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Reflection High-Energy Electron Diffraction (RHEED) is a powerful tool to probe the surface reconstruction
during MBE growth. However, raw RHEED patterns are difficult to interpret, especially when the wafer is
rotating. A more accessible representation of the information is therefore the so-called Azimuthal RHEED
(ARHEED), an angularly resolved plot of the electron diffraction pattern during a full wafer rotation. However,
ARHEED requires precise information about the rotation angle as well as of the position of the specular spot
of the electron beam. We present a Deep Learning technique to automatically construct the Azimuthal RHEED
from bare RHEED images, requiring no further measurement equipment. We use two artificial neural networks:
an image segmentation model to track the center of the specular spot and a regression model to determine the
orientation of the crystal with respect to the incident electron beam of the RHEED system. Our technique
enables accurate and real-time ARHEED construction on any growth chamber equipped with a RHEED system.
Keywords: Molecular Beam Epitaxy, Azimuthal RHEED, image segmentation, ResNet

I. INTRODUCTION

Molecular Beam Epitaxy (MBE) is a growth method al-
lowing for synthesis of crystals with atomic precision and
fabrication of advanced heterostructures1,2. Moreover, in-
situ tools such as Reflection High Energy Electron Diffrac-
tion (RHEED)3–6, reflectometry7,8, curvature9 or bandgap
measurements10 can be used for real-time control of the
growth processes, which is unmatched by other growth meth-
ods. In MBE, source elements (e.g. Gallium or Arsenic)
are individually heated to a temperature where evapora-
tion/sublimation takes place, which creates a beam of atoms
or molecules. These beams are directed towards a crystalline,
heated substrate where they are adsorbed, diffuse on the sur-
face and finally chemically bond. RHEED patterns provide in-
formation about the crystalline surface with atomic resolution
and are highly sensitive to several key MBE parameters such
as the growth rate, the temperature, the crystal structure, the
lattice parameter, the strain, etc11–13. However, raw RHEED
patterns are difficult to interpret directly and therefore are typ-
ically preprocessed. An interesting way to present RHEED
patterns is the so-called Azimuthal Reflection High-Energy
Electron Diffraction (ARHEED), in which slices through the
specular spot of RHEED patterns are drawn in a polar plot
as a function of the azimuthal angle (the rotation angle of the
substrate)14. ARHEED offers a relatively straightforward in-
terpretability and allows to detect for instance periodicities or
epitaxial crystal orientations.

During MBE, it is essential to grow layers with substrate
rotation to ensure uniformity15. Therefore, it is important to
develop methods that allow access to the reciprocal lattice of
rotating substrates15. Xiang et al. have showed in16 that it is
possible to obtain the entire reciprocal space structure of a 2D
material by rotating the sample around the surface normal and
measuring the RHEED patterns as a function of the azimuthal
angle which makes ARHEED extremely interesting for sur-
face characterization. A frequent challenge is the fact that a
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typical MBE chamber does not have a device for azimuthal
angle measurement; and when it does, a typical difficulty is
associated with the fact that in the ultra-high vacuum MBE
chambers, the rotational stage is coupled magnetically and the
rotation is often not perfectly smooth. This makes it difficult
to determine the crystal angle with good accuracy. Determin-
ing the crystal azimuthal angle from the RHEED pattern itself
is therefore very interesting for high-accuracy ARHEED. The
Kikuchi lines, illustrated in Figure 4a-c with red lines, contain
information on the sample orientation. Considering standard
(001) oriented substrates, they are (for samples with a cubic
crystal lattice) 4-fold symmetric and thus strictly contain in-
formation only for 0-90 degrees. Using several consecutive
RHEED images instead of single ones to feed the neural net-
work model would include information about the direction of
the Kikuchi lines rotation and thus would allow to identify
0-180 degrees. Finally, the RHEED screen is usually not per-
fectly centered, such that each quadrant of the rotation shows
a different section of the Kikuchi lines pattern, thus it should
even be possible to distinguish between a full 0-360 degrees
rotation angle range. Kikuchi lines originate from the elec-
tron scattering in the bulk of the crystal, hence do not (or only
very weakly) depend on the growth of the topmost monolayer.
Determination of the rotation angle should thus be possible in
a robust way. Additionnaly, also the surface signal (diffrac-
tion spots and lines) contains information about the crystal
angle, which can be used by a neural network as already
demonstrated in earlier works17–19. In summary, two elements
are necessary in order to construct the ARHEED from raw
RHEED patterns: the coordinates of the specular spot across
the RHEED patterns and the rotational angle. Therefore, our
approach in this article aims to construct the ARHEED from
raw RHEED images by detecting the specular spot with seg-
mentation using U-Net and determining the azimuthal angle
via regression using ResNet. An overview of the proposed
workflow is depicted in Figure 1.

