
Annals of Operations Research
https://doi.org/10.1007/s10479-025-06482-2

ORIG INAL RESEARCH

A fully parallel multi-objective genetic algorithm
for optimization of flexible shop floor production
performance and schedule stability under dynamic
environments

Jia Luo1,2,3 · Didier El Baz4 · Rui Xue1 · Jinglu Hu3 · Lei Shi5,6

Received: 27 April 2023 / Accepted: 9 January 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract
As the work environment changes dynamically in real-world manufacturing systems, the
dynamic flexible job shop scheduling is an essential problem in operations research. Some
works have taken rescheduling approaches to solve it as themulti-objective optimizationprob-
lem. However, previous studies focus more on solution quality improvements while ignoring
computation time. To get a quick response in the dynamic scenario, this paper develops a
fully parallel Non-dominated Sorting Genetic Algorithm-II (NSGA-II) on GPUs and uses
it to solve the multi-objective dynamic flexible job shop scheduling problem. The mathe-
matical model is NP-hard which considers new arrival jobs and seeks a trade-off between
shop efficiency and schedule stability. The proposed algorithm can be executed entirely on
GPUs with minimal data exchange while parallel strategies are used to accelerate ranking
and crowding mechanisms. Finally, numerical experiments are conducted. As our approach
keeps the original structure of the conventional NSGA-II without sacrificing the solutions’
quality, it gains better performance than other GPU-based parallel methods from four met-
rics. Moreover, a case study of a large-size instance is simulated at the end and displays the
conflicting relationship between the two objectives.

Keywords Evolutionary computations · Parallel NSGA-II · GPU computing ·
Multi-objective optimization · Flexible job shop scheduling · Dynamic scheduling

1 Introduction

Scheduling is a critical activity in productionmanagement. The Flexible Job Shop Scheduling
Problem (FJSSP) incorporatesmachine assignment and operation sequencingwheremachine
assignment dealswith choosing a capable one in the set ofmachines to proceed each operation
and operation sequencing works for sequencing the assigned operations on the machines (Hu
et al., 2024). The FJSSP is an NP-hard problem (Xu et al., 2024) and usually is modeled
as a static problem in the operations research literature. However, the working environment
changes dynamically in real-world manufacturing systems and rescheduling is used most
commonly to manage unpredictable real-time events. An updated schedule may be totally

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-025-06482-2&domain=pdf
http://orcid.org/0000-0003-3914-8865

Annals of Operations Research

different from the original one. If at least one objective deals with schedule stability, the
Dynamic Flexible Job Shop Scheduling Problem (DFJSSP) is considered as amulti-objective
optimization problem. Some works (Akram et al., 2024; Baykasoğlu et al., 2020; Liu et al.,
2024; Shen&Yao, 2015) have integrated rescheduling approacheswith specific algorithms to
solve the Multi-Objective Dynamic Flexible Job Shop Scheduling Problems (MODFJSSP).
Unfortunately, they consider only solution quality improvements while ignoring computation
time. As rescheduling is a short-term decision-making process that composes and updates
the schedule according to the current state of the system and the overall system requirements
(Baykasoğlu et al., 2020), a method proposing an adequate rescheduling plan in a short
response time is greatly desired in this case.

Evolutionary algorithms are widely used for solving FJSSP (Li et al., 2022; Mahmud
et al., 2022; Zhang et al., 2020) although the repeated fitness function segment makes the
time cost to find adequate solutions increased when it is applied to solve complex and large
problems. Multi-Objective Evolutionary Algorithms (MOEAs) keep the main structure of
evolutionary algorithms while it is capable of obtaining a set of well trade-off solutions in
a single run (Tran & Luong, 2024). Non-dominated Sorting Genetic Algorithm-II (NSGA-
II) (Deb et al., 2002) is probably one of the most widely studied MOEAs. It builds on the
principles of the Genetic Algorithm (GA) (Kacem & Dammak, 2021) but extends them
to handle multiple objectives. Some works (Ahmadi et al., 2016; Luan et al., 2023) have
utilized NSGA-II to solve MOFJSSP. However, MODFJSSP is more complex than FJSSP
and NSGA-II is computationally expensive as it needs not only to execute the repeated fitness
function segment but also to explore larger portions of the search space for seeking the entire
Pareto front. Therefore, how to decrease the execution time when NSGA-II is applied to
solve MODFJSSP deserves more attention while this issue has not been well addressed so
far.

Parallelization is one of the most frequently used methods to save computational time
for time-sensitive issues and Graphics Processing Units (GPUs) parallelization can gener-
ally achieve promising speed-ups over sequential implementations. Solving optimization
problems with parallel evolutionary algorithms and GPU computing (Harada & Alba, 2020;
Schryen, 2020) has a long tradition. On one hand, research on GPU-based evolutionary
approaches for solving multi-objective dynamic shop scheduling problems (Luo et al., 2019,
2020) has won favor in recent years where multiple objectives are weighted into a single
one in most cases. On the other hand, some literature (Agarwal et al., 2015; Aguilar-Rivera,
2020; Kim & Kim, 2024; Wong & Cui, 2013) has shown the potential of combining GPU
accelerated code with the NSGA-II to solve optimization problems, but the complex problem
of MODFJSSP has not been considered as far as our knowledge is concerned. Moreover, it
is difficult to execute the NSGA-II completely on GPUs due to its ranking and crowding
mechanisms (Luna & Alba, 2015) while overheads are increased when partial parallelization
is implemented.

Consequently, the MODFJSSP is a complex and computationally intensive challenge,
especially in dynamic manufacturing environments where real-time rescheduling is crucial.
Traditional approaches like the NSGA-II algorithm, although effective, are hindered by high
computational costs and inefficiencies when applied to large, complex problems. GPU par-
allelization offers a promising avenue to address these issues, yet fully integrating NSGA-II
withGPUarchitecture remains a significant challenge due to the algorithm’s complex ranking
and crowdingmechanisms. This research aims to solve theMODFJSSP by developing a fully
parallel NSGA-II implementation on CUDA (Compute Unified Device Architecture), lever-
aging specialized data structures and a combined fitness function to optimize performance.
Particularly, the contributions of this paper are summarized as follows:

123

Annals of Operations Research

1. A MODFJSSP model is studied which considers new arrival jobs and seeks a trade-off
between shop efficiency and schedule stability.

2. The machine-idle-driven strategy is utilized to reschedule new arrival jobs where the
machine resources are fully used.

3. Respecting the CUDAunderlying architecture, three data structures are designed tomove
all NSGA-II components to be run on GPUs with minimal data exchange between the
host and the device.

4. A dummy fitness function is built by combining two factors into one which enables the
elitist preservation strategy of NSGA-II to be executed in parallel.

5. Numerical experiments are carried out and show that the proposed solving approach can
solve the MODFJSSP efficiently with competitive results.

The remaining sections of this paper are organized as follows. Section 2 introduces related
works. Section 3 describes the dynamic flexible job shop problem and the multi-objective
optimization mathematical model. Section 4 presents the solving approach. Section 5 details
the GPU-based fully parallel NSGA-II and its implementations. Section 6 illustrates numer-
ical experiments and results analysis. Finally, Sect. 7 states conclusions and future works.

2 Related works

The FJSSP has received lots of attention from academia and industry for many years (Gao
et al., 2019; Türkyılmaz et al., 2020; Xie et al., 2019) and the DFJSSP is one of the most
important topics in this domain.

Zadeh et al. (2019) proposed an improved artificial bee colony algorithm to address the
makespan minimization in the DFJSSP considering variable processing times. Luo (2020)
utilized a deep Q-network and deep reinforcement learning to minimize the total tardiness
in a DFJSSP which takes new job insertions into consideration. Li et al. (2021) studied a
DFJSSP with four dynamic events where an MCTS-based algorithm and multiple contin-
uous specified time windows were designed for minimizing the makespan. Although most
researchers consider the DFJSSP as a single objective problem, there is a growing interest
in MODFJSSP. Reddy et al. (2018) intended to minimize both makespan and total machine
load variation in a DFJSSP under the condition of machines breakdown and solved this
problem with an effective hybrid evolutionary algorithm. Zhang et al. (2022) designed a
multitask multiobjective genetic programming for automated scheduling heuristic learning
to minimize max-tardiness, mean-tardiness, max-flowtime and mean-flowtime in a DFJSSP
where new arrival jobs were considered. Akram et al. (2024) established a novel black widow
spider algorithm to address a DFJSSP with insertion of new jobs for optimization objectives:
makespan, total energy consumption and schedule instability. Wang et al. (2021) presented
an improved squirrel search algorithm to seek the balance between operational efficiency and
system stability in a DFJSSPwhich took jobs arrival and departure, machines breakdown and
recovery into account. In addition to traditional shop efficiency objectives, new objectives
have received more concerns in recent years. Schedule stability is one of the most signifi-
cant criteria since the deviation from the previous schedule has a great impact on the overall
performance in dynamic scheduling. The JSSP is well known as an NP-hard combinatorial
optimization problem. When more constraints and objectives are considered, the complexity
of the problem increases. Therefore, the MODFJSSP is more complex than JSSP, FJSSP and
DFJSSP.

123

Annals of Operations Research

Various solution techniques and approaches have been used to solve the MODFJSSP
concerning both efficiency and stability objectives. Baykasoğlu et al. (2020) studied the
MODFJSSP by the greedy randomized adaptive search where the lexicographic method
was used to evaluate four objectives including the schedule stability. Fattahi et al. (2010)
took the genetic algorithm to address the MODFJSSP where the makespan, the starting
time deviation and the total deviation penalty were weighted linearly into a single combined
criterion. Shen et al. (2015) developed amulti-objective evolutionary algorithm-basedmethod
for solving theMODFJSSPwhere three efficiency objectives and one stability objective were
optimizedbasedon thePareto dominance.Although the lexicographic approach and the utility
function method can solve multi-objective dynamic shop scheduling problems effectively,
it is hard to have sufficient preference information before the solution process when real-
world implementations are carried out. On the opposite, the Pareto optimal solution is more
complex as it is a posteriori approach where a group of optimal solutions can be obtained
(Minella et al., 2008) within various trade-offs among several conflicting objectives provided
by the Pareto front.

ManyPareto-basedMOEAs have been used to solveMOFJSSP andmost of themadopt the
ranking and crowding mechanisms (Luna & Alba, 2015). Since particle swarm optimization
cannot be directly applied to MOFJSSP (Nouiri et al., 2018; Zarrouk et al., 2022), Shao
et al. (2013) proposed a hybrid algorithm where the Pareto ranking and crowding distance
method were incorporated to identify the fitness of particles. Kefalas et al. (2019) studied a
tabu search-based memetic algorithm to solve a MOFJSSP while using the nondominated
ranking and the crowding distance for parent selection for the next generation after merging
the offspring with the current parent population. Xiong et al. (2012) kept the classic ranking
mechanism butmodified the crowding distance as ameasure in decision space. The efficiency
and stability of the developed algorithmwere verified by experimental results on well-known
MOFJSSP instances. The overall complexity of the algorithms addressed in the three above-
mentioned references is O(MN3) where M is the number of objective functions and N is
the number of individuals. The storage requirement is O(N). Both of them are governed by
the ranking and crowding mechanisms. Zhang et al. (2018) established an energy-efficient
MOFJSSPmodel and used the NSGA-II to obtain an approximation of the Pareto front where
the quality of solutions was ensured by the fast non-dominated sorting, the crowding distance
and the elite-preserving mechanisms. The overall complexity of the NSGA-II is decreased to
O(MN2) owing to the fast non-dominated sorting while the storage requirement is increased
to O(N2). Most ranking and crowding mechanisms used in the literature are inherited from
NSGA-II (Luna & Alba, 2015) and it has been the most studied algorithm in the domain of
multi-objective scheduling since 2014 (Rahimi et al., 2022).

MODFJSSP is an important subtype of multi-objective scheduling problems and many
researchers have usedNSGA-II to solveMODFJSSP.Ahmadi et al. (2016) applied theNSGA-
II to combine the improvement of makespan and stability in the MODFJSSP with random
machine breakdown. Zhang et al. (2019) incorporate the NSGA-II into the genetic program-
ming hyper-heuristics framework to achieve a trade-off between different objectives in the
MODFJSSP where new jobs arrived stochastically. Li et al. (2020) took the NSGA-II and
the scroll window technology to solve the MODFJSSP considering three distributions where
normal order addition, urgent order insertion and machine failure were all discussed. Genetic
programming and scroll window technology could enhance NSGA-II to solve dynamic prob-
lems. However, the overall complexity and the storage requirement of the algorithm are not
improved due to the fast non-dominated sorting. Moreover, the computational burden of
NSGA-II is O(MN2) in the worst case for all the approaches although some studies have
tried to decrease it for some instances (Ortega et al., 2017). To sum up, both NSGA-II and

123

Annals of Operations Research

enhanced NSGA-II are computationally expensive. Therefore, although they are efficient to
solve MOFJSSP, there is a big challenge to apply NSGA-II to large-size MODFJSSP prob-
lems as obtaining the renewed adequate scheduling with a quick response is highly desired
under dynamic environments.

With the development of parallel computing, both real-life problems and benchmark prob-
lems have verified that parallelization onGPUs andCUDAcan helpNSGA-II to achieve great
speedups. Wong et al. (2013) proposed a parallel NSGA-II to solve a real-life direct market-
ing problemwhere the whole algorithmwas executed on GPUs except for the non-dominated
selection procedure. Agarwal et al. (2015) addressed the scalability of the multi-robot coali-
tion formation problem by the parallel NSGA-II on GPU architecture where the master–slave
model is employed. The accuracy of NSGA-II does not get changed with GPU implemen-
tations in these two applications while the actual execution time is decreased. However,
the overall complexity and the storage requirement of the algorithm are always kept the
same as in Deb et al. (2002) since the fast non-dominated sorting is executed intactly on the
CPU. Padurariu et al. (2014) investigated the benefits of GPU implementation for NSGA-II
and evaluated its performance on benchmark problems where the elitist strategy and the
crowding-distance computation were executed on the CPU. Gupta et al. (2015) proposed a
GPU-based parallel NSGA-II implementation on benchmark problems with a major focus
on non-dominated sorting as it was the most time-consuming step while other steps were rel-
atively negligible. Instead of the fast non-dominated sorting, the traditional design is used in
the two above-mentioned cases as it can be executed with a simpler data structure. However,
the traditional non-dominated sorting performs O(MN3) comparisons even though this pro-
cedure can be accelerated by GPU parallelization. Moreover, most GPU implementations for
the NSGA-II are concerned only with partial parallelization. Clearly, the best performance
is obtained when transferring data to GPUs once at the beginning of the application where
the calculation is performed as much as possible on the device and results are sent back only
at the end. Partial parallelization generally results in frequent communication between CPU
and GPUs overhead which may offset the effectiveness gains from GPU acceleration.

The MODFJSSP considering both shop efficiency and schedule stability has been studied
in recent publications. However, how to obtain the updated schedulingwithin a short response
time is rarely discussed and none of them, to the best of our knowledge, has considered using
GPUs to save execution time from the Pareto solutions searching procedure. On the other
hand, the NSGA-II is widely used for solving the multi-objective FJSSP while it is difficult
to meet the time requirement in dynamic environments. