), Tail
(T [n % m]) and alternative pairs (S [nbpair]) are sent from the CPU
to the GPU. Therefore, they are stored in the global memory of the
GPU. The matrices Succ and Pred are also stored in the GPU global
memory. These two matrices are calculated on the GPU using the
vector S as an initialization for the bounding. To accelerate this
initialization phase the calculation is divided across all the threads
of the block.

The access to the global memory is much longer than the shared
memory, but the latter is smaller compared to the global memory.
The number of blocks that can run in parallel on each Streaming
Multiprocessor depends on the amount of shared memory used by
each block. Therefore, we use the shared memory only for the head
and tail vectors in order to have a large number of blocks running
in parallel and since there is a high number of accesses to these
vectors.

The weakness of the previous approaches lies in the under-
utilization of the GPU capacity in addition to the multi-core CPU
processors and thus a waste of significant computing power. To
overcome this drawback and increase the GPU occupation, we
propose a hybridization between the Multi-core CPUs and the GPU-
based approaches.

A. Dabah et al. /]. Parallel Distrib. Comput. 117 (2018) 73-86 81

CPU

root node ---->

I ... Node4 I

1 ... Node4

Evaluation Node 1

<+——= | Thn*m |<—=

Block 3

Hierarchical Memory

New }Vades

ée@
I
|

N

Evaluation Node 4

Fig. 11. GPU evaluation of several nodes.

OS Process OS Process
MPS Client MPS Client
CUDA CUDA
Context Context
[\‘ MPS Server Process ‘;']
" v]
RS AN

1 1
! Client /: GPU ! Client /:

Fig. 12. MPS components.

4.3. Hybrid master-worker/GPU-based parallelization

In this section, we present two hybrid approaches based on the
Nvidia Multi Processes Service (MPS). This tool is a client-server
runtime implementation of the CUDA API used to increase the
overall GPU utilization. Without MPS, only one host process can use
the GPU at a given time. Therefore, it potentially may underutilize
the GPU resources. To overcome this problem, Nvidia provides
the MPS to enable multiple host processes, like MPI processes,
to use the Hyper-Q capability on the Nvidia Kepler GPUs. Hyper-
Q allows a single host process to execute multiple CUDA kernels
concurrently on the same GPU. As we can see in Fig. 12, the MPS
consists of several components: the Control Daemon Process is
responsible for starting and stopping the MPS server, as well as
coordinating connections between clients and the server [9].

The server process provides the connection between clients
and the GPU which allows concurrency. Each process (client) has
its own CUDA context for its GPU operations. When the MPS
client connects to the control daemon, the later creates an MPS
server if no server is active, then the client proceeds to connect
with the server [9]. Note that all communications between MPS
clients/server and MPS control daemon are done using a named

mkdir /tmp/mps /tmp/mps-log

export CUDA_VISIBLE_DEVICES=0 # SELECT GPU 0.

export CUDA_MPS_PIPE_DIRECTORY=/tmp/mps #NAMED PIPES

export CUDA_MPS_LOG_DIRECTORY=/tmp/mps-log # LOGFILES

nvidia-cuda-mps-control -d # START THE DAEMON

unset CUDA_VISIBLE_DEVICES

mpirun -x CUDA_MPS_PIPE_DIRECTORY=/tmp/mps -np 35 ./BB

export CUDA_MPS_PIPE_DIRECTORY=/tmp/mps # SELECT THE LOCATION OF MPS DAEMON
echo quit | nvidia-cuda-mps-control

STOP MPS DAEMON

rm -rf /tmp/mps /tmp/mps-log

Fig. 13. Running MPI application using MPS.

Pipe. Furthermore, Fig. 13. shows how to use the Multi Processes
Service (MPS) to run MPI applications.

4.3.1. Hybrid parallel evaluation of the bound (H-PEB)

We propose in this section a hybridization of the first two
approaches (Multi-core and GPU node based) to increase the GPU
occupation and then improve the runtime. This version generalizes
the idea of the PEB approach to exploit the advantages of both
the Multi-core CPU processors and the GPU at the same time.
The hybrid approach is based on concurrent kernels execution
provided by Nvidia in devices with a compute capability of 2.x
and higher. The maximum number of kernels that a device can
execute concurrently varies between 16 and 32 according to device
compute capability [10].

