
Future Generation Computer Systems 108 (2020) 119–134

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Solving the dynamic energy aware job shop scheduling problemwith
the heterogeneous parallel genetic algorithm
Jia Luo a,b,c,d, Didier El Baz b, Rui Xue a,∗, Jinglu Hu c

a College of Economics and Management, Beijing University of Technology, Beijing, China
b LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
c Graduate School of Information, Production, and Systems, Waseda University, Kitakyushu, Japan
d Japan Society for the Promotion of Science, Japan

a r t i c l e i n f o

Article history:
Received 30 May 2019
Received in revised form 1 February 2020
Accepted 6 February 2020
Available online 11 February 2020

Keywords:
Job shop scheduling
Energy efficiency
Dynamic scheduling
Parallel genetic algorithm
Multi-core processing
GPU computing

a b s t r a c t

Integrating energy savings into production efficiency is considered as one essential factor in modern
industrial practice. A lot of research dealing with energy efficiency problems in the manufacturing pro-
cess focuses solely on building a mathematical model within a static scenario. However, in the physical
world shop scheduling problems are dynamic where unexpected events may lead to changes in the
original schedule after the start time. This paper makes an investigation into minimizing the total
tardiness, the total energy cost and the disruption to the original schedule in the job shop with
new urgent arrival jobs. Because of the NP hardness of this problem, a dual heterogeneous island
parallel genetic algorithm with the event driven strategy is developed. To reach a quick response in
the dynamic scenario, the method we propose is made with a two-level parallelization where the
lower level is appropriate for concurrent execution within GPUs or a multi-core CPU while codes
from the two sides can be executed simultaneously at the upper level. In the end, numerical tests are
implemented and display that the proposed approach can solve the problem efficiently. Meanwhile,
the average results have been improved with a significant execution time decrease.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Energy costs due to production have been traditionally treated
as externalities that must be incurred [1]. With an increasing
interest for industrial sustainability, integrating energy savings
into production efficiency is considered as one essential factor
in factory practice. There are two kinds of approaches study-
ing energy saving in manufacturing systems [2]: avoiding peak
power consumption and reducing the overall energy cost. The
first one [3–5] shifts load at energy peaks when the maximum
available energy is met. The second one [6–8] focuses on decreas-
ing the total energy cost in manufacturing system by subdividing
it and switching them among different types and different levels.
Most of these research works focus solely on building a math-
ematical model within a static scenario. However, unexpected
events may lead changes in the preset schedule after the start
time. Few works focus on dynamic energy aware shop scheduling
problems and most of them [9–11] were solved by the complete
rescheduling with a risk in instability. Moreover, scheduling prob-
lems in dynamic scenarios are more complicated than scheduling

∗ Corresponding author.
E-mail address: xue.rui.bjut@hotmail.com (R. Xue).

problems in static scenarios and the time cost to obtain the opti-
mal solution or even a high-quality solution is heavy. Therefore,
an approach proposing an appropriate updated schedule within
a reasonable time is highly desirable in this case.

Parallel computing has been widely used for years. The multi-
core CPU can run multiple instructions at the same time on
separate cores to increase the overall speed while Graphics Pro-
cessing Units (GPUs) are many-core processor devices providing a
highly multi-threaded environment using the Single Instruction,
Multiple Threads (SIMT) model. Since most of latest computers
are furnished with a multi-core CPU and GPUs, the execution on
both is an effective strategy to utilize hardware in an efficient
way. Investigation on solving scheduling problems in manufac-
turing processes by parallel computing methods [12] has received
increasing attention in the last decades. However, the sophisti-
cated issue as energy aware shop scheduling in dynamic scenarios
was never considered as best as we are aware. On the other side,
there is a great number of successful cases [13–15] proving that
parallel GAs are reliable for solving shop scheduling problems.
But most of them either only use the CPU, the GPUs or two of
them in sequence which may end up to an underuse of computing
resources due to the hardness of designing schemes that effi-
ciently exploit simultaneously different hardware architectures.
Thus, the design of parallel GAs on hybrid CPU–GPU frameworks

https://doi.org/10.1016/j.future.2020.02.019
0167-739X/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2020.02.019
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.02.019&domain=pdf
mailto:xue.rui.bjut@hotmail.com
https://doi.org/10.1016/j.future.2020.02.019


120 J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134

for solving dynamic energy aware shop scheduling problems is a
known research challenge following previous works, and this is
what we are trying to solve in this paper.

An investigation into minimizing the total tardiness and the
total energy cost in the job shop with new urgent arrival jobs
is concerned in this paper. To avoid the shortages of the com-
plete rescheduling, the schedule repair with the event driven
strategy is utilized to represent the updated solution. Since the
response time is sensitive in the dynamic scenario, a dual hetero-
geneous island parallel GA executed simultaneously on GPUs and
a multi-core CPU is utilized. Numerical tests confirm the proposed
method can be implemented to solve the problem efficiently and
effectively. Our main work can be summed up as follows:

1. A dynamic energy aware job shop scheduling model is
studied which seeks a trade-off among the total tardiness,
the energy cost and the disruption to the original schedule;

2. A parallel GA is adapted for solving the proposed problem,
whose lower level is appropriate for concurrent execution
within GPUs or a multi-core CPU while codes from the two
sides can be executed simultaneously at the upper level;

3. Numerical experiments have been carried out and witness
that the adapted parallel GA can not only solve the pro-
posed problem efficiently but also improve the average
results with a significant execution time decrease.

The remaining of our work consists of 5 sections. In Section 2,
the literature review is presented. Section 3 exposes the research
problem and formulates the mathematical model. Section 4 dis-
cusses the design of the parallel GA on hybrid CPU–GPU frame-
works and its implementation for solving dynamic energy aware
shop scheduling problems. Afterwards, computational tests and
a case study are conducted in Section 5. Finally, conclusions are
stated in Section 6.

2. Literature review

Due to environmental concerns and continuously rising cost,
there is an increasing interest in energy saving in traditional
industrial processes. Since moving the production activities in
off-peak periods or inserting idle times for machine may not
be acceptable with intense production process or fixed working
time shifts [1], minimizing the overall energy cost is considered
one main solution. Meng et al. discussed the total energy con-
sumption for flexible job shop scheduling problems in [16] and
solved it by six new mixed integer linear programming models.
He et al. [17] proposed a model synthesizing the optimization of
energy consumption and makespan while the optimal solutions
were obtained by the Tabu search. Meanwhile, the GA or the
improved GA is one powerful and frequently used method to
deal with the total energy cost integrated scheduling problems.
Liu et al. [6] developed a non-dominant sorting GA and obtained
the Pareto front for a bi-objective job shop scheduling problem
that investigated into minimizing total electricity cost and total
tardiness. Similarly, a modified multi-objective GA was studied
in [7] and it was utilized to solve a multi-machine job shop
scheduling model with emission aware issues. In one word, nu-
merous efforts have been given to combine the traditional shop
scheduling efficiency with the overall energy cost. However, the
models used in these researches are deterministic in which the
number of jobs is a fixed value [6]. As an ongoing reactive process
where the presence of a variety of unexpected disruptions is
usually inevitable [18], the static scheduling obviously cannot
meet the requirements in most real-world environments.

Literature on dynamic scheduling has considered a significant
number of works dealing with new arrival jobs and their effects
in various manufacturing systems [18]. Most efforts concentrated

only on the efficiency improvement for traditional scheduling
problems while neglecting the energy cost. In the dynamic sce-
nario, complete rescheduling and schedule repair are the two
most common used strategies. An improved particle swarm opti-
mization was adopted in [9] to allocate the new jobs and the pre-
vious remaining operations simultaneously for an energy saving
dynamic scheduling problem. Zhang et al. studied the dynamic
rescheduling considering energy consumption in [10] where opti-
mal solutions were found by a GA with the complete rescheduling
strategy. Even the complete rescheduling provides the optimal
solutions, it can result in instability and disruption in manufac-
turing flows, leading to tremendous production costs [19]. On
the opposite, schedule repair only attempts to revise part of the
originally created schedule for responding to the production envi-
ronment changes. In [2], Pach et al. set up flexible manufacturing
systems using potential fields where resources could switch to
less energy consumption mode by sensing the intentions from
products. Zeng et al. [20] presented a particle swarm optimiza-
tion to solve the energy consumption based dynamic scheduling
problem by introducing idle time windows. To sum up, some ef-
forts concerning energy efficient scheduling problems in dynamic
scenarios have been conducted. It shows that the schedule repair
strategy is more practical to deal with the dynamic manufac-
turing system in the real world. But many limitations are still
remaining that must be taken into account. One for instance is to
get the appropriate updated schedule within a reasonable time,
especially for large size manufacturing applications.

With the huge evolution of multi-core CPUs and GPUs, some
works have considered the cooperation between them to max-
imally utilize their compute capability. A parallelization mixing
the multi-core CPU and the GPUs was studied by Dabah et al.
in [12] where a group of blocking job shop scheduling prob-
lems were solved efficiently. In [21], Hawick et al. described
the use of threading approaches and multi-core CPUs to con-
trol independent GPU devices to speed up scientific simulations.
Hossam et al. [22] introduced a parallel implementation of hy-
brid CPU/GPU in which CPU and GPU work cooperatively and
seamlessly, combining benefits of both platforms. All these works
have verified that a scheme exploiting a multi-core CPU and GPUs
corporately can increase the hardware occupation and achieve a
speedup. However, this strategy is rarely implemented for GAs,
in particular for the implementation of parallel GAs to solve
dynamic energy aware shop scheduling problems, as far our
knowledge is concerned.

Considering the above-mentioned requirements, we seek to
study parallel GAs for solving the dynamic energy aware job shop
scheduling problem on hybrid CPU–GPU frameworks. All the pre-
vious studies have afforded us with a starting point to design a GA
that is well suited for parallelization on different architectures.
Moreover, this implementation is efficient to provide appropriate
solutions for large dynamic energy aware job shop scheduling
problems within a short response time.

3. Problem statement

3.1. EDJSP description

The Job Shop scheduling Problem (JSP) is a NP-hard prob-
lem [23] in which there are several jobs and each job consists
of a certain amount of operations. One operation is processed
by a particular machine and every job is assigned to a group of
machines following a predetermined route [6]. As a layout shown
in Fig. 1, job A and job B need to be processed by 4 machines
and their processing routines are fixed as Machine 0-2-1-3 and
Machine 2-0-3-1, respectively.

The Energy aware Dynamic Job Shop scheduling Problem (ED-
JSP) is an extension of the JSP with machine speed scaling [24] in



J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134 121

Fig. 1. A job shop layout.

which machines are available to be set at different speed levels
when dealing with different jobs. The processing time and the
energy cost of one operation processed on one machine at a set
speed level are known. When a higher speed level is chosen, the
processing time is shortened but with an energy cost increase.
When machines start to handle original jobs following the preset
schedule, a batch of new jobs may arrive and these jobs are
requested to be processed as soon as possible. Therefore, the pro-
duction line conducts them immediately with the highest speed
level. The operations being processed are terminated and need to
be rescheduled with other unfinished operations of original jobs
based on the insertion of new urgent arrival jobs. The updated
schedule using the schedule repair refers to some local adjust-
ment of the original one. There are two possible schedule repair
measures for the impact caused by the schedule changes [25]:
(1) the deviation from the original jobs starting times, (2) the
deviation from the original sequence. In this paper, a measure
modified from (1) is taken into consideration where each original
job has an importance weight and a larger importance weight
indicates a higher penalty for delaying the finishing time of
original jobs from the original schedule. If one operation of a new
urgent arrival job is added before one operation of an original job
on the same machine, a higher speed level with less processing
time but more energy cost is required to make the original job
to be completed as close as to its finishing time in the original
schedule. Clearly, there are conflicts among the minimization of
total tardiness, the minimization of total energy cost and the
minimization of disruption to the original schedule. Thus, a trade-
off must be made among them. Because of the NP hardness of the
JSP, the EDJSP is a NP-hard problem and more complicated than
the JSP.

3.2. Mathematical model of EDJSP

A description of the notations referred within the remaining
sections of this paper is summarized in Table 1.

To minimize the total tardiness, the total energy cost and the
delay caused by the schedule changes, the formal mathematical
model of the EDJPS is derived from the mathematical models
presented in [25,26]. The formalization is given as follows.

Objective Function:

Min: α ×
TT − ETmin

ETmax − ETmin
+ β ×

TE − EEmin

EEmax − EEmin

+ γ ×
DEV − EDmin

EDmax − EDmin
(1)

Subject to:

S′

j0Mj0
≥ Rj j ∈ J ∪ J′ (2)

S′

j(s+1)Mj(s+1)
≥ S′

jsMjs
+

∑
p∈L

PjsMjsp × ZjsMjsp j ∈ J ∪ J′, s ∈ Oj,

s > 0, p ∈ L (3)

S′

itMit
≥ S′

jsMjs
+

∑
p∈L

PjsMjsp × ZjsMjsp

j ∈ J ∪ J′, i ∈ J ∪ J′, j ̸= i, s ∈ Oj, t ∈ Oi, Mjs == Mit,

p ∈ L, Sjsm ≤ Sitm

(4)

TT =

∑
j∈J

max

⎛⎝S′

j(oj−1)Mj(oj−1)
+

∑
p∈L

Pj(oj−1)Mj(oj−1)p

×Zj(oj−1)Mj(oj−1)p
− Dj, 0

⎞⎠ (5)

∑
p∈L

ZjsMjsp = 1 j ∈ J ∪ J′, s ∈ Oj (6)

TE =

∑
j∈J

∑
s∈Oj

∑
p∈L

QjsMjsp × ZjsMjsp (7)

S′

jsMjs
≥ RS j ∈ J, s ∈ Oj, SjsMjs +

∑
p∈L

PjsMjsp × ZjsMjsp ≥ RS (8)

S′

jsMjs
= SjsMjs j ∈ J, s ∈ OjSjsMjs +

∑
p∈L

PjsMjsp × ZjsMjsp < RS

(9)

Rj ≥ RS j ∈ J′ (10)

DEV =

∑
j∈J

wtj × max((S′

j(oj−1)Mj(oj−1)
+

∑
p∈L

Pj(oj−1)Mj(oj−1)p

× Zj(oj−1)Mj(oj−1)p
)

− (Sj(oj−1)Mj(oj−1)
+

∑
q∈L

Pj(oj−1)Mj(oj−1)q

× Zj(oj−1)Mj(oj−1)q
), 0)

(11)

In this optimization problem, S′

jsm and Zjsmp are the decision vari-
ables. A weighted additive utility function with three normalized
objectives is described as (1) where all objectives can be assessed
on the same scale. The linear weighted sum approach is taken
for this application instead of the Pareto optimal solution for
two reasons. Firstly, the most widely used parallel cellular model
on GPUs is still immature for solving multi-objective problems
where the main stream implementation manages a central Pareto
front sequentially [27,28]. Second, most of the existing literature
on the multi-objective job shop scheduling problems adopt the
linear weighted sum approach [29] whose computational com-
plexity is relatively lower. Meanwhile, this design is suitable for
dealing with large size problems in the dynamic scenario by
obtaining an adequate renewed scheduling plan in a reasonable
time.



122 J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134
Table 1
The used notations.
Notation Description

j, i, l, x, z Job indices
s, t, y Operation indices
m Machine index
p, q, w Speed level indices
n Amount of original jobs
n′ Amount of new urgent arrival jobs
r1 Amount of completed operations of original jobs before the

rescheduling point
r2 Sum of completed operations of original jobs before the

rescheduling point and operations of new urgent arrival jobs
oj Amount of operations of job j
g Amount of machines
h Amount of speed levels
J Set of original jobs, J = {0, 1, 2, . . . , n − 1}
J′ Set of new arrival jobs, J′ = {0, 1, 2, . . . , n′

− 1}
Oj Set of operations of job j, Oj = {0, 1, 2, . . . , oj − 1}
M Set of machines, M = {0, 1, 2, . . . , g − 1}
L Set of speed levels, L = {0, 1, 2, . . . , h − 1}
Rj Release time of job j, j ∈ J ∪ J′
Dj Due time of job j, j ∈ J ∪ J′
Tj Tardiness of job j, j ∈ J ∪ J′
Mjs Target machine handling operation s of job j, j ∈ J ∪ J′, s ∈ Oj
RS Rescheduling point
Pjsmp Processing time when operation s of job j handled by target

machine m at speed level p, j ∈ J ∪ J′, s ∈ Oj, m ∈ M, p ∈ L
Qjsmp Energy cost when operation s of job j handled by target

machine m at speed level p, j ∈ J ∪ J′, s ∈ Oj, m ∈ M, p ∈ L
Zjsmp Boolean variable, it is equal to 1 if operation s of job j is

handled by target machine m at speed level p, otherwise, it
equals to 0, j ∈ J ∪ J′, s ∈ Oj, m ∈ M, p ∈ L

