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Abstract The efficiency of a pleasingly parallel application is studied for several com-
puting platforms. A real world problem, i.e., Monte-Carlo numerical simulations of
stratospheric balloon envelope drift descent is considered. We detail the optimization
of the SIMD parallel codes on the K40 and K80 GPUs as well as on the Intel Xeon
Phi. We emphasize on loop and task parallelism, multi-threading and vectorization,
respectively. The experiments show that GPU and MIC permit one to decrease com-
puting time by non negligeable factors, as compared to a parallel code implemented
on a two sockets CPU (E5-2680-v2) which finally allows us to use these devices in
operational conditions.
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1 Introduction

In this paper we present the benefits of using computing accelerators in order to solve
a real world problem in operational conditions. We concentrate on the enveloppe drift
descent analysis problem for statospheric balloon. By operational condition, we mean
that our goal is to use easily displaceable computing platforms in the operational field
far from any computing center and with limited energy consumption.

Currently to determine the landing point of the stratospheric balloon envelope after
a drift descent, the French space agency uses a sequential code that takes around 0.1 s
to compute a single drift descent trajectory, i.e. an unique landing point. In its present
form this code cannot be used in operational condition to perform a fast Monte-Carlo
simulation of the drift descent, since it is purely mono-core, mono threaded and would
take several hours to compute 100,000 simulations.

This is why we study the benefits of computing accelerators like Graphics Process-
ing Units (GPU) and Many Integrated Core (MIC) that can easily be transported onto
operational field and wich feature low energy consumption. In the sequel, we show
how this pleasingly parallel application, i.e., Monte-Carlo numerical simulations of
stratospheric balloon envelope drift descent can take benefits of the characteristics of
both kind of accelerators to achieve this operational challenge.

The paper is structured as follows: Section 2 summarizes the scientific background
of the envelope drift descent. Section 3 introduces the concept of Monte-Carlo numer-
ical simulation in the context of envelope drift descent analysis. Section 4 briefly
presents computing accelerators. Section 5 presents the parallel implementation of
our algorithm on the GPU, the Intel Xeon Phi and multi-core Intel Xeon CPU, and
the different techniques that have been studied in order to optimize the parallel codes.
Section 5 gives also a synthesis of these improvements and presents some general
guidelines to address similar problems. Section 6 deals with the conclusion.

2 Application

In this section we present briefly the application and the physical model that governs
the descent of a stratospheric balloon envelope. Then we present the method used to
retrieve important parameters, i.e., atmospheric data and ballistic coefficient, in tables
at each time step, and how we implement the Monte-Carlo perturbations. Finally we
introduce the algorithm of the envelope drift descent.

2.1 Operation Context

Nowadays, governments impose stringent regulations to space agencies and meteo-
rological offices concerning the recovery of their devices. In particular the French
government requires the national space agency, CNES, to guarantee a safe area of
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possible controlled descent during the flight of a stratospheric balloon, to prevent any
human casualty or damage to property. Indeed, at the end of the flight of a strato-
spheric balloon, when the scientific mission is achieved, the envelope and the nacelle
separate, and the nacelle, which can weight one metric tone or more, descends below
a parachute while the envelope descends in the wind, both without control. To address
this safety requirement, a statistical risk analysis must be performed as quickly as
possible on the drift descent of the envelope of a stratospheric balloon, so as to define
the recovery zone at the end of the flight. A common way is to perform aMonte-Carlo
perturbation [19] of the initial conditions like the atmospheric parameters that present
many uncertainties. Nevertheless, this study is time consuming. In particular, this type
of study cannot be performed in operational conditions with classical CPUs.Moreover
solutions like cluster computing are not well suited to operational conditions. Indeed,
during balloon campaign, people usually embark all the computation means on the
operational field (in Kiruna, North of Sweden or in Timmins, Canada for example),
restricting the weight of the later. This particular conditions define what we are going
to call our operational challenge: to be able to perform a Monte-Carlo analysis of a
drift descent with only on-site computational means in operational computation time,
i.e. before the flying balloon leaves the possible separation area.

2.2 Physical Model of the Envelope Drift Descent

In themodel of the drift descent of the envelope, the position of the envelope is defined,
in the local frame with z along the vertical direction, at any time step t by its altitude
z(t), its latitude lat (t) and its longitude lon(t). In this coordinate system, the motion
of the envelope can be decomposed into two independents parts: the vertical motion
and the horizontal motion.

2.2.1 Vertical Motion

The vertical movement of the envelope is modeled by the sum of two forces: gravita-
tional force g and drag forceFDrag as shown in Fig. 1. The acceleration of the envelope
is then computed according to the following Eq. (1):

a(t, z) = −1

2
ρ(z)v(t)|v(t)| ∗ B(t) − g, (1)

where: a(t, z), is the envelope vertical acceleration at time t and altitude z, in ms−2;
v(t), is the vertical speed of the envelope at time t , in ms−1; ρ(z), is the density of
the atmosphere at the altitude z, in kgm−3, computed from pressure and temperature
via the ideal gas law; B(t), is the ballistic coefficient of the envelope; g, is the Earth
gravitational acceleration.

The new vertical position of the envelope, is computed at every time step by inte-
grating (1), via Euler’s method. We choose to use the Euler’s method as the physical
model is linear and does not present any numerical instability with the time step used
for the calculation (dt = 0.1 s).
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Fig. 1 Sketch of drift descent
motion dynamics
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2.2.2 Horizontal Motion

The horizontal movement of the envelope is only determined by the direction and
the strength of the wind. Thus we define, U the speed of the wind along the zonal
component (positive to the East), and V the speed of the wind along the meridional
component (positive to the South), in ms−1. In the code, at every time step, the new
position in latitude and longitude is computed , via Euler’s method, according to Eqs.
(2) and (3), assuming the hypothesis of a spherical Earth:

lat (t + dt) = lat (t) + arcsin

(
V (z)dt

RT + z

)
, (2)

lon(t + dt) = lon(t) + arcsin

(
U (z)dt

(RT + z) cos(lat (t))

)
, (3)

where, RT the Earth radius in m, z the vertical position.

2.3 Parameters Interpolation

For a given simulationwe consider two tables of parameters. The first table contains the
atmospheric profile, that represents the evolution of atmospheric parameters (pressure,
temperature and wind) according to the altitude. These data are obtained via weather
forecast. The second table contains the evolution of the envelope ballistic coefficient
in function of the time. These data are obtained via reanalysis of previous flights and
provide the ballistic coefficient of the envelope at given times after the begining of the
drift descent.

In order to compute the Eqs. (1), (2) and (3) we need to compute the pressure, the
temperature and the wind at the simulation current altitude and the ballistic coefficient
at the simulation current time. This is done by interpolating those values in table: first
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Fig. 2 Envelope drift descent
calculation

we indentify the current altitude (time), then we go through the atmospheric table
(ballistic coefficient table) to find out, in the table, the values that frame the current
altitude (time) and we perform the interpolation between the levels, or we perform an
extrapolation if the values are out of the bounds of the tables.

2.4 Envelope Drift Descent Algorithm

The numerical integration of an envelope drift descent at each time step, is composed
of four parts, as shown in Fig. 2, and this loop is computed until the ground level
(alt_ground) is reached:

– update the atmospheric parameters at the current altitude, via interpolated values
from forecast data

– update the ballistic coefficient from the ballistic coefficient evolution table.
– update the vertical position via Eq. (1)
– update the horizontal position via Eqs. (2) and (3).

3 Monte-Carlo Simulations

3.1 Definition of the Monte-Carlo Simulations

We call Monte-Carlo simulations the numerical method composed of the following
steps [19]:

– Definition of the initial conditions domain: for each parameter of the model, we
define the domain that is accessible according to a certain distribution law.
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– Generation of N sets of initial conditions according to informations defined pre-
viously.

– Computation of the N simulations from the sets of initial conditions defined pre-
viously: each simulation is then deterministic.

– Agregation of the results of N simulations and determination of statistical proper-
ties, like average, standard deviation,…of the results.

As we can see once the sets of initial conditions are defined, there is no communication
between the simulations and even the generation of the sets of initial conditions is
independant between simulations. Thus ourMonte-Carlo simulations problem appears
to be a pleasingly parallel problem that might benefit from the use of computing
accelerators such as GPUs and coprocessors Intel Xeon Phi.

3.2 Application to the Envelope Drift Descent Analysis

In order to perform the Monte-Carlo analysis of the envelope drift descent we start,
as explained in Sect. 3.1, by defining the initial condition domain. In the case of
the envelope drift descent we consider perturbation on the atmospheric parameters
(pressure, temperature andwind). Aswewanted ourmethod to be the less conservative
on what concerns the size of the computed fallout area, a systematic perturbation of
the atmospheric parameters is applied at each altitude level according to Eq. (4).

Parameterperturbed = ParameterInitial ± αparameter ∗ σparameter , (4)

where: αparameter is an uniformly distributed random value between 0 and 1. This value
is generated at the beginning of the simulation and is different for each parameter
of the stimulation; σparameter is the standard deviation for the parameter computed
comparing weather forecast data and true atmospheric conditions encountered by the
balloon during its ascending phase. The sign of the perturbation is also randomly
generated at the beginning of the simulation for each parameter of each simulation.
This manner, each simulation generates a unique atmospheric profile.

4 Computing Accelerators

During the last decade a new set of computing devices, i.e., computing accelerators has
emerged. These accelerators are highly parallel dedicated hardware used to perform
computing functions faster than the CPU. To the best of our knowledge, computing
accelerators, like GPU and coprocessor Intel Xeon Phi, have been successfully used in
the solution of classic problems like linear algebra, image processing, combinatorial
optimization and resolution of differential system [1–4,25]. Moreover few compar-
isons between the devices have been conducted, see [23,24]. The features of these new
devices make them attractive for industrials to solve real world applications [16,22].

In the following sub-sections we introduce the two main families of computing
accelerators: GPU and Intel Xeon Phi.

123

Author's personal copy



Int J Parallel Prog

Fig. 3 Thread and memory hierarchy in GPUs

4.1 GPU

4.1.1 Architecture

Graphics Processing Units are highly parallel multithreaded, many-core architectures.
They are better known for image processing. Nevertheless, NVIDIA introduced in
2006 CUDA (Compute Unified Device Architecture), a technology that enables pro-
grammers to use a GPU card to address parallel applications. Indeed, NVIDIA’s GPUs
are SIMT (Single Instruction, Multiple Threads) architectures, i.e. the same instruc-
tion is executed simultaneously on many data elements by the different threads. They
are especially well-suited to address problems that can be expressed as data-parallel
computations.

As shown in Fig. 3, a parallel code on the GPU (hereafter named the device), is
interleaved with a serial code executed on the CPU (hereafter named the host). The
parallel threads are grouped into blocks which are organized in a grid. The grid is
launched via a single CUDA program, the so-called kernel [13].

4.1.2 Memory Hierarchy

The hierarchisation of the threads, presented in the previous subsection, is related to
the memory hierarchy. There are three distinct levels of memory that are accessible
for the programmer on a GPU:
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– Global memory: accessible to every threads within the grid. This is the largest
memory of the GPU (several GB), but exhibits the highest latency.

– Per block shared memory: accessible by each thread within a block. This memory
cannot be accessed by a thread from another block.

– Per thread local memory: only accessible to one thread. This memory presents the
lowest latency but is limited in size (few KB of storage).

4.1.3 GPU Synthesis

GPUs are massively parallel computing accelerators with few possibilities of vector-
ization. There is vectorization at Instruction Level Parallelism by placing consecutive
operations in the pipeline if these operations are not data dependent [6]. The same task
is executed inside the same group of 32 threads (called warp) of a given kernel but
different warps of a given kernel can perform different tasks. The memory hierarchy
permits one to optimize the data placement in order to reduce the memory access
latencies. For this type of device the following points are particularly important.

– Provide enough threads to keep busy all the warps;
– Try to have non divergent threads in the same warp;
– Try to limit data transfer between the CPU and the GPU;
– Optimize data locality on the GPU (in order to take benefit of high memory band-
width).

4.2 Xeon Phi

4.2.1 Architecture

In 2013, Intel released theMany IntegratedCore (MIC) coprocessor: the IntelXeonPhi
also known by the code name Knights Corner during its early phase of development.
The coprocessor consists of up to 61 processor cores, interconnected by a high-speed
bidirectional ring (see Fig. 4) [11]. The architecture of a core is based on amodified x86
Pentium 54C cores and contains a dedicated 512-bit wide Streaming SIMDExtensions
vector unit [5]. Each core can execute four hardware threads (two per clock cycle and
per ring’s direction). Like the GPUs, the Intel Xeon Phi is connected to the CPU
via the PCI-Express connector. The memory controllers and the PCIe client logic
provide a direct interface to the GDDR5 memory on the coprocessor and the PCIe
bus, respectively. Thedesignof the coprocessor permits one to run existing applications
parallelised via OpenMP or MPI.

4.2.2 Execution Mode

Unlike GPUs, there are three different ways to execute an application on the Xeon
Phi: the native, offload and hybrid modes (see Fig 5) [11].

The native executionmode, consists in taking advantage of the fact that theXeonPhi
has a Linux micro OS running in it, and appears as another machine connected to the
host which can be reached via a ssh connection. For this mode, the application and the
input files are copied into the Xeon Phi, and the application is launched from it. In the
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Fig. 4 Microarchitecture of the MIC coprocessor

Fig. 5 Intel Xeon Phi execution modes: a offload mode, b native mode and c symmetric mode

beginning, the sequential part of the application runs on one core of the coprocessor,
then the parallel part of the application is deployed over the different cores of the
coprocessor. Existing parallel code running on CPU or cluster can be compiled with
the -mmic option in order to run natively on the Phi without any modifications.

The offload execution mode or heterogeneous programming mode, is similar to
what is done for GPU: the application starts on the host and runs a sequential part
of the code. Then the CPU sends data to the Xeon Phi, and launches the parallel
computation on the coprocessor.

The symmetric mode is similar to the offload mode, except that a part of the parallel
computation is also performed on the host. The code needs to be compiled twice: for
the host and for the coprocessor. In thismode, one of themajor challenges is to properly
balance work between the host and the Phi.

4.2.3 Xeon Phi Synthesis

Intel Xeon Phi are parallel computing coprocessors. They compensate their low par-
allelism (with regards to GPUs), by their ability to vectorize computations (SIMD
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model). The same task is executed for a vector, i.e. an OpenMP process. Neverthe-
less different OpenMP processes can perform different tasks. For these devices, the
following points are important:

– provide enough threads to keep busy all the cores;
– take advantage of the vector units;
– take care of data locality.

5 Parallel Implementations on CPU, GPU and MIC

The Monte-Carlo application studied in this paper belongs to the class of pleasingly
parallel applications, since each drift descent simulation is independent. As explained
in [8] this important class represents more than 20% of the total number of parallel
applications and this proportion is growing.

In this section, we present the experimental setups and protocol and we describe for
the different architectures, i.e., GPU, Xeon Phi and CPU, the basic parallel algorithms
and the main steps of optimization of the parallel codes showing each time the gain
obtained. Finally, we display and analyze the computing times of the parallel codes
on the different computing systems.

5.1 Description of the Experimental Conditions

5.1.1 Hardware

We consider three computing systems (see Table 1).

– A cluster node, composed of two Intel Xeon E5-2680 v2 at 2.8GHz with 10
physical cores each and an Intel Xeon Phi Coprocessor 7120P, with 61 cores at
1.238 GHz and 16 GB memory.

– A computing system with a NVIDIA Tesla K40, with 2880 CUDA cores at 0.745
GHz and 12 GB memory.

– A computing system with a NVIDIA Tesla K80, with 4992 CUDA cores at 0.875
GHz and 24 GB memory.

5.1.2 Software

The GPU implementation of the code is performed using CUDA 7 [14]. The Xeon
Phi implementation of the code is performed using OpenMP 4.0 and compiled using
the Intel Compiler version 14.0.1 (Intel Parallel Studio XE 2015).

5.2 Experimental Protocol

In this paper, we present average computing times for ten instances of each prob-
lem. The measurement starts with the loading of the first data, and stops when the
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Table 2 GPU threads
repartition

Number of threads per block 1024

Number of blocks 99

Table 3 Xeon Phi threads
repartition

Number of OMP threads 244

SIMD vector size 8

Fig. 6 GPU loop parallel algorithm

results of the last simulation are gathered. Computations are performed using double
precision floating point operations. In all experiments, we use all the available cores
on the CPU and Xeon Phi, and for the Xeon Phi each core runs the maximum number
of threads supported (4 threads per core). As the parallel threads of our application
are independent, we set the KMP_AFFINITY of the MIC and of the CPU to “granu-
larity=fine” [10,18]. The threads repartition used on the GPU and Xeon Phi for these
experiments is summarized in Tables 2 and 3.
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Table 4 Computation time for 100,800 simulations on the K40 GPU

Parallel
algorithms

Overall time (s) Communication time (s) Computation time (s)

Loop parallel
algorithm

21.49 17.39 4.1

Task parallel
algorithm

3.03 0.12 2.91

Task parallel
algorithm with
memory
management

2.79 0.11 2.68

5.3 Parallelization on the GPU

In this subsection, we show how we have implemented the parallel algorithm on the
GPU in order to take advantage of its massive parallelism capability.

5.3.1 Loop Parallel Algorithm

We begin the parallelization of our application on the GPU, using a loop parallel
algorithm displayed Fig. 6, and referenced as Loop parallel algorithm in Table 4.
We decide to start with this algorithm, since it is typically the kind of algorithm one
gets when using GPU numerical solver of Ordinary Differential Equations library
such as odeint [12], with complex models that necessitate to update data between
two time steps, like in our case with atmospheric data. In this algorithm the CUDA
kernel corresponds to a single iteration of the while loop shown in Fig. 2. This way, the
lifetime of the CUDA kernel corresponds to one time step of the numerical integration,
one thread is associated with one simulation and at each launch of the kernel we
instantiate as many CUDA threads as there are simulations to perform. A new kernel
is launched at each step. In order to ensure persistence of the data between two time
steps, every variable is stored in the global memory. The atmospheric data, the ballistic
coefficient table and the perturbations parameters that are generated by the CPU are
sent to the GPU only once, before the first time step. At each time step, only the vector
containing the altitude of all the simulations is copied back to the CPU in order to
evaluate the advance of the simulations. The other results are copied back to the CPU
when all simulations are performed. This algorithm permits one to compute 100,800
simulations (3150 warps of 32 threads) of envelope drift descent in 21.49 s.

5.3.2 Limitations of Communications

Then we start investigating the performance of our loop parallel algorithm using
nvprof. It appears that most of the time is spent copying data between the device
and the host, i.e., 17.93 s (80.92% of overall execution time), while the kernel execu-
tion only counts for 4.1 s (19.08% of overall execution time). In order to reduce the
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communications, we decide to switch from loop parallelism to task parallelism. We
redesign the kernel so that each CUDA thread performs the main while loop presented
Fig. 2, instead of only one time step. This algorithm is referenced as Task parallel
algorithm in Table 4. As a result, we perform only two communications between the
CPU and the GPU: one at the beginning and one at the end of the application, and we
only launch one kernel. Also, instead of generating the perturbation coefficients on the
CPU and copying them on the GPU, we use the cuRAND library so that each CUDA
thread generates it’s own set of perturbation coefficients. Changing the code from the
algorithm presented in the previous sub-section to this one requires little code modifi-
cation as it only requires to modify three lines of code. This new algorithm performs
100,800 simulations in 3.03 s, resulting in a reduction of the computation time by a
factor of 85.9%. The communications between the CPU and the GPU only count for
0.04% (0.12 s) of the execution time, while the kernel counts now for 99.86% (2.91 s).
It is interesting to point that the kernel execution time is 2.91 s, while it was 4.1 s
with the loop parallel algorithm. This reduction of 29.3% of the execution time of
the kernel is due to the instantiation of only one kernel instead of the instantiation of
19,039 kernels as in the case of the loop parallel algorithm.

5.3.3 Memory Management

In this subsection, the locality of data is taken into account and we present a parallel
algorithm forwhich a local copyof all the data (atmospheric and ballistic) is performed,
moreover all variables are stored in the local memory. This way, the vector state of
the balloon envelope (containing the position and the speed), which is updated at
each computation (see Fig. 2), resides in the thread local memory reducing memory
access latency. Only the final step of each simulation is stored in the global memory.
This algorithm is referred to as Task parallel algorithm with memory management in
Table 4. The modification of the code between the one used in the previous subsection
and this one are important as they implied to redefine every variables used in the kernel,
manage copy of data from global to local memory. Also, in order to ensure that each
thread keeps the state vector in its local memory we use cudaFuncCachePreferL1 in
order to increase the thread L1memory to 48 KB. The resulting gain in performance is
of 5%, while the local memory overhead (i.e. the ratio of local memory traffic to total
memory traffic) [15] increases from 0.06 to 92.79% as compared with the previous
implementation. This algorithm is presented Fig. 7. We note that for our pleasingly
parallel application we have used local and global memory and never used shared
memory.

5.3.4 Multi-GPU Consideration

We have also considered the performance of the algorithm presented in the previous
sub-section on a NVIDIA Tesla K80. This GPU composed of 4992 CUDA cores
consists of two GK210 cards, each having 2496 CUDA cores and its own memory
system that needs to be adressed separately. From a programming point of view,
things are as if two GPUs were connected to the host. We note that we don’t have any
communication between GPUs since we are considering an embarassingly parallel
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Fig. 7 GPU task parallel algorithm with memory management

Data: atmospheric profile and ballistic coefficient table
for each GPU do

select a GPU;
copy data on the current GPU;
launch kernel on the current GPU;

end
synchronyze GPUs;
copy results from GPUs to CPU;

Algorithm 1: Task parallel algorithm in the multi-GPU case

problem.Thus, for the tests on theK80card,weonlymodified theCPU implementation
without changing the GPU implementation presented in the previous sub-section. On
the GPU the only difference with what was presented previously is that a kernel
will only compute N/2 simulations. We copy the atmospheric profile and the ballistic
coefficient table on both GK210 cards. Then we take advantage of the asynchronism
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Table 5 Computation time for
101,504 simulations on Xeon
Phi

Parallel algorithms Time (s)

Task parallel algorithm 29.98

Task parallel algorithm with
vectorization

23.06

Task parallel algorithm with
vectorization and memory
management

8.02

Task parallel algorithm with
memory management and
fixed size vectorization

6.86

Data: atmospheric profile and ballistic coefficient table
#pragma omp for
for each simulation do

compute simulation;
end

Algorithm 2: Task parallel algorithm on the Xeon Phi

between the CPU and GPU execution of the code: by default, after the launch of a
kernel, the CPU code runs the next instruction without waiting the end of the kernel.
So we perform a loop on the CPU on the amount of connected GPUs (here two) in
order to launch the kernel on the GPUs. Then, in order to retrieve the results of both
GPUs, we block the execution of the CPU code until the GPUs end their computations
with cudaDeviceSynchronize(). These modifications are summarized in Algorithm 1.
This algorithm permits one to compute 100,800 simulations of envelope drift descent
in 1.4 s on the K80. We note that we can easily generalize this approach to several
multi-GPU configurations.

5.4 Parallelization on the Xeon Phi

In this subsection, we show how we have implemented the parallel code on the Xeon
Phi in order to take advantage of it’s massive vectorization capability.

5.4.1 Task Parallel Algorithm

For the implementation of the application on the Xeon Phi, we decide to use the
native programming mode, in order to avoid communications between the CPU and
the Xeon Phi. Doing this, it seems natural to adopt a task parallel algorithm (refer-
enced as Task parallel algorithm in Table 5). All the vectors are allocated using the
instruction posi x_memalign(), and aligned on 64 bits. The parallelization across the
Phi, is ensured via OpenMP as presented in Algorithm 2. We instantiate 244 OpenMP
processes (i.e. 61×4 processes). Each process has to perform sequentially M times
the while loop presented Fig. 2, i.e. M envelope drift descent simulations, where M
is selected so that M times the number of OpenMP processes equals the total num-
ber of simulations to perform. The variables of the simulations are stored in vectors
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(a) (b) (c)

Data: A[N]
Data: B[N]
Data: C[N]

for i ← 0 to N do
C[i] = A[i] + B[i]

end

Data: A[N]
Data: B[N]
Data: C[N]

#pragma simd

for i ← 0 to N do
C[i] = A[i] + B[i]

end

Data: A[N]
Data: B[N]
Data: C[N]
Input: NbOmpProcess
#pragma omp for
for i ← 0 to N/NbOmpProcess do

#pragma simd
Input: OmpProcessId
Data: StartIter =OmpProcessId *

N/NbOmpProcess
for j ← Start I ter to StartIter+
N/NbOmpProcess do

C[j] = A[j] + B[j]
end

end
Algorithm 3: Illustration of the SIMD vectorization with a vectorial addition: (a)
sequential for loop, (b) vectorized for loop, (c) parallelized and vectorized for loop

Data: atmospheric profile and ballistic coefficient table
#pragma omp for
for each simulation do

#pragma vector aligned
#pragma ivdep
#pragma simd
compute vector simulations;

end
Algorithm 4: Task parallel algorithm with vectorization on the Xeon Phi

shared among the OpenMP processes. The perturbation table is generated by each
OpenMP process for the M simulations. The uniqueness of each perturbation is guar-
anteed by the management of the seed of the random number generator that depends
on the rank of the OpenMP process. This algorithm computes 101,504 simulations in
29.98 s.

5.4.2 Vectorization

The above implementation does not fully use the capacity of the Xeon Phi as there
is no vectorization. In this subsection we present how we have vectorized the code
using the OpenMP 4.0 SIMD vector model. This model permits one to vectorize the
computation of a ’for’ loop. For the simplicity of presentation, we illustrate SIMD
vectorization with a vectorial addition: let’s consider three vectors A, B and C with N
elements each and the vectorial addition C = A + B. In the sequential case, one writes
a loop on the number N of elements of A, B and C as presented in the Algorithm
3.(a). This way, the addition is performed one vector element ’i’ at a time. In order to
vectorize this addition one can simply add OpenMP 4.0 SIMD directive as shown in
Algorithm 3.(b). This way, instead of being performed sequentially, the addition will
be performed via the vector unit for all the elements of the vectors A and B if the vector
size is lower or equal to the dimension of the vector unit (512 bits in the case of the
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Data: atmospheric profile and ballistic coefficient table
#pragma omp for
for each simulation do

copy data;
#pragma vector aligned
#pragma ivdep
#pragma simd
compute vector simulations;

end
Algorithm 5: Task parallel algorithm with vectorization and memory management
on the Xeon Phi

AVX-512); otherwise, the computation is sequentiallized with sub-vectors of 512 bits
in the case of the AVX-512. The later situation (see Algorithm 3.(c)) corresponds to
the case where we combine parallization and vectorization. This way, each OpenMP
process, identified by its OpenMP Id: ’OmpProcessId’, works on sub-vectors with
size N / NbOmpProcess, where NbOmpProcess is the number of OpenMP processes.
The parallelization and vectorization strategy carried out in this paper corresponds
to Algorithm 3.(c). We also use the compiler directive #pragma vector aligned, in
order to guarantee to the compiler that all memory accesses are aligned. This new
algorithm is referenced as Task parallel algorithm with vectorization in Table 5 and is
presented Algorithm 4. Vectorization of the code implies a heavy modification of the
code as each line of computation needs to be rewritten in a vector way. The size of the
vectors is defined at the application execution and is set to 8, because the size of the
vector unit of the Xeon Phi is 512 bits (AVX-512) and we work with double precision
arithmetics (64 bits). Thus, to compute 101,504 simulations, the application launches
244 OpenMP processes that compute 416 simulations each, launching 52 blocks of 8
vectorized simulations; this is performed in 23.06 s.

5.4.3 Memory Management

Analyzing the performance of the previous algorithm, it appears that the vectorization
was not efficient due to the time spent accessing data in the global memory of the
Xeon Phi. In oder to address this issue, we store state vectors (containing the posi-
tion and speed of the envelope), atmospheric profile and ballistic coefficient table in
the local memory of each OpenMP process creating private variables as presented in
Algorithm 5. This type of parallel algorithm (referenced as Task parallel algorithm
with vectorization and memory management in Table 5) computes 101,504 simu-
lations in 8.02 s. We note that rewriting the code from the task parallel algorithm
to the task parallel method with vectorization and memory management necessi-
tates the modification of 99 lines of codes (the non vectorized code has around 500
lines).

5.4.4 Fixed Size Vectorization

During the process of optimization of the application, we fix vector size to 8 before-
hand, i.e. before compilation. This corresponds to the Algorithm with memory
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management and fixed size vectorization in Table 5. Thanks to this modification,
the application computes 101,504 simulations in 6.86 s. It appears that this gain is due
to the fact that if the size of the vector is not set at the compile time, then the Intel
compiler adds extra control features that slowdown the application; thus, fixing vector
size prevents this behavior.

5.5 Parallelization and Vectorization on the CPU

We note that the parallel algorithm implemented on the CPU is the same as the one
implemented on the coprocessor Xeon Phi. De facto, the CPU implementation is
multi-threaded, vectorized and addresses memory locality issues. The code is com-
piled without specific -mmic compilation option and with AVX compilation options
(-mtune=core-avx-i -axCORE-AVX-I -mavx). Computational experiments show that
8 is not the vector size that gives the best performance since the Xeon E5-2680-v2 L1
cache is wider and more efficient than the one of the Xeon Phi. We obtain the best
performance, i.e., the best compromise between the cache efficiency and the dimen-
sion of the vector unit, using vectors of size 128. This algorithm computes 102,400
simulations (20 OpenMP processes that compute 5120 simulations each, launching
40 blocks of 128 vectorized simulations) in 13.31 s.

5.6 Operational Challenge

For stratospheric balloon studies the operational challenge consists in computing very
fast, many envelope drift descent simulations (enough to obtain a statistically unbiased
result) before balloon launch or during the balloon flight. In particular during flight
this analysis appears as a decision support and must be performed as fast as possible.
Moreover, such computation must be performed via computing systems that can be
easily embedded on the operation site, e.g. laptop or even central unit, in order to
prevent connection issues.

Figure 8 displays the computing time on the different platforms for several numbers
of simulations. As we can see, the K80, the K40 and the Xeon Phi 7120P, address the
operational challenge, since 1,000,000 simulations require respectively 11.84, 32.4
and 64.2 s, while they require 130.5 s on a computing node with two Intel Xeon. Thus,
these devices appear to be more efficient than a standard cluster node. Moreover, those
devices can be plugged on a computer, and their electric consumption of around 300
W (PDT of 300W for the Phi 7120p and the K80, and 280W for the K40), make them
suitable too operational conditions.

For the operational challenge the rapidity of the computation is not the only cri-
terion since the accuracy of the provided solution is also very important. In order to
control the accuracy of our technique of determining the probable zones of fallout of
stratospheric balloon, we analyze data of the 6 flights of the 2014 CNES stratospheric
balloon campaign at Timmins, Canada. For each flight of this campaign we consider
the end of flight conditions (atmospheric profile and the uncertainties on this profile,
the separation position in altitude, latitude and longitude) and perform 1,000,000 sim-
ulations. Then we use the method presented in references [7,20] in order to determine
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Fig. 8 Computation duration versus number of simulations

Fig. 9 Fallout area determined for the first flight of 2014 Timmins stratospheric balloon flight campaign

the 1, 2 and 3 σ confidence ellipses on the fallout area. Figure 9 represents results for
the first flight of this campaign. As we can see the real landing point (red) is inside the
1 σ confidence ellipse. For the others flights, for three of them landing points were
also in the 1 σ confidence ellipse while for the other two landing points were in the
2 σ confidence ellipse. These first results are very promising in terms of accuracy of
the results provided.
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5.7 Synthesis and Guidelines

We see that the parallel implementation on GPU and Xeon Phi of the Monte-Carlo
simulation of envelope drift descent, permits one to reduce the computing time and to
fulfill operational conditions. Indeed, the computing time on the K40 and K80 GPUs
are respectively about four and ten times faster than the one obtained with a parallel
code on the two E5-2680 CPU; similarly, the computing time on the Xeon Phi 7120P
is twice as fast.

On what concerns specifically code optimization, we note that reductions in com-
puting time have been obtained thanks to the following improvements:

– GPU implementation the reduction of communications between the host and
device along with the reduction of number of kernels launched per simulation,
changing our algorithm from a loop parallel to a task parallel approach, was very
efficient. This has led to a 86% reduction in the computing time. In particular, such
modifications permit one to dramatically reduce the synchronizations between
threads since the application is pleasantly parallel.

– Xeon Phi implementation the combination of memory management and vector-
ization is the key issue in the Xeon Phi case. Indeed, this leads to a 73% reduction
in the computing time. However we note that without memory management such
an important reduction in computing time could not be obtained. Also imposing
the size of vectors before compilation appears to reduce the computing time by
14%.

We showed also the necessity to reconceptualize in a vectorial way scalar algorithm
on Xeon Phi which requires a lot of programing effort as it implies to fully rewrite all
the code and manage specific functions that do not support vectorization like rand()
function. On the other hand, we showed that implementation on the GPU requires less
reconceptualization and thus less programming effort than on the Xeon Phi.

We believe that these guidelines are also valid for other applications related to
numerical integration and more generally to numerical simulation.

6 Conclusion

The implementations of our parallel algorithm on the GPUs K40 and K80 are respec-
tively 4 and 10 times faster than a parallel and vectorized implementation on the two
sockets CPUE5-2680-v2 while the Xeon Phi 7120P is twice as fast as a vectorized and
parallel CPU implementation. In order to obtain these results it is crucial to properly
consider the architectures of both accelerators and to design the codes accordingly,
i.e., take advantage of the massive parallelism ability of the GPUs and use the paral-
lelism combined with massive vectorization abilities of the Xeon Phi. Also, a good
understanding of the physical problem permits one to optimize the data locality and
hence to improve the performance of the parallel application.

Computing accelerators appear to be very serious alternatives to clusters in order
to solve real world problems in operational conditions. The application presented
in the present paper is an illustration of a numerical integrator with Monte-Carlo
perturbation of initial conditions. This is a general class of problems which has many
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fields of applications such as atmospheric reentry of satellites [17], ballistic trajectory
prediction [9], ray tracing of GNSS [6], parafoil automatic guidance [21], and we
believe that thanks to the guidelines, presented in this paper,many of these applications
could strongly benefit of computing accelerators.

As the methodology presented in this paper can be applied to other applications, by
replacing the core of the algorithm, we are now working on generalizing our approach
and designing a library that will be made available to the community.
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