Therefore, in our proposed scheme (see Fig. 14), several CPU
processes from the Multi-core approach (the Master or the work-
ers) launch their kernels simultaneously on the GPU in order to
accelerate the bounding of one node at a time according to the
PEB scheme. Each host (MPI) process launches its own kernel in
the default stream and the MPS server manages to execute the
kernels in parallel by using different CUDA-Streams. The advantage
of our hybrid approach based on concurrent kernel’s execution
is the occupation of the GPU over time. i.e. at each moment, our

82 A. Dabah et al. /]. Parallel Distrib. Comput. 117 (2018) 73-86

CPU

Master

root node ----

GPU

Block 0 (Kernel 0)

QQH
:
‘

=
3
=
© HH :
Node 3 Q
Kernel 0
Node 3
Elimination

Worker 1 Worker n g

2

z

Node4 £

© 00 © g
\<D Node 4

Node 2 = ™o |=—
i

Kernel 1

-
=
]
]
3

I
++—=| Thn*m | ==

Fig. 14. Hybrid multi-core CPU/GPU approach.

hybrid approach can have simultaneously several workers execut-
ing instructions on the GPU while others perform data-transfer
to/from the GPU and yet others apply the selection and elimination
operators on the CPU. Using this approach, we have been able to
increase the occupation of the GPU but this later still not yet fully
occupied because of the limited number of parallel processes and
the number of nodes sent by each process. For this reason, we
propose in the following another hybrid parallel approach to fully
occupy the GPU.

4.3.2. Hybrid parallel evaluation of several bounds (H-PESB)

In order to fully occupy the GPU, we propose in the follow-
ing the last parallel approach called Hybrid Parallel Evaluation of
Several Bounds (H-PESB). This approach represents a hybridization
between the multi-core approach and the PESB approach using the
Nvidia MPS allowing several MPI-processes to use the GPU at the
same time. Each mpi-process (master, workers) has its own B&B
algorithm and use the GPU to evaluate a pool of node according to
the PESB scheme. Thanks to MPS-server, each MPI-process uses the
GPU like it is the only one using it. Therefore, the communication
between the CPU and the GPU is done exactly in the same way as
in one host process case. This approach is also similar to the H-PEB
scheme, except that at each iteration, each host process sends a
pool of nodes to the GPU for evaluation and immediate-selection
instead of one node at a time. i.e. several GPU-blocks are allocated
for each MPI-process and each one of them supports the evaluation
of a single node. Therefore, each thread of the block update the
head and tail values for one or several operations. The nodes sent
by each mpi-process to the GPU for evaluation are chosen among
the nodes recently added in the mpi-process B&B work-pool. At the
end, the bounding results of nodes are sent back to the CPU to be
used by the corresponding mpi-process for the selection, branch-
ing and elimination operations. As shown in Fig. 15, the search
tree is explored simultaneously by several B&B instances and each
instance uses the GPU according to the PESB model. The master
divides the search space between the workers. After that, each
worker explores its search space independently from the others
and uses the GPU to evaluate several nodes at a time. As explained
previously, The master and workers use the GPU simultaneously
thanks to the Nvidia MPS that allows concurrent kernels execution
while respecting the availability of GPU resources.

5. Experimentations

In this section, computational results are given using bench-
marks obtained from the well known classical job shop instances
by replacing the infinite buffer capacity by a zero buffer capac-
ity constraint. We tested our approaches using the benchmark
instances proposed by Taillard’s [30]. The different instances are
denoted by n x m, where n and m represent respectively the num-
ber of jobs and the number of machines. The size of the Taillard’s
instances for the job shop problem varies between 15 x 15 and
100 x 20. The experiments have been carried out using Intel Xeon
E5640 CPU with four CPU-cores, 2.67 GHz clock speed each and
Nvidia Tesla K40 with CUDA cores and 12 GB GDDR5 of global
memory. The approaches have been implemented using C-CUDA
7.0, C++and MPI [22] as a communication tool between processes.
All reported times in this paper represent the average time to
explore an equal number of nodes for each benchmark size. In our
case, this number is fixed to 700,000 nodes, which is acceptable
since an optimized sequential B&B algorithm takes 19 h to explore
them all.

For the 100 x 20 benchmark instances there are 2002 opera-
tions. Since the GPU hardware limit is 1024 threads per block, we
adapt the PEB approach to enable each thread to treat 2 operations
instead of one which enables us to treat such big instances.

Fig. 16 shows the execution time needed for the Multi-core CPU
and H-PEB approaches to explore 700,000 nodes using a different
number of MPI-processes. For the Multi-core approach, the best
time is reached for five MPI-processes. After that, we notice an
increase in execution time when increasing the number of parallel
MPI-processes. This can be explained by the limited number of
CPU-cores available in our workstation (four cores). Therefore,
the worker’s tasks are executed sequentially when the number of
workers is above four. For the Hybrid H-PEB approach the best time
is reached for 35 processes which is the maximum supported since
the Nvidia MPS support up to 35 connections to the MPS server.
This hybrid version supports a large number of workers compared
to the Multi-core version since each worker has less than 15% of its
execution time on the CPU.

For the H-PESB approach, there is no easy way to find the best
configuration. For each instance, we have to test several configu-
rations and take the best one among them. Each configuration is
defined as the number of MPI-processes and the number of nodes

A. Dabah et al. /]. Parallel Distrib. Comput. 117 (2018) 73-86

CPU

83

GPU

Master

Block 0

Node

<9

Noded

pool to evaluate

AR .
\ 7 Elimination
New Nodes

Worker 1

O O <9e>
Y:] . i
"/// % . Thntm |<—=
e i <—=|Thnm

=—=|Thn*m [<=—=

Block 1

Evaluation

Worker n

Wode 1 ... Noded

Evaluation

Hierarchical Memory

Node I ... Noded

Block k

@e
T @

3
3
=
S
Q

Fig. 15. Hybrid parallel evaluation of several bounds (H-PESB).

4500

4000

3500

3000

2500
-+ H-PEB

M-core

Time (s)

2000
1500
1000

500

0 MPI-processes
2 5 15 25 35

Fig. 16. Impact of using different number of MPI-processes to explore 700,000
nodes for Tai61 instance.

sent to the GPU by each mpi-process at each iteration. As illustrated
in Fig. 17 and unlike the H-PEB approach, the best performance is
reached for low number of MPI-processes, because the MPS server
can manage simultaneously a limited number of physical contexts
(one for each parallel process) because of the large amount of vir-
tual memory allocated to each process matching the size of nodes
sent to the GPU. For the H-PEB approach, we can simultaneously
manage a large number of physical context (35) because of the low
virtual memory allocated to each process matching the size of one
node only. We notice also from Fig. 17 that it is more benefit to
increase the number of nodes sent to the GPU instead of increasing
the number of MPI-process. Therefore for each instance, we fixed
the number of MPI-processes to 5 and we increase the number of
nodes sent to the GPU while it reduces the execution time needed
to explore 700,000 nodes.

Table 3 reports the average execution times for each approach
to explore 700,000 nodes. The first column (Size) reports the size
of the benchmark instances. Column B&B,, reports the average
execution time of an optimized sequential B&B algorithm. Column
B&B gives the execution time obtained by our Master/worker

Mcore

300

264

250

200

150 3 -+ H-PESB

Time (s)

100

50

0
5x24 6x24 5x26 6x26
Configurtions (MPI-processes x Nodes sent by each one to the GPU)

5x28

Fig. 17. H-PESB execution time using different configurations to explore 700,000
nodes for Tai61 instance.

approach exploiting only the Multi-cores CPU using 4 workers.
For the all other approaches columns Time and nb-nodes report
respectively the average execution time needed by each approach
to explore 700,000 nodes and the number of nodes sent to the GPU
at each iteration. For each column the parameter nb_pr indicates
the number of parallel processes running simultaneously on the
CPU according to the master/worker paradigm.

Column PEB reports the results of our GPU node-based approach
obtained by sending one node at a time for parallel evaluation
on the GPU. Column PESB reports the results of our second GPU-
based approach obtained by sending several nodes to the GPU to
be evaluated simultaneously and each one of them is evaluated in
parallel using one block of GPU threads.

Columns H-PEB and H-PESB reports the results of the hy-
bridization between the Multi-core approach and PEB, PESB GPU
approaches using Nvidia MPS i.e. both master and workers use
simultaneously the GPU to accelerate they respective bounding
processes.

As mentioned before, 35 MPI-processes are used in the H-PEB
approach and each one uses the default CUDA Stream to launch its

84 A. Dabah et al. /]. Parallel Distrib. Comput. 117 (2018) 73-86

Table 3

Average execution time (in seconds) of the proposed approaches to explore 700,000 nodes. nb-pr: The number of parallel (host) processes running simultaneously.
nb-nodes: The number of nodes evaluated simultaneously on the GPU by each parallel process.

Size B & Beq. B&B, . PEB (nb_pr=1) H-PEB (nb_pr = 35) PESB (nb_pr =1) H-PESB (nb_pr = 5)
nb-nodes Time nb-nodes Time nb-nodes Time nb-nodes Time

15x 15 188 52 1 603 1 162 240 37 90 60
20 x 15 384 113 1 653 1 164 240 53 90 59
20 x 20 393 120 1 736 1 173 240 71 86 58
30x 15 1,076 375 1 795 1 180 240 104 54 60
30 x 20 1,127 447 1 955 1 209 140 156 46 71
50 x 15 4,246 1,454 1 1162 1 270 80 280 34 103
50 x 20 10,546 3,728 1 1530 1 340 30 396 26 145
100 x 20 69,300 19,200 1 3760 1 741 20 1050 20 418

10000 Table 4

9000 The number of GPU communications needed for each approach to explore 700,000

nodes.
8000 Approaches #processes #nodes sent GPU communications
7000 Multi-core 5 0 0
PEB 1 1 1400,000

6000 s H-PEB 35 1 40,000
0 uPEB H-PESB 5 20 14,000
o> 5000 mPESB
£ H-PEB
IS mH-PESB

4000
3000

2000

e ad Lk N

15x15 20x15 20x20 30x15 30x20 50x15 50x20 100x20

Size of Instances

Fig. 18. Execution time of the proposed approaches.

kernel to evaluate one node at a time. For the H-PESB approach, we
fixed the number of parallel processes to 5 due to the huge amount
of virtual memory matching the number of nodes sent to the GPU.

We notice from Table 3 that the complexity and the execution
time increase when increasing the size of instances. Therefore, the
need for parallelization is crucial.

Fig. 18 shows the histogram representation of the execution
time for the different approaches. The first result from Table 3
and Fig. 18 is the positive impact of using parallel architectures to
reduce the execution time needed to solve the BJSS problem.

The improvement obtained with the Multi-core version is low
which is expected since our workstation contains only four CPU-
cores. Therefore, increasing the number of workers above four
reduces further the obtained performances. For the PEB version,
we notice a low performance for small instances (15 x 15 — 30 x
20) against the Multi-core and sequential approaches. This can be
explained by the high ratio of communication to computing time
on the GPU i.e. the approach passes more time in sending data
and recovering results to/from the GPU. By increasing the size of
instances, we notice a significant improvement in execution time
as compared with the sequential and multi-core cases. In addition
to the efficiency in reducing the execution time for large instances,
the PEB approach does not depend on the GPU capacity since it uses
a small amount of GPU resources. However, only one block is used
and the other blocks remain idle. Therefore, this approach cannot
benefit from the entire GPU capacity.

The performance of the PESB approach depends on the number
of nodes that the GPU can evaluate simultaneously which is de-
termined by the amount of the shared memory used by each GPU
block to evaluate a node. The number of nodes evaluated simul-
taneously for small instances is equal to the maximum number of
block that our GPU can run simultaneously (240). By increasing the

size of instances, the number of nodes evaluated simultaneously
matching the number of parallel blocks that a GPU can handle
decreases. This behavior can be explained by the huge amount of
shared memory needed to each block for large instances. Since the
amount of shared memory is fixed, the number of parallel block
decreases by increasing the shared memory used by each block
matching the generated data for the handled instance used for
synchronization. By sending several nodes at a time instead of one
in the PEB approach, we have been able to reduce the execution
time by a factor of 3 as compared with the PEB approach and a
factor of 18x as compared to the multi-core version.

The hybrid approach (H-PEB) reduces considerably the execu-
tion time even for small instances against the sequential approach.
This performance represents the results of exploiting both the
CPU-cores and the GPU at the same time by using concurrent ker-
nels execution provided by Nvidia MPS which allows us to increase
the GPU occupation. Furthermore, the wasted time in CPU/GPU
communications is covered by the concurrent access to the GPU
where several workers execute their bounding operation at the
same time. This hybridization allows us to reduce the execution
time by a factor of 5x as compared with the PEB approach and
a factor of 26x as compared with the multi-core version. Unlike
smaller instances, the H-PEB approach outperforms the results of
the PESB approach for large instances due to the limited number of
nodes handled simultaneously by this later.

Our last parallel approach (H-PESB) is also based on the Nvidia
MPS, it represents a hybridization between the multi-core ap-
proach and the PESB approach. This approach fully occupies the
GPU which explains the good obtained performance even for the
smaller instances. The result of this approach is 2 times faster
as compared to the PESB approach and 46 times faster as com-
pared with the multi-core version. The results of our two hybrid
approaches show clearly the benefit of using both the multi-core
CPU and the GPU at the same time as compared with approaches
exploiting only the Multi-core CPU or only the GPU.

We notice for our experience of using Nvidia MPS that the
best performance is obtained for a large number of parallel host
processes as we can notice from the H-PEB results in Table 3 and
Fig. 16. But, This depends on the MPS server resources i.e. if he has
enough virtual memory space for the parallel processes which is
not the case in the H-PESB approach.

Table 4 shows the number of GPU communications needed
for each approach to explore 700,000 nodes. For each approach,
column processes reports the number of used parallel processes.

A. Dabah et al. /]. Parallel Distrib. Comput. 117 (2018) 73-86 85

180

160

= Multi-core
o 100 uPEB
3 mPESB
3 H-PEB
& 80 wH-PESB

O-J--JI-JI-JI-JIJlJ

15x15 20x15 20x20 30x15 30x20 50x15 50x20 100x20

Size of instances

Fig. 19. The speedup of the proposed approaches.

Column nodes reports the number of nodes sent by each process.
Finally, column GPU communications reports the number commu-
nications between the CPU and the GPU. The PEB approach has
a huge number of GPU communications (1400,000) because, at
each iteration, only one node is sent to the GPU then the results
are moved back to the CPU. For the H-PEB approach we have
40,000 communications since, at each iteration, we can have 35
connections at the same time to the GPU without blocking. The
same for the H-PESB approach, the later reduces more the number
of communications to the GPU which explains the obtained perfor-
mances.

Fig. 19 shows the relative speedup of our proposed approaches
for different problem sizes. The speedup of our Multi-core version
is around four, for all sizes which is expected since it depends on
the number of CPU-cores available in our workstation. The speed-
up of the other approaches is proportional to the size of instances.
Therefore, the maximum speed-up is obtained for the 100 x 20
instances. This is logical because the speedup of these approaches
depends on the amount of the computation on the GPU. The idea
used in PEB approach to accelerate the bounding of one node at a
time on GPU using several threads organized into one GPU block
gave good results (18 times faster) compared to the sequential
version.

The PESB approach gave the best performance against all ap-
proaches for small instances, however, this is not the case for large
instances as compared with the H-PEB and H-PESB approaches
due to the limited number of nodes evaluated simultaneously on
the GPU. This can be explained by the limited amount of shared
memory available in the device and a large amount of this memory
needed by each GPU block for synchronization.

The speedup obtained by the hybrid H-PEB approach is around
90 times faster which confirms the efficiency and the benefit of
using both CPU-cores and GPU at the same time.

The H-PESB approach that fully occupies the GPU has achieved
the best performances for almost all sizes against all other ap-
proaches. It has achieved an impressive speedup, especially for the
largest instances where it is up to 160 times faster than a sequential
B&B algorithm. In addition, the speedup of hybrid approaches
grows according to the size of instances. This is due to the ratio
of computing to communication time that increases by increasing
the size of instances. This proves that the hybrid approaches are
scalable and can easily deal with large instances. These last two
approaches are based on the concurrent kernel’s execution via
Nvidia Multi Processes Service (MPS) which is rarely exploited
in scientific computing. The performance (speedup) of the hybrid
approaches is the result of:

1- Using the PEB scheme which is 18 times faster as the basis of our
hybrid approaches.

2- Exploiting both the power of the CPU-cores and the GPU at the
same time using Nvidia MPS.

3-The occupation of the GPU over time i.e. several workers run in-
structions on the GPU while others perform data-transfer from/to
the GPU and yet others apply elimination and branching operators
on the CPU.

6. Conclusions

This paper investigates the acceleration of the B&B method
using Multi and Many-core systems in order to solve optimally the
NP-hard Blocking Job Shop Scheduling problem. This problem rep-
resents a version of the classical job shop problem with no inter-
mediate buffer between machines. In this paper, five approaches
have been proposed. The first approach exploits only the CPU-core
of our machine. The second and the third approaches, namely PEB
and PESB respectively, are a GPU-based parallelization. Finally, the
last two approaches (H-PEB and H-PESB) are hybrid. They exploit
the Multi-core CPU and the GPU at the same time by combining the
approaches above using concurrent Kernels execution provided
by Nvidia MPS. The obtained results confirm the efficiency of our
proposals and the positive impact of using computing accelerators
like GPUs to solve this problem. The results show the advantage
of increasing the GPU occupation over time by using Hybrid ap-
proaches based on the concurrent kernel’s execution provided by
Nvidia MPS which allowed us to achieve an impressive relative
speedup.

As a future perspective, we plan to act on the granularity of
tasks assigned to each thread and explore more heterogeneous
architectures like Intel Xeon Phi.

Acknowledgments

We would like to thank Dr. Djamal Belazzougui for his assis-
tance and comments that greatly improved the presentation of this
manuscript.

Dr. Didier El Baz gratefully acknowledges the support of NVIDIA
Corporation with the donation of the Tesla K40 GPU used for this
research work.

References

[1] Abdelhakim AitZai, Brahim Benmedjdoub, Mourad Boudhar, A branch and
bound and parallel genetic algorithm for the job shop scheduling problem with
blocking, Int. J. Oper. Res. 14 (3) (2012) 343-365.

Leila Asadzadeh, A local search genetic algorithm for the job shop scheduling

problem with intelligent agents, Comput. Ind. Eng. 85 (2015) 376-383.

Ahcéne Bendjoudi, Mehdi Chekini, Makhlouf Gharbi, Malika Mehdi, Karima

Benatchba, Fatima Sitayeb-Benbouzid, Nouredine Melab, Parallel B&B algo-

rithm for hybrid multi-core/GPU architectures, in: High Performance Comput-

ing and Communications & 2013 IEEE International Conference on Embedded
and Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th International Confer-

ence on, I[EEE, 2013, pp. 914-921.

[4] Peter Brucker, P. Brucker, Scheduling Algorithms, Springer, 2007.

[5] Jacques Carlier, Eric Pinson, Adjustment of heads and tails for the job-shop
problem, European J. Oper. Res. 78 (2) (1994) 146-161.

[6] Tiago Carneiro, Albert Einstein Muritiba, Marcos Negreiros, Gustavo Au-
gusto Lima de Campos, A new parallel schema for branch-and-bound al-
gorithms using GPGPU, in: Computer Architecture and High Performance
Computing (SBAC-PAD), 2011 23rd International Symposium on, IEEE, 2011,
pp. 41-47.

[7] Imen Chakroun, Nordine Melab, Mohand Mezmaz, Daniel Tuyttens, Combining
multi-core and GPU computing for solving combinatorial optimization prob-
lems, J. Parallel Distrib. Comput. 73 (12) (2013) 1563-1577.

[8] Imen Chakroun, Mohand Mezmaz, Nouredine Melab, Ahcene Bendjoudi,
Reducing thread divergence in a GPU-accelerated branch-and-bound algo-
rithm, Concurr. Comput.: Pract. Exper. 25 (8) (2013) 1121-1136.

[9] NVIDIA Corporation, Multi-Process service, 2012, https://docs.nvidia.com/
deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf.

2

[3

http://refhub.elsevier.com/S0743-7315(18)30082-0/sb1
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb1
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb1
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb1
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb1
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb2
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb2
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb2
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb4
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb5
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb5
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb5
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb6
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb6
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb6
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb6
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb6
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb6
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb6
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb6
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb6
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb8
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb8
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb8
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb8
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb8
https://docs.nvidia.com/deploy/pdf/CUDA%5FMulti%5FProcess%5FService%5FOverview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA%5FMulti%5FProcess%5FService%5FOverview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA%5FMulti%5FProcess%5FService%5FOverview.pdf

86 A. Dabah et al. /]. Parallel Distrib. Comput. 117 (2018) 73-86

[10] C. Cuda, Programming guide, 2012, https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html.

[11] Adel Dabah, Ahcene Bendjoudi, Abdelhakim AitZai, Efficient parallel B&B
method for the blocking job shop scheduling problem, in: High Performance
Computing & Simulation (HPCS), 2016 International Conference on, IEEE, 2016,
pp. 784-791.

[12] Adel Dabah, Ahcene Bendjoudi, Abdelhakim AitZai, An efficient tabu search
neighborhood based on reconstruction strategy to solve the blocking job shop
scheduling problem, J. Indust. Manage. Optim. 13 (4) (2017) 2015-2031.

[13] Adel Dabah, Ahcéne Bendjoudi, Abdelhakim AitZai, Didier El-Baz, Nadia Nouali
Taboudjemat, Multi and many-core parallel B&B approaches for the blocking
job shop scheduling problem, in: High Performance Computing & Simulation
(HPCS), 2016 International Conference on, IEEE, 2016, pp. 705-712.

[14] Adel Dabah, Ahcene Bendjoudi, Didier El-Baz, Abdelhakim Aitzai, GPU-
based two level parallel B&B for the blocking job shop scheduling problem,
in: Parallel and Distributed Processing Symposium Workshops, 2016 IEEE
International, IEEE, 2016, pp. 747-755.

[15] Heinz Groflin, Andreas Klinkert, A new neighborhood and tabu search for the
blocking job shop, Discrete Appl. Math. 157 (17) (2009) 3643-3655.

[16] Nicholas G. Hall, Chelliah Sriskandarajah, A survey of machine scheduling
problems with blocking and no-wait in process, Oper. Res. 44 (3) (1996)
510-525.

[17] Alessandro Mascis, Dario Pacciarelli, Job-shop scheduling with blocking and
no-wait constraints, European J. Oper. Res. 143 (3) (2002) 498-517.

[18] Yazid Mati, Nidhal Rezg, Xiaolan Xie, A taboo search approach for deadlock-
free scheduling of automated manufacturing systems, J. Intell. Manuf. 12 (5-6)
(2001) 535-552.

[19] Nouredine Melab, Imen Chakroun, Ahcéne Bendjoudi, Graphics processing
unit-accelerated bounding for branch-and-bound applied to a permutation
problem using data access optimization, Concurr. Comput.: Pract. Exper.
26 (16) (2014) 2667-2683.

[20] Nouredine Melab, Jan Gmys, Mohand Mezmaz, Daniel Tuyttens, Multi-core
versus many-core computing for many-task Branch-and-Bound applied to big
optimization problems, Future Gener. Comput. Syst. (2017).

[21] Carlo Meloni, Dario Pacciarelli, Marco Pranzo, A rollout metaheuristic for job
shop scheduling problems, Ann. Oper. Res. 131 (1-4) (2004) 215-235.

[22] MPI Message passing interface forum, MPI: A Message Passing Interface Stan-
dard, Version 3.0, 2012.

[23] Houssem Eddine Nouri, Olfa Belkahla Driss, Khaled Ghédira, Hybrid meta-
heuristics within a holonic multiagent model for the flexible job shop problem,
Procedia Comput. Sci. 60 (2015) 83-92.

[24] Houssem Eddine Nouri, Olfa Belkahla Driss, Khaled Ghédira, Hybrid meta-
heuristics for scheduling of machines and transport robots in job shop envi-
ronment, Appl. Intell. 45 (3) (2016) 808-828.

[25] Angelo Oddi, Riccardo Rasconi, Amedeo Cesta, Stephen F. Smith, Iterative
improvement algorithms for the blocking job shop, in: ICAPS, 2012.

[26] Marco Pranzo, Dario Pacciarelli, An iterated greedy metaheuristic for the
blocking job shop scheduling problem, J. Heuristics 22 (4) (2016) 587-611.

[27] Heinrich Riebler, Michael Lass, Robert Mittendorf, Thomas Locke, Christian
Plessl, Efficient branch and bound on fpgas using work stealing and instance-
specific designs, ACM Trans. Reconfigur. Technol. Syst. (TRETS) 10 (3) (2017)
24.

[28] Bernard Roy, B. Sussmann, Les problemes dordonnancement avec contraintes
disjonctives, Note ds 9 (1964).

[29] Danilo S. Souza, Haroldo G. Santos, Igor M. Coelho, A hybrid heuristic in GPU-
CPU based on scatter search for the generalized assignment problem, Procedia
Comput. Sci. 108 (2017) 1404-1413.

[30] Eric Taillard, Benchmarks for basic scheduling problems, Eur. J. Oper. Res.
64(2)(1993) 278-285.

[31] Trong-Tuan Vu, Bilel Derbel, Parallel branch-and-bound in multi-core multi-
cpu multi-gpu heterogeneous environments, Future Gener. Comput. Syst. 56
(2016) 95-1009.

[32] Wangdong Yang, Kenli Li, Keqin Li, Ahybrid computing method of SpMV on
CPU-GPU heterogeneous computing systems, J. Parallel Distrib. Comput. 104
(2017) 49-60.

Adel Dabah is Ph.D. student and full time researcher in
the CERIST Research Center Algiers, Algeria since 2014.
He received his master and Magister degrees in Computer
Science from the University of Sciences and Technology
Houari Boumediene (USTHB), Algiers, Algeria, in 2010 and
2013 respectively. His research interests include, manu-
facturing systems, scheduling and optimization, and par-
allel and distributed computing.

Ahcene Bendjoudi received his Master and Ph.D. degrees
in Computer Science from the University of Bejaia, Algeria,
and his HDR and state engineering degrees in Computer
Science from the High School of Computer Science (ESI).
He is currently full-time senior researcher at the Research
Centre in Scientific and Technical Information (CERIST,
Algiers) within Theory and Engineering of Computer Sys-
tems division (DTISI) since 2012. He is the founder and
head of the Parallel Computing and Applications (CAPA)
research group, and adjunct professor at the University
of Science and Technology USTHB, Algiers. His major re-
search interests include Parallel Combinatorial Optimization, Cluster, Multi-core
and GPU-Computing, and recently, Big Data, Big Graphs, Intelligent Transportation
Systems, and Smart Cities. He conducted and he was involved in several research
projects on these topics. He has more than 35 international publications including
journal papers, book chapters and conference proceedings.

Abdelhakim AitZai was born in Algeria in 1970. He is
& currently a lecturer and researcher at the Department

of Computer Sciences, Houari Boumediene University of
Algiers (USTHB) and member of RECITS Laboratory, Fac-
i ulty of Mathematics (USTHB). He received his engineer
and magister degrees in mathematics in 1994 and 1998,
respectively from USTHB University. He received also his
Ph.D. and HDR in computer sciences from USTHB Uni-
versity in 2012 and 2014 respectively. His research in-
terests include, manufacturing systems, scheduling and
optimization and parallel and distributed computing. He
has published several research papers in national and international journals and
conference proceedings.

e

Didier El Baz was born in Toulouse, France in 1958, he
received the Engineer degree in Electrical Engineering
~ and Computer Science from National Institute of Applied
Sciences in Toulouse (Institut National des Sciences Ap-
= pliques, INSA) in 1981 and the Doctor Engineer degree in
Control Theory from INSA Toulouse in January 1984. Dr.
El Baz was visiting scientist in the Laboratory for Informa-
“A tion and Decision Systems, MIT Cambridge Massachusetts,

% USA, in 1984. He received the HDR in Computer Sciences
from Institut National Polytechnique of Toulouse (INP) in
1998. He is the founder and head of the team Distributed
Computing and Asynchronism at the Laboratory of Analysis and Systems Architec-
ture (LAAS-CNRS). Dr El Baz is the author of 40 papers in referred international
journals and 80 papers in referred International Conference. His fields of interest
are in parallel and distributed computing, GPU computing, optimization, scheduling
and Internet of Things. Dr El Baz was the coordinator of ANR project CIP that
dealt with high performance peer-to-peer computing. Dr El Baz was the advisor
of 11 Ph.D. students and 21 Master students. Dr El Baz was Program Chairman and
Organizing Chairman of the 16th International Conference on Parallel, Distributed
and networked-based Processing, PDP 2008, Toulouse, France. Program Chairman
of the 17th International Conference on Parallel, Distributed and networked-based
Processing, PDP 2009, Weimar, Germany, General Cochairman of IEEE international
Conference iThings 2013, Program Chairman of IEEE international Conference CSE
2014, Chengdu China, General Chair of IEEE CSE 2015, Porto, Portugal, Executive
Chair of the 15th IEEE International Conference on Scalable Computing and Com-
munications (ScalCom 2015) Beijing China and General Chair of I[EEE ScalCom 2016
as well as General Chair of the 13th IEEE International Conference on Ubiquitous
Intelligence and Computing (UIC 2016) Toulouse. Dr El Baz has been invited to give
Talks at China University of Petroleum Qingdao, China University of Geosciences
Beijing, CERIST Algiers Algeria, as well as several University and Institute in France
like University of Paris XIII, University of Perpignan, CEA, CNES and CNRS. Dr. El Baz
has also given courses on High Performance Computing at several Universities like
University of Sciences and Technology Beijing, University of Sichuan and University
Houari Boumediene.

Nadia Nouali-Taboudjematis currently a Director of Re-

k» \ search and the head of the Theory and Engineering of Com-

4 puter Systems and of the Ubiquitous Computing Group

at Research Centre in Scientific and Technical Information

(CERIST) in Algeria. She graduated in C.S. from the Houari

Boumediene University (USTHB, Algiers) and she obtained

her Magister Degree from the Advanced Technologies Re-

. search Centre (Algiers). She also obtained her Doctor-

ate Degree from USTHB. Her research interests include

pervasive/ubiquitous computing, distributed and mobile

computing, wireless networks, etc. Her recent researches

include big data management, cloud computing and she is particularly interested
by the application domain of ICT-based disaster management and smart cities.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb11
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb11
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb11
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb11
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb11
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb11
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb11
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb12
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb12
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb12
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb12
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb12
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb15
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb15
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb15
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb16
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb16
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb16
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb16
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb16
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb17
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb17
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb17
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb18
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb18
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb18
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb18
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb18
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb19
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb19
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb19
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb19
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb19
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb19
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb19
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb20
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb20
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb20
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb20
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb20
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb21
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb21
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb21
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb23
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb23
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb23
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb23
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb23
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb24
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb24
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb24
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb24
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb24
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb26
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb26
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb26
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb27
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb27
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb27
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb27
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb27
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb27
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb27
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb28
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb28
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb28
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb29
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb29
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb29
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb29
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb29
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb30
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb30
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb30
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb31
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb31
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb31
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb31
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb31
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb32
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb32
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb32
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb32
http://refhub.elsevier.com/S0743-7315(18)30082-0/sb32

	Hybrid multi-core CPU and GPU-based B&B approaches for the blocking job shop scheduling problem
	Introduction
	Blocking job shop scheduling problem
	Example
	Problem formulation
	Forming the graph of all possibilities (search graph)
	Alternative pair generation

	The branch and bound algorithm for BJSS
	Branching
	Evaluation (bounding)
	Immediate selection

	Related works

	The proposed parallelization approaches for the B&B algorithm
	Multi-search parallel B&B on multi-core CPU
	 The proposed GPU-based B&B schemes
	Parallel evaluation of the bound (PEB)
	Parallel evaluation of several bounds (PESB)

	 Hybrid master–worker/GPU-based parallelization
	 Hybrid parallel evaluation of the bound (H-PEB)
	Hybrid parallel evaluation of several bounds (H-PESB)

	Experimentations
	Conclusions
	Acknowledgments
	References