Sjsm Original start time of operation s of original job j on machine
m, j ∈ J, s ∈ Oj , m ∈ M

S′

jsm New start time of operation s of job j on machine m,
j ∈ J ∪ J′, s ∈ Oj , m ∈ M

TT Total tardiness of all jobs
ETmax Estimated maximum value of TT
ETmin Estimated minimum value of TT
TE Total energy cost
EEmax Estimated maximum value of TE
EEmin Estimated minimum value of TE
wtj Importance weight of original job j, j ∈ J
DEV Weighted finishing time deviation of the updated schedule

from the original one
EDmax Estimated maximum value of DEV
EDmin Estimated minimum value of DEV
α, β, γ Weight of each normalized objective function.
θ Migration threshold value, 0 ≤ θ ≤ 1
λ Migration rate, 0 ≤ λ ≤ 1
ϕ Migration policy execution gap, the frequency to perform the

migration policy as defined in Eq. (12).
fitA The best individual’s fitness value of subpopulation A on

island A
fitB The best individual’s fitness value of subpopulation B on

island B
a, b, c, f Gene indices in a chromosome
vj Index of occurrence time of job j
uj Occurrence time of job j
U Set of occurrence time of a job number,

U = {0, 1, 2, . . . , uj − 1}
k Current generation number of the GA
X(k) Operation permutation of original schedule at generation k
Y(k) Speed level permutation of original schedule at generation k
X′(k) Operation permutation of new schedule at generation k
Y′(k) Speed level permutation of new schedule at generation k
ojs Operation s of job j
d, e Indices for operations on machine m
o′
m Number of operations on machine m before operation s of job

j is assigned on it
O′

m Set of operations on machine m before operation s of job j is
assigned on it, O′

m = {0, 1, 2, . . . , o′
m − 1}

N The number of orthogonal arrays in the Taguchi method
F The response values in the Taguchi method
Pcec The crossover rate of the cellular GA
Pcem The mutation rate of the cellular GA
Pcac The crossover rate of the classic GA
Pcam The mutation rate of the classic GA

Constraints (2) and (3) enforce that the first operation can
only be processed after the release time while the others are
authorized to start after its precedent one. The precedence for
sequencing operations on machines is insured by constraint (4).
Moreover, Eq. (5) defines the total tardiness of original jobs. As far
as the energy cost, constraint (6) states each operation can only
be handled by one machine with a fixed speed level whereas the
total energy cost is given by Eq. (7). Finally, constraint (8), (9) and
(10) impose the definition of rescheduling and Eq. (11) indicates
the weighted finishing time deviation of the updated schedule
from the original one.

4. Solving approach

4.1. Event-driven strategy

With the event-driven policy, rescheduling is triggered in re-
sponse to an unexpected event that alters the current system
status [18]. In the case of EDJSP, the unexpected event is con-
sidered as an arrival of urgent jobs. These jobs are requested to
be processed as soon as possible even if the original schedule has
started. Operations that are being executed need to be terminated
and unfinished operations of original jobs must be rearranged
in order to leave the machines available to firstly handle urgent
jobs. Thus, new urgent arrival jobs are assigned to machines with
the highest speed levels at the beginning when the rescheduling
is triggered. If the amount of new urgent arrival jobs is not
unique, they are scheduled as the regular JSP with the objective of
minimizing the total tardiness. Unfinished operations of original
jobs are considered at the next step according to the remaining
spaces on machines. A dual heterogeneous island parallel GA on
hybrid CPU–GPU frameworks is adapted to generate an adequate
schedule for them in a limited time. The flow of the event-driven
strategy is summarized as in Fig. 2.

4.2. Dual heterogeneous island parallel GA on hybrid CPU–GPU
frameworks

The general procedure of the dual heterogeneous island paral-
lel GA on hybrid CPU–GPU frameworks is a further development
from our previously designed parallel GA and its implementations
to solve large scale flexible flow shop scheduling in static scenar-
ios [30]. The algorithm divides the population into two islands.
There is an identical amount of individuals on every island in
which island A deals with the cellular GA [31] and island B deals
with the classic GA [32]. At a certain point, a migration operation
is executed to swap individuals between them. The procedure of
the dual heterogeneous island parallel GA on hybrid CPU–GPU
frameworks is shown in Fig. 3. As far as the software and the
hardware levels are concerned, four obvious advantages of this
design are summarized as follows:

• Since the cellular GA and the classical GA get new search
points in the exploring space using different mechanisms,
this design enlarges the range of the searching process and
decreases the probability that premature convergence oc-
curs.

• Because of the independent evolution, individuals from het-
erogeneous islands obtain distinct characters from different
solution range. Therefore, the performance of migration is
enhanced.

• With respect to the underlying architectures, the cellular GA
is designed to be entirely executed in parallel on GPUs while
the classic GA can be partially parallelized on a multi-core
CPU.



J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134 123

Fig. 2. The flow of the event-driven strategy for the EDJSP.

• To utilize the computing resources maximally, codes from
the host and the device can also be executed simultaneously,
in addition to the parallelization within GPUs or a multi-core
CPU.

The implementation for the cellular GA on island A is done with
the Compute Unified Device Architecture (CUDA) for GPUs. All
CUDA threads in a grid execute the same kernel function where
a grid is organized as 2D array of blocks and each block is
arranged as 2D array of threads [33]. The cellular GA maps indi-
viduals in a grid environment [34]. Therefore, it can be completely
parallelized on CUDA and absolutely matches the underlying
architectures. Since the texture memory of CUDA is optimized
for 2D spatial locality [35], the overlapping communication re-
gion of the cellular GA is designed to be circled as in Fig. 4. At
first, two parent individuals are selected from this region and
their chromosomes are reassembled to produce a new offspring
individual. After the mutation operation, this newly constituted
individual substitutes the initial one only if its fitness value is
better. Upon the fitness values, all individuals are finally ordered
by the Bitonic-Merge sort [36], if the algorithm complies with the
island termination condition but not with the final termination
condition. The crossover, the replacement and the Bitonic-Merge
sort are managed via the global memory whereas the muta-
tion and the fitness evaluation are performed thought the local
memory.

Because of the high frequency use of the roulette wheel selec-
tion, the classic GA on island B utilizes it for selecting individuals
from the population according to their fitness values. As the
next step, two randomly paired parent individuals carry out the
crossover and the new offspring individual implements the muta-
tion. After these steps, the all-time best individual is maintained
and is used to replace the worst individual in the current gen-
eration. At the end, all individuals are sorted under the same
condition as the cellular GA on GPUs. To respect the original
mechanism without requesting specific underlying architecture,
a master–slave model is utilized to parallelize the classic GA.
In this case, only the fitness evaluation and the Bitonic-Merge
sort are performed on a multi-core CPU as slave nodes while
the rest procedures are handled at the master side in sequential.
When this procedure is implemented, the OpenMP [37] (Open

Multi-Processing) is used for programming parallel threads in
multi-core applications.

When a migration point is reached, individuals executed on
GPUs are transferred to the CPU and the migration between the
two islands is carried out by the CPU. To reduce the amount
of factors required to be controlled manually, the migration’s
execution is decided by a migration threshold value θ . Moreover,
the migration rate λ is formulated as

λ =

{
1 − min{fitA/fitB, fitB/fitA} 1 − min{fitA/fitB, fitB/fitA} < θ

0 1 − min{fitA/fitB, fitB/fitA} ≥ θ

(12)

The migration is only executed when1 − min{fitA/fitB, fitB/fitA}
< θ where the λ percent individuals with the best fitness values
are exchanged between the two islands to replace the λ percent
individuals with the worst fitness values in the others. This mech-
anism helps to diffuse the best individuals efficiently while saving
the execution time by avoiding useless information sharing.

4.3. Hybrid encoding representation

To solve the EDJSP, a modified operation-based encoding is
adopted for representing the chromosomes. In terms of the sched-
ule of original jobs, the chromosome contains two permutations:
operation permutation X(k) (13) and speed level permutation
Y(k) (14). X(k) utilizes the operation-based encoding where each
job is represented by a natural number and each number is
present as many times as the number of operations of the job
it represents [38]. By scanning X(k) from left to right, the vjth
occurrence of a job j refers to the vjth operation in the technolog-
ical sequence of this job [39]. According to the example provided
in [40], a feasible solution for a 3×3 job shop is presented as [2,
1, 0, 0, 1, 2, 2, 1, 0] where 2 on the fifth gene position (indexed
from 0) indicates the operation 1 (after the operation 0) of job 2
as it is the 1st occurrence (after the 0th occurrence) of number
2. Thus, X(k) can be translated to a list of ordered operations as
[o20, o10, o00, o01, o11, o21, o22, o12, o02]. Moreover, each element
ya (k) shows the selected speed level of its related element xa (k)
on the target machine.

X[k] = [x0 (k) , x1 (k) , . . . , xa (k) , . . . , x∑
j∈J oj−1 (k)] (13)



124 J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134

Fig. 3. The procedure of the dual heterogeneous island parallel GA.

where xa (k) ∈ [0, n − 1] , uj == oj.

Y[k] = [y0 (k) , y1 (k) , . . . , ya (k) , . . . , y∑
j∈J oj−1 (k)] (14)

where ya (k) ∈ [0, h − 1].
To leave machines available to conduct new urgent arrival jobs
firstly with the highest speed level and rearrange unfinished op-
erations of original jobs, the chromosome of the updated schedule
also includes an operation permutation X′(k) (15) and a speed
level permutation Y′(k) (16). The initialization rule for both are
shown in Algorithm 1. Moreover, the decoding rule is displayed
in Algorithm 2.

X′ (k) = [x′

0 (k) , x′

1 (k) , . . . , x′

a (k) , . . . , x′∑
j∈J∪J′ oj−1 (k)] (15)

where x′
a (k) ∈

[
0, n + n′

− 1
]
, uj == oj.

Y′ (k) = [y′

0 (k) , y′

1 (k) , . . . , y′

a (k) , . . . , y′∑
j∈J∪J′ oj−1 (k)] (16)

where y′
a (k) ∈ [0, h − 1].

Fig. 4. The procedure to generate new solutions by the cellular GA.



J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134 125

4.4. Crossover and mutation operators

To work with the modified operation-based encoding, the
operation-based order crossover [6] is utilized as the crossover
operator and works for genes in the chromosome within the
range [r2,

∑
j∈J∪J′ oj − 1]. Firstly, it randomly chooses the same

operations from two paired parents. The loci of chosen operations
are preserved and copied to their own offspring. Afterwards,
remaining operations are transmitted to the offspring of the other
parent to fill the missing genes while their original orders are
also kept. The crossover procedure for a 5 × 3 job shop example
is shown in Fig. 5 where job 0, job 1, job 2, job 3 are original
jobs, job 4 is a new urgent arrival job and each machine has 3
speed levels. The integers in red indicates genes out of the range
[r2,

∑
j∈J∪J′ oj − 1] while the integers in blue mark the loci of

randomly chosen operations.
The swap mutation is used for X′(k) where different arbitrary

genes within the range
[
r2,

∑
j∈J∪J′ oj − 1

]
are chosen and ex-

change values. Concerning Y′(k), unfixed number of genes are
substituted by randomly generated values within the range, aside
from the original ones. Following the above example, this proce-
dure is illustrated in Fig. 6 where genes in green illustrate the
execution of mutation.

5. Numerical tests

Test 1 checks the efficiency and the effectiveness of the dual
heterogeneous island parallel GA on hybrid CPU–GPU frameworks
for solving the energy aware JSP while test 2 evaluates the per-
formance of EDJSP by a case study. All the experiments have been
made using the Intel Xeon E5640 CPU which has four CPU-cores,

2.67 GHz clock speed each and NVIDIA Tesla K40 with CUDA cores
and 12 GB GDDR5 of global memory.

5.1. Evaluation

The energy aware JSP without taking into account new urgent
arrival jobs is the first to be concerned. In this case, six large size
problems are generated as in [41]. These instances are referred to
as ‘‘easy problems’’ or ‘‘hard problems’’ with names EASY 20×10,
EASY 20 × 20, EASY 50 × 10, HARD 20 × 10, HARD 20 × 20
and HARD 50 × 10. EASY 20 × 10 and HARD 20 × 10 are 20-
job, 10-machine problems; EASY 20 × 20 and HARD 20 × 20 are
20-job, 20-machine problems; EASY 50 × 10 and HARD 50 ×

10 are 50-job, 10-machine problems. Every job consists of the
same amount of operations as the amount of machines, while
one operation is always handled by a single machine. Moreover,
every machine has 5 speed levels. As far as the easy problems are
concerned, the machine procedure constraints for each job are
generated randomly. As an alternative, the hard problems divide
the machines into two sets. Each job must pass firstly through the
first set, then through the second one. The ordering within the
two sets of machines is generated randomly. The data relative to
the experience is defined in Table 2.

To verify the performance of the proposed algorithm, we com-
pare its solution quality and execution time with the parallel
cellular GA on GPUs and the parallel classic GA on a multi-core
CPU. For these tested three GAs, the population sizes are all kept
as 512 (16 × 16 ×2) while each island’s subpopulation size of
the dual heterogeneous island parallel GA on hybrid CPU–GPU
frameworks is 256 (16 × 16). The final termination criterion is
set as 2000 generations. Moreover, the results shown in Figs. 7–
12, Tables 6 and 7 are obtained by 30 independent runs while the



126 J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134



J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134 127

Fig. 5. An example of the operation-based order crossover . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. An example of the mutation . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
The data relative to the experience of the energy aware JSP.
PjsMjsp U[1, 5]
QjsMjsp δ × P2

jsMjsp
, where δ=U[2, 4]

Rj U[0, P], where P =
∑

j(
∑

s(
∑

p PjsMjsp/h)/oj)

Dj Rj + Pj × (1 + σ ), where σ = U[0, 2] and Pj =
∑

s(
∑

p PjsMjsp/h)

α 1

β 1

results displayed in Table 8 are the average values of 5 runs. Since
the parameter configuration has a huge impact to the perfor-
mance of algorithms, the Taguchi method [42] is used to calibrate
the parameters of the tested GAs. As most common optimality
criteria of shop scheduling problems are about minimization, the
signal to noise ratio (S/N) of the Taguchi method used to assess
the performance in our case is calculated as:

S/N ratio = −10 × log10(sum(F2)/N) (17)

As the migration of the proposed GA is carried out by the CPU
in which individuals executed on GPUs are transferred to the
CPU at this point, its performance may be weakened because
of the frequent data exchange. Therefore, we need also test the
migration policy execution gap for the dual heterogeneous island
parallel GA on hybrid CPU–GPU frameworks, in addition to the
crossover rate, the mutation rate and the migration threshold
value. The parameters and their levels are given in Table 3. The
Minitab software [43] is used to obtain the S/N ratios and the
standard deviations in the Taguchi method for each GA. The L27
design is selected for the dual heterogeneous island parallel GA
while the L9 is selected for the parallel classic GA and the parallel

Table 3
The parameters and their levels.
GAs Parameters Parameter level

Level 1 Level 2 Level 3

Dual heterogeneous
island parallel GA

Pcac 0.6 0.7 0.8
Pcam 0.03 0.06 0.09
Pcec 0.6 0.7 0.8
Pcem 0.03 0.06 0.09
θ 0.9 0.95 1.00
ϕ 100 200 300

Parallel classic GA Pcac 0.6 0.7 0.8
Pcam 0.03 0.06 0.09

Parallel cellular GA Pcec 0.6 0.7 0.8
Pcem 0.03 0.06 0.09

cellular GA. The orthogonal array of each design is presented in
Tables 4 and 5 respectively. Regarding the S/N ratios of three GAs
displayed in Figs. 7, 9 and 11 and the standard deviations pre-
sented in Figs. 8, 10 and 12 separately, we select their parameters
levels as in bold font in Table 3.

Since the decentralized population in the parallel cellular GA
allows to keep the population’s diversity for longer [44], it works
as strongly as the parallel classic GA and even defeats the parallel
classic GA for half of the cases as shown in Table 6. Because of
the separated evolution and the enhanced migration, the dual
heterogeneous island parallel GA integrates the advantages from
the parallel cellular GA and the parallel classic GA. Therefore, it
can always get the best performance for all tested problems with
the average value. To confirm this efficiency, the Wilcoxon signed
ranks test [45] is utilized to compare the performance of the dual
heterogeneous island parallel GA with the other two considered



128 J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134

Fig. 7. The S/N ratio of the dual heterogeneous island parallel GA.

Fig. 8. The standard deviation of the dual heterogeneous island parallel GA.

parallel GAs. Table 7 displays the R−, R+ and p-values computed
by SPSS [46] where the dual heterogeneous island parallel GA
shows an improvement over the parallel cellular GA for instances
EASY 20 × 10, EASY 50 × 10, HARD 20 × 10, HARD 20 × 20 and
HARD 50 × 10, over the parallel classic GA for instances EASY

20 × 10, EASY 20 × 20, EASY 50 × 10, HARD 20 × 10 and HARD
20 ×20 when the significance level equals to 0.1.

The execution time of three parallel GAs with different popu-
lation sizes are shown in Table 8. Because of the simultaneous
execution on both sides, the dual heterogeneous island GA on
the hybrid platform overcomes the parallel cellular GA on GPUs



J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134 129

Table 4
The orthogonal array L27 .
Run order Pcac Pcam Pcec Pcem θ ϕ

1 1 1 1 1 1 1
2 1 1 1 1 2 2
3 1 1 1 1 3 3
4 1 2 2 2 1 1
5 1 2 2 2 2 2
6 1 2 2 2 3 3
7 1 3 3 3 1 1
8 1 3 3 3 2 2
9 1 3 3 3 3 3
10 2 1 2 3 1 2
11 2 1 2 3 2 3
12 2 1 2 3 3 1
13 2 2 3 1 1 2
14 2 2 3 1 2 3
15 2 2 3 1 3 1
16 2 3 1 2 1 2
17 2 3 1 2 2 3
18 2 3 1 2 3 1
19 3 1 3 2 1 3
20 3 1 3 2 2 1
21 3 1 3 2 3 2
22 3 2 1 3 1 3
23 3 2 1 3 2 1
24 3 2 1 3 3 2
25 3 3 2 1 1 3
26 3 3 2 1 2 1
27 3 3 2 1 3 2

Table 5
The orthogonal array L9 .
Run order Pcac/Pcec Pcam/Pcem

1 1 1
2 1 2
3 1 3
4 2 1
5 2 2
6 2 3
7 3 1
8 3 2
9 3 3

Fig. 9. The S/N ratio of the parallel classic GA.

Fig. 10. The standard deviation of the parallel classic GA.

Fig. 11. The S/N ratio of the parallel cellular GA.

Fig. 12. The standard deviation of the parallel cellular GA.

and the parallel classic GA on a multi-core CPU in most cases.
This phenomenon is even more remarkable when the difference
of the execution time on two islands is smaller. However, the
advantage from the hybrid platform may be reduced because the
overall performance is limited to the island who takes longer
execution time. Therefore, it indicates the significance of com-
putation capability balance between the multi-core CPU and the

Table 6
The solutions’ quality comparison.
Problems Parallel heterogeneous GA Parallel cellular GA Parallel classic GA

Average Best Average Best Average Best

EASY 20 × 10 0.0481 0.0224 0.0551 0.0308 0.0623 0.0490
EASY 20 × 20 0.0901 0.0568 0.0911 0.0468 0.1007 0.0831
EASY 50 × 10 0.0585 0.0110 0.1290 0.0378 0.0643 0.0292
HARD 20 × 10 0.0412 0.0258 0.0441 0.0227 0.0747 0.0499
HARD 20 × 20 0.1025 0.0421 0.1750 0.0916 0.1219 0.0849
HARD 50 × 10 0.0706 0.0236 0.0932 0.0075 0.0709 0.0291



130 J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134

Table 7
The Wilcoxon signed ranks test results.
Comparison Problems R− R+ p-value

Parallel heterogeneous GA
versus parallel cellular GA

EASY 20×10 136.00 329.00 0.047
EASY 20×20 204.00 261.00 >0.1
EASY 50×10 18.00 447.00 0.000
HARD 20×10 151.00 314.00 0.094
HARD 20×20 14.00 451.00 0.000
HARD 50×10 126.00 339.00 0.028

Parallel heterogeneous GA
versus parallel classic GA

EASY 20×10 44.00 421.00 0.000
EASY 20×20 109.00 359.00 0.011
EASY 50×10 137.00 328.00 0.049
HARD 20×10 0.00 465.00 0.000
HARD 20×20 108.00 357.00 0.010
HARD 50×10 225.00 240.00 >0.1

R−: value of the objective function got by the parallel heterogeneous GA > value
of the objective function got by the parallel cellular GA (parallel classic GA).
R+: value of the objective function got by the parallel heterogeneous GA < value
of the objective function got by the parallel cellular GA (parallel classic GA).

GPUs when the dual heterogeneous island GA is implemented.
For some extreme situations, the weak node may perform as a
bottleneck and decreases the global effectiveness.

5.2. Case study

A modified job shop instance incorporating machine speed
scaling and new urgent arrival jobs is developed based on the
well know 10 × 10 problem (10 jobs, 10 machines) from Muth
and Thompson [47] (MT10) as a case study. There are 10 original
jobs and 3 new urgent arrival jobs. Each machine has 5 speed
levels. New urgent jobs arrive around 30% of the makespan of
the original schedule. The operation sequence of original jobs
and their processing times on target machine at speed level 0
are collected from MT10. On the other hand, the values for new
urgent arrival jobs are generated following the rule of ‘‘hard
problems’’ in Section 5.1 evaluation. The values of energy cost
at level 0 is set as QjsMjs0 = δ × P2

jsMjs0
, where δ = U [2,4]. The

release times (Rj) of original jobs are fixed as 0 while the due
times are generated as Dj = Pj × (1 + σ ), where σ = U [0,2]
and Pj =

∑
s(
∑

p PjsMjsp/h). Concerning the importance weight of
original jobs, we make wt0 = wt1 = 4, wtj = 2 for j = 2, 3, . . . , 7
and wt8 = wt9 = 1. All details are shown in Table 9. Moreover,
the processing time and the energy cost when operation s of job
j handled by target machine m at different levels is defined as
Pjsmp = Pjsm0 × Vp and Qjsmp = Qjsm0 ÷ Vp, respectively, where
V = (1, 1.3, 1.55, 1.75, 2.1). Finally, we keep the values of α, β

equal to 1 while a very large constant is assigned to γ which
indicates the importance of the schedule repair strategy.

The best-found solution of the original schedule is shown by
the Gantt chart in Fig. 13. Since new urgent jobs arrive at time
600, all operations are being operated at this moment need to be
canceled and leave machines available for processing them firstly.
In this case, some machines are occupied at some periods after
scheduling new urgent arrival jobs. Therefore, unfinished oper-
ations of original jobs are rearranged to make use of machines
only when they are idle. By implementing the schedule repair
strategy, the best-found solution illustrated by the Gantt chart
of the updated schedule in Fig. 14 presents that the processing
time of some operations is obviously decreased. As a result, most
original jobs’ finishing time are only delayed slightly which is
confirmed by the details displayed in Table 10.

In addition to the M10, we have extended another four clas-
sic cases from the literature to test the relationship among the
three objectives of the EDJSP. The problems ABZ5 and ABZ7 are
two problems from [48]. The problems LA35 and LA40 are two

problems from [49]. The operation sequence of these jobs and
their processing times on target machines are treated as original
jobs at speed level 0 in the EDJSP. The importance weights of
original jobs are randomly drawn integers from the interval [1,4].
The amount of new urgent arrival jobs is an integer generated
randomly from U [1,10] while their arriving time is set by a
random value from a uniform distribution on the interval [0, the
makespan of the original schedule]. Moreover, the other settings
are kept the same as the MT10 based EDJSP.

Because of the relationship among the total tardiness, the
total energy cost and the disruption to the original schedule, the
decision maker can achieve their preference through controlling
the importance weight of each normalized objective function. The
dual heterogeneous island parallel GA was run 30 times for the
above mentioned five EDJSP cases with different settings of α,
β , γ and the average results are displayed in Table 11. It can be
observed that the third objective is the most sensitive one to the
importance weight in all cases while the second objective is the
least. Thus, in industrial practice, decision makers are suggested
to pay more attention to minimize the values of the disruption
to the original schedule and the total tardiness while limiting the
total energy cost in a reasonable range. Moreover, three different
scenarios are analyzed underneath corresponding to different
combinations of α, β and γ .
Scenario 1: When the decision-maker only wants to consider the
minimum total tardiness, the importance weights can be set to
α = 100, β = 1 and γ = 10. The disruption to the original
schedule is the most sensitive one among three objectives. For
the problems ABZ7 and LA35, its standard deviation is more
than the double of the standard deviation of the total energy
cost. Therefore, when there is no specific preference between the
disruption to the original schedule and the total energy cost, the
latter one can be neglected.
Scenario 2: When the decision-maker only wants to consider the
minimum total energy cost, the importance weights can be set
to α = 1, β = 100 and γ = 10. Although the gap of standard
deviation between the total tardiness and the disruption to the
original schedule is not so significant, the difference may still
be obvious for some cases as the problem LA35. Thus, after the
minimization of the total energy cost, the decision makers are
advised to control the disruption to the original schedule prior
to the total tardiness.
Scenario 3: When the decision-maker only wants to consider
the minimum disruption to the original schedule, the importance
weights can be set to α = 10, β = 1 and γ = 100. The total
tardiness is also very sensitive to the importance weight. For the
problems MT10 and ABZ7, its standard deviation is quite close to
the standard deviation of the disruption to the original schedule.
Hence, a relative larger weight should be assigned to the total
tardiness rather than the total energy cost in this case.

6. Conclusions and future works

In this paper, an investigation into minimizing the total tar-
diness, the total energy cost and the disruption to the origi-
nal schedule in the job shop with new urgent arrival jobs was
studied. To provide an adequate renewed scheduling plan in a
reasonable time, a dual heterogeneous island parallel GA exe-
cuted simultaneously on different parallel platforms was adopted.
This design consisted of a cellular GA on GPUs and a classic
GA on a multi-core CPU which was totally compliant with the
underlying architectures of two-level parallelization. To improve
the performance of the utilized GAs, the Taguchi method was
used to calibrate their parameters firstly in the evaluation. After-
wards, the proposed method presented that it could obtain better
solutions for solving six large size energy aware JSP through



J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134 131

Table 8
The execution time comparison.
Problems Population size Parallel heterogeneous GA (island of parallel

cellular GA, island of parallel classic GA)
Parallel cellular GA Parallel classic GA

EASY 20 × 10
16 × 16 × 2 475 s (474 s, 233 s) 504 s 657 s
32 × 32 × 2 966 s (802 s, 936 s) 1185 s 2248 s
64 × 64 × 2 3927 s (2058 s, 3800 s) 3615 s 8321 s

EASY 20 × 20
16 × 16 × 2 1731 s (1730 s, 826 s) 2106 s 1602 s
32 × 32 × 2 3556 s (3555 s, 3346 s) 5530 s 6428 s
64 × 64 × 2 14060 s (9587 s, 13 472 s) 16864 s 28166 s

EASY 50 × 10
16 × 16 × 2 3082 s (3081 s, 1342 s) 3408 s 3239 s
32 × 32 × 2 5600 s (5467 s, 5405 s) 8350 s 12433 s
64 × 64 × 2 22627 s (14 162 s, 21 748 s) 24776 s 48073 s

HARD 20 × 10
16 × 16 × 2 472 s (472 s, 239 s) 507 s 660 s
32 × 32 × 2 986 s (806 s, 955 s) 1183 s 1950 s
64 × 64 × 2 3986 s (2046 s, 3859 s) 3627 s 8732 s

HARD 20 × 20
16 × 16 × 2 1729 s (1729 s, 837 s) 2097 s 1935 s
32 × 32 × 2 3511 s (3510 s, 3353 s) 5426 s 7437 s
64 × 64 × 2 14088 s (9411 s, 13 509 s) 16323 s 28508 s

HARD 50 × 10
16 × 16 × 2 3048 s (3048 s, 1357 s) 3428 s 3268 s
32 × 32 × 2 5641 s (5506 s, 5444 s) 8454 s 12121 s
64 × 64 × 2 22676 s (14 259 s, 21 795 s) 25046 s 48427 s

Table 9
The case data of the M10 based EDJSP.

Jobs
Mjs
PjsMjs0
QjsMjs0

wtj Rj Dj

0, 1 2 3 4 5 6 7 8 9
J0 29 78 9 36 49 11 62 56 44 21 4 0 787

2732 22255 184 3729 8905 261 7849 10985 7219 1151

0 2 4 9 3 1 6 5 7 8
J1 43 90 75 11 69 28 46 46 72 30 4 0 1096

5859 25571 16498 396 11116 2999 4796 5571 16324 3438

1 0 3 2 8 5 7 6 9 4
J2 91 85 39 74 90 10 12 89 45 33 2 0 1587

30407 24102 5696 11450 19091 315 423 19723 4446 3161

1 2 0 4 6 8 7 3 9 5
J3 81 95 71 99 9 52 85 98 22 43 2 0 2050

17491 27291 19422 33401 237 8060 21768 36629 1711 6783

2 0 1 5 3 4 8 7 9 6
J4 14 6 22 61 26 69 21 49 72 53 2 0 1450

606 126 1546 12666 2229 10107 1711 6160 12115 6022

2 1 5 3 8 9 0 6 4 7
J5 84 2 52 95 48 72 47 65 6 25 2 0 1945

27497 15 9080 30657 6690 16749 7013 13934 86 1507

1 0 3 2 6 5 9 8 7 4
J6 46 37 61 13 32 21 32 89 30 55 2 0 1415

5410 2748 14764 596 3033 1042 2920 30266 3340 11800

2 0 1 5 4 6 8 9 7 3
J7 31 86 46 74 32 88 19 48 36 79 2 0 1005

2720 15213 5903 14670 3078 16246 1198 5121 4872 19509

0 1 3 5 2 9 6 7 4 8
J8 76 69 76 51 85 11 40 89 26 74 1 0 1265

20250 17948 12094 7397 18308 289 5980 20515 1459 21613

1 0 2 6 8 9 5 3 4 7
J9 85 13 61 7 64 76 47 52 90 45 1 0 2182

23242 429 12595 141 14008 17143 8648 9555 16289 6382

2 1 0 4 3 8 9 7 5 6
J10 16 58 22 24 53 9 57 63 92 43 600 879

831 12305 1099 1657 10418 175 6634 13903 31562 4829

3 1 4 0 2 7 9 6 8 5
J11 6 48 14 66 24 2 85 73 19 99 600 859

114 7273 574 14278 1344 15 16379 14031 1136 37449

4 2 0 1 3 5 9 8 6 7
J12 99 90 63 14 31 27 15 2 51 33 600 806

35989 27021 14863 409 2265 2298 662 9 5711 3161



132 J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134

Table 10
The original jobs’ finishing time comparison of the M10 based EDJSP.

Job 0 Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9

Original schedule 632.05 1091.80 1555.15 1817.90 1485.05 1535.80 1390.05 987.45 1431.40 1838.65
Updated schedule 688.10 1092.30 1579.25 1824.40 1472.20 1331.65 1455.85 990.00 1991.45 1851.20
Difference 56.05 0.5 24.1 6.5 0 0 65.8 2.55 560.05 12.55

Fig. 13. The Gantt chart of the best-found solution of the original schedule for the M10 based EDJSP.

Fig. 14. The Gantt chart of the best-found solution of the updated schedule for the M10 based EDJSP.

the integration of advantages from two different islands. In the
meantime, it decreased the execution time obviously because
of the simultaneously parallel execution on the host and the
device while indicating the significance of computation capa-
bility balance between two sides. Concerning the EDJSP in the
case study, the best-found solution of the updated schedule was
shown by the Gantt chart. Compared with the original sched-
ule, the processing time of some operations was significantly
decreased. Finally, an experiment was carried to analyze the
relationship among three objectives with different importance
weights. After a discussion around three scenarios, some useful
suggestions were made for industrial practice.

In the future, the Pareto optimal solution will be considered to
solve the dynamic energy aware shop scheduling problems. It can
be easily found in the literature that the Pareto optimal solution
is a common approach to deal with the multi-objective optimiza-
tion problems, apart from the linear combination method. The
ranking and crowding mechanisms from the NSGA II [50] are the
mostly used strategy in the area. However, the non-dominated
set of solutions managed during the optimization procedure is
generally structured as the centralized Pareto front [27,28]. This
strategy is hard to achieve parallelism in the population level. On
the other hand, any partial parallelization on GPUs may lead to
frequent communication overheads and offset the effectiveness.



J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134 133

Table 11
The relationship among three objectives.

Problems NO. of machines NO. of jobs Weight of each normalized objective function
TT − ETmin

ETmax − ETmin

TE − EEmin

EEmax − EEmin

DEV − EDmin

EDmax − EDmin

α β γ

MT10 10 10

100 10 1 0.0469 0.2952 0.0334
100 1 10 0.0464 0.3146 0.0251
10 100 1 0.1864 0.1992 0.1769
1 100 10 0.1813 0.2008 0.1657

10 1 100 0.0460 0.3186 0.0146
1 10 100 0.0520 0.3041 0.0189

Standard deviation 0.0702 0.0564 0.0769

ABZ5 10 10

100 10 1 0.0845 0.2667 0.0628
100 1 10 0.0794 0.3069 0.0211
10 100 1 0.2169 0.2057 0.1884
1 100 10 0.2292 0.2061 0.1762

10 1 100 0.1043 0.3028 0.0165
1 10 100 0.1098 0.2950 0.0186

Standard deviation 0.0674 0.0470 0.0807

ABZ7 15 20

100 10 1 0.0937 0.3571 0.0818
100 1 10 0.0904 0.3680 0.0559
10 100 1 0.2049 0.3085 0.1887
1 100 10 0.2199 0.3108 0.1516

10 1 100 0.1100 0.3719 0.0284
1 10 100 0.1136 0.3669 0.0320

Standard deviation 0.0579 0.0295 0.6621

LA35 10 30

100 10 1 0.2354 0.3411 0.0586
100 1 10 0.2363 0.3422 0.0547
10 100 1 0.3075 0.2868 0.2034
1 100 10 0.2973 0.2905 0.1583

10 1 100 0.2405 0.3430 0.0420
1 10 100 0.2412 0.3391 0.0403

Standard deviation 0.0333 0.0272 0.0699

LA40 15 15

100 10 1 0.1814 0.2969 0.1057
100 1 10 0.1800 0.3086 0.0885
10 100 1 0.2832 0.2263 0.2377
1 100 10 0.2852 0.2285 0.2115

10 1 100 0.1903 0.3117 0.0736
1 10 100 0.1928 0.3092 0.0737

Standard deviation 0.0508 0.0412 0.0733

Therefore, developing a fine-grained Pareto based approach map-
ping onto GPUs underlying architecture and achieving the full
parallelization deserves further study.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is supported in part by the Japan Society for the Pro-
motion of Science. Moreover, Didier El Baz is grateful to NVIDIA
Corporation for the donation of the Tesla K40 GPUs used in this
work and the authors would like to express their gratitude to the
editors and the reviewers for their helpful comments.

References

[1] M. Paolucci, D. Anghinolfi, F. Tonelli, Facing energy-aware scheduling: a
multi-objective extension of a scheduling support system for improving
energy efficiency in a moulding industry, Soft Comput. 21 (13) (2017)
3687–3698.

[2] C. Pach, T. Berger, Y. Sallez, T. Bonte, E. Adam, D. Trentesaux, Reactive and
energy-aware scheduling of flexible manufacturing systems using potential
fields, Comput. Ind. 65 (3) (2014) 434–448.

[3] K. Fang, N. Uhan, F. Zhao, J.W. Sutherland, A new shop scheduling
approach in support of sustainable manufacturing, in: Glocalized Solutions
for Sustainability in Manufacturing, Springer, Berlin, Heidelberg, 2011, pp.
305–310.

[4] A.A.G. Bruzzone, D. Anghinolfi, M. Paolucci, et al., Energy-aware scheduling
for improving manufacturing process sustainability: A mathematical model
for flexible flow shops, CIRP Ann.-Manuf. Technol. 61 (1) (2012) 459–462.

[5] F. Xu, W. Weng, S. Fujimura, Energy-efficient scheduling for flexible flow
shops by using MIP, in: IIE Annual Conference. Proceedings, Institute of
Industrial and Systems Engineers (IISE), 2014, p. 1040.

[6] Y. Liu, H. Dong, N. Lohse, S. Petrovic, N. Gindy, An investigation into
minimising total energy consumption and total weighted tardiness in job
shops, J. Cleaner Prod. 65 (2014) 87–96.

[7] Q. Yi, C. Li, Y. Tang, Q. Wang, A new operational framework to job shop
scheduling for reducing carbon emissions, in: Automation Science and
Engineering (CASE), 2012 IEEE International Conference, IEEE, 2012, pp.
58–63.

[8] M. Dai, D. Tang, A. Giret, M.A. Salido, W.D. Li, Energy-efficient scheduling
for a flexible flow shop using an improved genetic-simulated annealing
algorithm, Robot. Comput.-Integr. Manuf. 29 (5) (2013) 418–429.

[9] D. Tang, M. Dai, M.A. Salido, et al., Energy-efficient dynamic scheduling
for a flexible flow shop using an improved particle swarm optimization,
Comput. Ind. 81 (2016) 82–95.

[10] L. Zhang, X. Li, L. Gao, et al., Dynamic rescheduling in FMS that is
simultaneously considering energy consumption and schedule efficiency,
Int. J. Adv. Manuf. Technol. 87 (5–8) (2016) 1387–1399.

[11] J. Luo, S. Fujimura, D. El Baz, B. Plazolles, GPU based parallel genetic
algorithm for solving an energy efficient dynamic flexible flow shop
scheduling problem, J. Parallel Distrib. Comput. (2018).

[12] A. Dabah, A. Bendjoudi, A. AitZai, D. El Baz, N.N. Taboudjemat, Hybrid
multi-core CPU and GPU-based B & B approaches for the blocking job
shop scheduling problem, J. Parallel Distrib. Comput. 117 (2018) 73–86.

[13] A.C. Spanos, S.T. Ponis, I.P. Tatsiopoulos, I.T. Christou, E. Rokou, A new
hybrid parallel genetic algorithm for the job-shop scheduling problem, Int.
Trans. Oper. Res. 21 (3) (2014) 479–499.

[14] T. Zajıcek, P. Sucha, Accelerating a flow shop scheduling algorithm on the
GPU, 2011, p. 143, eraerts.

http://refhub.elsevier.com/S0167-739X(19)31418-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb1
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb2
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb2
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb2
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb2
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb2
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb3
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb3
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb3
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb3
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb3
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb3
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb3
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb4
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb4
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb4
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb4
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb4
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb5
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb6
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb6
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb6
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb6
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb6
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb7
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb7
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb7
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb7
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb7
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb7
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb7
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb8
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb8
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb8
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb8
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb8
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb9
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb9
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb9
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb9
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb9
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb10
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb10
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb10
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb10
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb10
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb11
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb11
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb11
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb11
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb11
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb12
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb12
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb12
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb12
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb12
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb13
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb13
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb13
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb13
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb13
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb14
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb14
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb14


134 J. Luo, D. El Baz, R. Xue et al. / Future Generation Computer Systems 108 (2020) 119–134

[15] A. Somani, D.P. Singh, Parallel genetic algorithm for solving job-shop
scheduling problem using topological sort, in: 2014 International Confer-
ence on Advances in Engineering and Technology Research (ICAETR), IEEE,
2014, pp. 1–8.

[16] L. Meng, C. Zhang, X. Shao, Y. Ren, MILP models for energy-aware flexible
job shop scheduling problem, J. Cleaner Prod. 210 (2019) 710–723.

[17] Y. He, F. Liu, H.J. Cao, C.B. Li, A bi-objective model for job-shop scheduling
problem to minimize both energy consumption and makespan, J. Cent.
South Univ. Technol. 12 (2) (2005) 167–171.

[18] D. Ouelhadj, S. Petrovic, A survey of dynamic scheduling in manufacturing
systems, J. Sched. 12 (4) (2009) 417.

[19] C.V. Le, C.K. Pang, Fast reactive scheduling to minimize tardiness penalty
and energy cost under power consumption uncertainties, Comput. Ind. Eng.
66 (2) (2013) 406–417.

[20] L. Zeng, F. Zou, X. Xu, Z. Gao, Dynamic scheduling of multi-task for hybrid
flow-shop based on energy consumption, in: International Conference on
Information and Automation, 2009. ICIA’09, IEEE, 2009, pp. 478–482.

[21] K.A. Hawick, A. Leist, D.P. Playne, Mixing multi-core CPUs and GPUs for
scientific simulation software, 2010.

[22] M.A. Hossam, H.M. Ebied, M.H. Abdel-Aziz, Hybrid cluster of multicore
CPUs and GPUs for accelerating hyperspectral image hierarchical segmen-
tation, in: 2013 8th International Conference on Computer Engineering &
Systems (ICCES), IEEE, 2013, pp. 262–267.

[23] J.K. Lenstra, A.R. Kan, P. Brucker, Complexity of machine scheduling
problems, in: Annals of Discrete Mathematics, Vol. 1, Elsevier, 1977, pp.
343–362.

[24] K. Fang, N.A. Uhan, F. Zhao, J.W. Sutherland, Flow shop scheduling with
peak power consumption constraints, Ann. Oper. Res. 206 (1) (2013)
115–145.

[25] S.D. Wu, R.H. Storer, C. Pei-Chann, One-machine rescheduling heuristics
with efficiency and stability as criteria, Comput. Oper. Res. 20 (1) (1993)
1–14.

[26] R. Zhang, R. Chiong, Solving the energy-efficient job shop scheduling
problem: a multi-objective genetic algorithm with enhanced local search
for minimizing the total weighted tardiness and total energy consumption,
J. Clean. Prod. 112 (2016) 3361–3375.

[27] F. Luna, E. Alba, Parallel multiobjective evolutionary algorithms, in:
J. Kacprzyk, W. Pedrycz (Eds.), Springer Handbook of Computational
Intelligence, in: Springer Handbooks, Springer, Berlin, Heidelberg, 2015.

[28] E.G. Talbi, A unified view of parallel multi-objective evolutionary
algorithms, J. Parallel Distrib. Comput. 133 (2019) 349–358.

[29] X. Shen, M. Zhang, J. Fu, Multi-objective dynamic job shop scheduling:
a survey and prospects, Int. J. Innov. Comput. Inf. Control 10 (6) (2014)
2113–2126.

[30] J. Luo, D. El Baz, A dual heterogeneous island genetic algorithm for solving
large size flexible flow shop scheduling problems on hybrid multi-core CPU
and GPU platforms, Math. Probl. Eng. (2019).

[31] E. Alba, B. Dorronsoro, Cellular genetic algorithms, Oper. Res./Comput. Sci.
Interfaces (2008).

[32] J.H. Holland, Genetic algorithms, Sci. Am. 267 (1) (1992) 66–73.
[33] B. Plazolles, D. El Baz, M. Spel, V. Rivola, P. Gegout, SIMD Monte-Carlo

numerical simulations accelerated on GPU and Xeon Phi, Int. J. Parallel
Program. (2017) 1–23.

[34] G. Danoy, F. Gaspar Pinto, B. Dorronsoro, P. Bouvry, Hybrid cellular genetic
algorithm for global trajectory optimization problem, in: International
Conference on Metaheuristics and Nature Inspired Computing, 2010, pp.
1–2.

[35] J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-
Purpose GPU Programming, Addison-Wesley Professional, 2010.

[36] M. Pharr, R. Fernando, Gpu Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation, Addison-Wesley
Professional, 2005.

[37] http://www.openmp.org/.
[38] G. May, B. Stahl, M. Taisch, V. Prabhu, Multi-objective genetic algorithm

for energy-efficient job shop scheduling, Int. J. Prod. Res. 53 (23) (2015)
7071–7089.

[39] B.J. Park, H.R. Choi, H.S. Kim, A hybrid genetic algorithm for the job shop
scheduling problems, Comput. Ind. Eng. 45 (4) (2003) 597–613.

[40] M. Liu, C. Wu, Intelligent Optimization Scheduling Algorithms for Manu-
facturing Process and Their Applications, National Defense Industry Press,
2008, p. 334.

[41] R.H. Storer, S.D. Wu, R. Vaccari, New search spaces for sequencing prob-
lems with application to job shop scheduling, Manage. Sci. 38 (10) (1992)
1495–1509.

[42] G. Taguchi, Introduction to Quality Engineering, Asian Productivity
Organization, Tokyo, 1990.

[43] http://www.minitab.com.
[44] B. Dorronsoro, P. Bouvry, Cellular genetic algorithms without additional

parameters, J. Supercomput. 63 (3) (2013) 816–835.
[45] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the

use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms, Swarm Evol. Comput. 1
(1) (2011) 3–18.

[46] https://www.ibm.com/analytics/spss-statistics-software.
[47] J. Muth, Probabilistic learning combinations of local job-shop scheduling

rules, Ind. Sched. (1963).
[48] J. Adams, E. Balas, D. Zawack, The shifting bottleneck procedure for job

shop scheduling, Manage. Sci. 34 (3) (1988) 391–401.
[49] S. Lawrence, Resouce Constrained Project Scheduling: An Experimental

Investigation of Heuristic Scheduling Techniques (Supplement), Graduate
School of Industrial Administration, Carnegie-Mellon University, 1984.

[50] K. Deb, A. Pratap, S. Agarwal, T.A.M.T. Meyarivan, A fast and elitist
multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2)
(2002) 182–197.

Jia Luo received the bachelor’s degree from Shanghai
University, China, in 2011 and the master’s degree from
Waseda University, Japan, in 2015. Afterwards, she
received her Ph. D, degree from Université de Toulouse,
France, in 2019. Currently, she is a lecturer at College
of Economics and Management, Beijing University of
Technology, China. Meanwhile, she is an International
Research Fellow of Japan Society for the Promotion of
Science. Her research interests include shop scheduling,
parallel evolutionary algorithms and GPU computing.

Didier El Baz received the Engineer degree in Electrical
Engineering and Computer Science from National Insti-
tute of Applied Sciences in Toulouse, France (Institut
National des Sciences Appliquées, INSA) in 1981 and
the Doctor Engineer degree in Control Theory from
INSA Toulouse in January 1984. Dr. El Baz was a
visiting scientist in the Laboratory for Information and
Decision Systems, MIT Cambridge Massachusetts, USA,
in 1984. He is the founder and head of the Distributed
Computing and Asynchronism team at the Laboratory
of Analysis and Systems Architecture (LAAS-CNRS). Dr.

El Baz is the author of 40 papers in referred international journals and 70 papers
in referred International Conference. His fields of interest are in optimization,
parallel and distributed computing.

Rui Xue received the Ph.D. degree in industrial engi-
neering from Université de Toulouse, France, in 2016
and she was a post-doctoral fellow at the Labora-
tory of Analysis and Systems Architecture (LAAS-CNRS)
from 2016 to 2017. Currently, she is a lecturer
at College of Economics and Management, Beijing
University of Technology, China. Her research inter-
ests include system engineering, project management,
system modeling, and decision making.

Jinglu Hu received the M.Sci. degree in electronic
engineering from Sun Yat-Sen University (SYSU), China,
in 1986, and the Ph.D. degree in computer science
and system engineering from Kyushu Institute of Tech-
nology, Japan. From 1986 to 1993, he worked as a
Research Associate and Lecturer at SY-SU. From 1997
to 2003, he worked as a Research Associate at Kyushu
University, Japan. From 2003 to 2008, he worked as an
Associate Professor, and since April 2008 he has been
a Professor with The Graduate School of Information,
Production and Systems, Waseda University. His re-

search interests include computational intelligence such as neural networks and
genetic algorithms, and their applications to system modeling and identification,
bioinformatics, time series prediction, and so on. Prof. Hu is a member of the
IEEE, SICE, and IEICE.

http://refhub.elsevier.com/S0167-739X(19)31418-9/sb15
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb15
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb15
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb15
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb15
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb15
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb15
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb16
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb16
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb16
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb17
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb17
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb17
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb17
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb17
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb18
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb18
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb18
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb19
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb19
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb19
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb19
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb19
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb20
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb20
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb20
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb20
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb20
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb21
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb21
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb21
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb22
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb23
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb23
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb23
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb23
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb23
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb24
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb24
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb24
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb24
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb24
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb25
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb25
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb25
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb25
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb25
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb26
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb26
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb26
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb26
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb26
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb26
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb26
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb27
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb27
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb27
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb27
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb27
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb28
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb28
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb28
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb29
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb29
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb29
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb29
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb29
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb30
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb30
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb30
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb30
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb30
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb31
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb31
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb31
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb32
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb33
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb33
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb33
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb33
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb33
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb34
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb34
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb34
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb34
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb34
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb34
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb34
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb35
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb35
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb35
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb36
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb36
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb36
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb36
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb36
http://www.openmp.org/
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb38
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb38
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb38
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb38
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb38
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb39
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb39
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb39
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb40
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb40
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb40
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb40
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb40
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb41
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb41
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb41
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb41
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb41
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb42
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb42
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb42
http://www.minitab.com
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb44
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb44
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb44
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb45
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb45
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb45
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb45
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb45
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb45
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb45
https://www.ibm.com/analytics/spss-statistics-software
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb47
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb47
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb47
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb48
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb48
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb48
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb49
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb49
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb49
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb49
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb49
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb50
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb50
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb50
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb50
http://refhub.elsevier.com/S0167-739X(19)31418-9/sb50

	Solving the dynamic energy aware job shop scheduling problem with the heterogeneous parallel genetic algorithm
	Introduction
	Literature review
	Problem statement
	EDJSP description
	Mathematical model of EDJSP

	Solving approach
	Event-driven strategy 
	Dual heterogeneous island parallel GA on hybrid CPU–GPU frameworks
	Hybrid encoding representation
	Crossover and mutation operators 

	Numerical tests
	Evaluation
	Case study

	Conclusions and future works
	Declaration of competing interest
	Acknowledgments
	References