ar
X

iv
:2

50
3.

15
33

9v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
9 

M
ar

 2
02

5

mailto:akhairehwa@laas.fr
mailto:pwiecha@laas.fr


2

RHEED video

Azimuthal RHEED

azimuthal angle
Regression

ResNetkikuchipy
Kikuchi lines

segmentation

U-Net masks
slices

specular spot coordinates

Figure 1. Azimuthal RHEED construction. Short videos of RHEED patterns go through two parallel paths. The first path, on the top, consists
of segmentation using U-Net to produce binary masks of the specular spot in or order to retrieve the coordinates of the gravity center. The
specular spot positions are used to crop thin slices from the video frames. The second path, on the bottom, preprocesses the images with
kikuchipy20 with the goal of highlighting the Kikuchi lines. The data is then fed to a ResNet model for azimuthal angle regression. The
Azimuthal RHEED is obtained by polar plotting the slices through the specular spot in function of the corresponding azimuthal angles.

II. RESULTS AND DISCUSSION

A. Specular spot tracking across RHEED patterns

In order to crop thin slices from RHEED images through
the specular spot, its position must be tracked across the
RHEED patterns. Generally, the tracking process involves
two algorithms, one for object detection21–23 and one for
object tracking24,25. Object detection algorithms firstly
identify and localize objects in images followed by object
tracking algorithms that link the detected objects across
video frames to maintain their identity and trajectory. In case
of object disappearance, the process of object detection is
relaunched.

In the case of RHEED, the specular spot is lost from view
at least four times per rotation as a consequence of the sam-
ple holder hooks, blocking the electron beam. Furthermore,
the specular beam disappears occasionally due to fluctuations
in light conditions and noise. This would require the detec-
tion algorithm to be restarted each time a loss occurred. An-
other choice is to process each image independently perform-
ing a segmentation task to divide the image into meaningful
regions26. Unlike object detection, which identifies and local-
izes objects using bounding boxes, the segmentation provides
a detailed pixel-level identification. In our study, the specular
spot pixels are referred to as "class one" whereas the remain-
ing area is referred to as "class zero" leading to a binary mask
from each RHEED image independently. This is achieved by
implementing a lightweight U-Net architecture of 84 048 pa-
rameters.

Segment Anything Model

Binary masks

RHEED image

Figure 2. Generation of the specular spot mask. Segment Anything
Model (SAM)27 generates a separate mask for any object in the input
image. The goal is to manually save a couple of an image and the
corresponding specular spot mask (framed in green) in order to build
a database for the training of a model that will generate only the
specular spot mask.

1. Dataset preprocessing

A dataset of image-mask pairs is set up to train a segmen-
tation model. To this end, binary masks are generated for
each spot and line on the RHEED images using the Segment
Anything Model (SAM)27 released by Meta. SAM operates
as a general-purpose segmentation framework, capable of
identifying and segmenting objects in basically any image
inputs.

To generate a database for training a specular spot detec-
tor, we let the SAM generate masks from RHEED images
leading to the generation of multiple masks for each image
as shown on Figure 2. The mask corresponding to the spec-
ular spot, framed in green on Figure 2, is manually selected
in a total of 1 026 images with (512×688) dimension. After
data-augmentation via shifting of images and masks to four
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sides and cropping, we obtain a dataset of 5 130 image-mask
pairs with (290×368) dimension. 80 % of the data is used for
training and 20 % for validation. Subsequently, a test is car-
ried out with 9 632 images which are not among those used
for training and test. RHEED videos are captured at 24 frames
per second, with wafer rotation at 4 rpm in the MBE chamber
of RIBER, Compact 21 DZ (C21DZ).

2. Neural network architecture
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Figure 3. a) Sketch of the U-Net model for image segmentation.
The model takes a RHEED image as input and reduces the spatial
dimensions through an encoder network while expanding the channel
dimension. Each rectangular block stands for an Identity Mappings
ResNet block28 which is illustrated in Figure 4d. The decoder, mirror
network of the encoder, constructs a matrix with the same spatial
dimensions than the input with two channels, each representing the
probability of a class (specular or not). The mask is determined by
taking the number (1 or 0) of the class with the highest probability
value. This leads to a binary mask with ones at the specular spot
area and zeros elsewhere. b) The specular spot coordinates from the
first 3 000 images in the test data. The movement of the specular
spot in vertical and horizontal in the test images is determined by
the segmentation model via binary masks. When the spot is lost, due
either to the electron beam being blocked by the sample holder hooks
or to a deterioration in image quality, its last known position is kept.

The model is trained to generate a binary mask for the spec-
ular spot from the RHEED image. The U-Net model architec-
ture, depicted in Figure 3, comprises an encoder and a decoder
made up of Identity mapping ResNet blocks28. The encoder
takes an image as input, extracts features through multiple
ResNet blocks with increasing number of kernels. The di-
mensionality reduction is performed using convolution layers
with strides as this enables the model to learn the downsam-
pling process. The encoder is followed by a bottleneck of 64

kernels that is fed to a decoder, a mirror network of the en-
coder with the convolution layers replaced by transpose con-
volutions with strides for the upsampling. The decoder pro-
duces a matrix of two channels, each containing pixel-wise
probability for the two classes (specular or not). Thus, the bi-
nary mask is determined taking the number of the class with
the highest probability. The specular spot coordinates corre-
spond to the center of gravity of the area where the pixels
are equal to one. The model is trained with SparseCategor-
icalCrossentropy loss function in keras with Adam optimizer
using sigmoid activation function in the last layer.

3. Specular spot coordinates

Once the segmentation model has demonstrated satisfac-
tory performance on the validation data, it is tested on new
data to examine its accuracy under real-world conditions. A
total of 9 632 images are reserved for this purpose. The move-
ment of the specular spot across the test images is shown in
Figure 3b. The elliptical movement of the specular spot can
be seen in these curves, with the vertical displacement having
a greater amplitude than the horizontal one. When the spot is
lost from view in the black images, its last known position is
retained, although this will not allow any useful information
to be extracted.

B. Azimuthal angle determination

In addition to the specular position, the ARHEED construc-
tion requires an accurate measurement of the angle between
electron beam and crystal orientation, the azimuthal angle (the
wafer rotation angle). The quality of the Azimuthal RHEED
depends on the accuracy with which this angle is determined
as well as on the precision of the previously extracted posi-
tions. This subsection aims to retrieve that angle from raw
RHEED images using a deep learning approach.

1. Dataset preprocessing

As explained before, the sample holder in the ultra high
vacuum chamber is magnetically coupled to an external mo-
tor, often leading to non-smooth rotation. However, the sam-
ple holder has a significant physical weight. The faster we
spin it, the less perturbation of the rotation by mechanical
play and friction will occur thanks to the inertia of the sample
holder. Therefore, angle accuracy is higher under fast spin-
ning, but the ARHEED resolution reduces for high rotation
speed. Good angle resolution requires rotation speeds in the
order of 3-4 rpm, where friction and mechanical play have a
very noticeable impact on the rotation. For this reason, we
train a ResNet model for the azimuthal angle regression using
a dataset of 26 300 images captured when the sample is rotat-
ing at 12 rpm for training, at this speed the rotation is very uni-
form and the relative angle can be accurately determined, for
example relative to a reference image. The dataset is split in
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such a way that 70 % is used for the model training, 15 % for
validation and 15 % for test. For the ARHEED construction,
the test dataset of the specular beam tracking in the above sec-
tion is used. The raw test images have (512×688) dimension
in 16-bit (65536 grayscale) and are captured at 4 rpm. In pre-
processing, we reduce the image dimensions to (137× 229)
and at the same time normalize pixel values between 0 and
1. After tests of different size scale factors, we choose the
smallest dimensions without noticeable impact on the results.
Sequences of 6 images bring better accuracy for the regres-
sion task thus the model input dimensions are (137×229×6),
stacking six consecutive RHEED images along the channel di-
mension. We define the prediction angle to be the angle corre-
sponding to the first image of each sequence. For a real-time
application, the oldest, last image would be removed from the
stack and the newest image, obtained from the RHEED cam-
era, would be added as new first image for each prediction.
We use the open source software Kikuchipy20 for RHEED
image pre-processing, which allows to increase the contrast
of the Kikuchi lines, thereby enabling the model to focus on
their movement. We found that this pre-processing signifi-
cantly improves the training convergence of the azimuthal an-
gle prediction network. Kikuchi lines depend mainly on the
bulk of the crystal29, which leads us to believe that this is a
robust method for deducing the rotation angle from RHEED
images. Two pre-processing steps are applied on the images
using Kikuchipy: removing of dynamic background and adap-
tive histogram equalization, as illustrated in Figure 4b and 4c,
respectively. Figure 4c shows that the contrast of the Kikuchi
lines is signficiantly increased after this pre-processing.

2. Neural network architecture

An Identity Mappings Residual Network as reported by He
Kaiming et al.28 is used for characteristics extraction. Fig-
ure 4d shows the architecture of our RHEED-angle regres-
sion model, the numbers on the left of the blocks indicate
how many times the residual units are stacked before the sin-
gle Conv2D layer with strides equal to 2 for dimensional-
ity reduction. Our residual neural network architecture con-
sists of residual units involving three convolution layers each
preceded by batch normalization and LeakyReLU activation
function. A convolution shortcut is used only for dimension-
ality matching. After following the main residual network, a
flatten layer combines the extracted features and passes them
to a multilayer perceptron consisting of two dense layers each
followed by a Batch Normalization and a LeakyReLU activa-
tion function. Finally, the network output is a single linear
neuron for the angle output.

3. Azimuthal angle prediction

Our MBE is equipped with an angle-encoder that gives us
a precise measurement of the azimuthal angle, which is not
the case for a standard MBE chamber. Thus, we are capable
of quantifying the angular prediction error. First we test the
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Figure 4. l Image preprocessing using Kikuchipy20. Two techniques
are applied on the a) original image: first b) removing of dynamic
background and then c) adaptive histogram equalization to highlight
the Kikuchi lines. The result is shown at each step and the red lines
denote the bare-eye visible lines. c) Residual neural network archi-
tecture for azimuthal angle. The block of identity mappings ResNet
on the top right is called "residual unit" in28 and contains three sub-
blocks each consisting of a batch normalization, LeakyReLU activa-
tion function and 2D convolution. The result of the last convolution
is added to a shortcut of the block input. The architecture of the
whole neural network on the left is made of stacked identity map-
pings ResNet blocks each followed by a single 2D convolution layer
for dimensionality reduction to extract informations from the input
images. Afterwards, the features go through a flatten layer and are
fed to an MLP to process the extracted features and predict the az-
imuthal angle value.

model on data from 12 rpm rotating sample. The histogram of
the absolute error is shown in Figure 5a), the error is roughly
distributed around zero with 1.48◦ standard deviation. In
addition, Figure 5c) shows the ResNet prediction plot versus
the target values, where we can see superimposed curves
demonstrating a good prediction accuracy. At this speed,
the inertia of the sample holder is large enough to ensure a
smooth rotation and we thus have angular values with high
confidence.

In a second step, we test the model with data captured dur-
ing 4 rpm rotating substrate. To emulate the same image se-
quence characteristics as in the training samples obtained with
12 rpm, we only use every third image for sequence stacking
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Figure 5. Regression model accuracy. The histogram of the absolute
error between the prediction and the target values for a) the test data
from 12 rpm patterns, where the error is roughly distributed around
zero with a standard deviation of 1.48◦ and b) the test data from
4 rpm patterns, where the error is also roughly distributed around
zero but with a standard deviation of 4.32◦. The azimuthal angle
prediction (green dashed line) versus target values (black line) for
RHEED images captured during c) 12 rpm rotating sample and d) 4
rpm rotating sample for a random window of 749 images in each test
dataset (12 rpm and 4 rpm).

under 4 rpm acquisition. The statistics of the absolute error of
the 4 rpm test is shown in Figure 5b, showing a distribution
around zero with 4.32◦ standard deviation. Figure 5d depicts
the ResNet predictions as well as the target values. On the pre-
dicted angles we apply a Savitzky-Golay filter for smoothing
of high-frequency noise. At this speed, the rotation is signif-
icantly less smooth due to the mechanical play and friction at
the magnetic coupler. Despite these perturbations, the model
predicts well the azimuthal angle.

C. Azimuthal RHEED plotting and interpretation

Now that we have established models capable to deter-
mine the position of the specular spot and the azimuthal
angle, we are now capable to combine these information to
create ARHEED images exclusively from the raw RHEED
patterns. The Azimuthal RHEED provides access to a wider
spectrum of information than a single RHEED image. Each
ARHEED pattern in Figure 6 is obtained using RHEED
patterns corresponding to two sample rotations by averaging
the redundant data and interpolation of missing angles. The
large black segments correspond to moments during the
rotation when the electron beam is blocked by the hooks of
the sample holder. The first information that can be extracted

from ARHEED is the surface reconstruction which refers
to the rearrangement of surface atoms of the material under
growth. The (001) GaAs surface can be terminated by either
Ga or As atoms and has two dangling bonds for each surface
atom that experiences inter-atomic forces from only the
bulk side30. Due to this imbalance and in order to eliminate
such dangling bonds, the surface atoms undergo complex
reconstructions with different spacing and symmetry. These
reconstructions are formed critically depending on the
preparation conditions30 such as temperature and affect the
surface morphology and electronic properties of the mate-
rial. Therefore, monitoring surface reconstruction provides
valuable information for optimizing growth conditions and
controlling material properties. We continuously created
ARHEED representations while decreasing the temperature
of a previously-heated As-stabilized GaAs buffer layer. Upon
temperature decrease, the surface termination undergoes a
transition from (2 × 4) to c(4 × 4) surface reconstruction.
This can be observed in the ARHEED shown in Figure 6,
where a sample during the (2 × 4) reconstruction is shown
(left), one at a temperature corresponding to the transition
(center) and finally a ARHEED corresponding to c(4 × 4)
surface reconstruction (right).

III. CONCLUSIONS

In conclusion, the presented techniques enable the con-
struction of the Azimuthal RHEED from only raw RHEED
patterns. This task requires the specular spot position and the
azimuthal angle to be determined with precision. The posi-
tion is tracked using a segmentation U-Net model trained on
a dataset labeled with the help of SAM27, a general-purpose
segmentation model released by META. The determination
of the azimuthal angle is done by regression using a ResNet
model based on identity mappings28. The training dataset of
the azimuthal angle model is recorded while the sample is ro-
tating at a stable, high speed of 12 rpm. Subsequently, it is
used to predict angles at low rotation speed (4 rpm), where
the angular stability is reduced due to mechanical play and
friction at the magnetic coupler to the external motor. Each
ARHEED pattern is obtained from processing two full rota-
tions through averaging and interpolation of the angles. Fur-
thermore, we demonstrated that the technique is capable to
track the transition between different GaAs surface recon-
structions during cooling down of the sample. Note that the
proposed deep learning models are trained on data from one
experiment. To work effectively on data from different exper-
iments, the models need to be trained for this effect. Future
work includes generalization of the deep learning models to
multiple materials, not limited to GaAs. We believe that our
method is a highly valuable RHEED analysis technique for
production MBEs, which are not equipped with angular in-
situ measurement.
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Figure 6. Surface reconstruction determination from azimuthal RHEED. Each azimuthal RHEED pattern contains information from two
sample rotations. The large black crosses correspond to the electron beam being blocked by the hooks of the sample holder. These patterns
belong to a) (2×4), b) transition and c) c(4×4) surface reconstructions. The (00) point with the greatest intensity corresponds to the specular
spot while the (01) and (10) spots correspond to the first order diffractions in [110] and [110] directions, respectively.

Supplementary Material

A supplementary video of the deep learning constructed
ARHEED during the transition between (2 × 4) to c(4 × 4)
is available online.
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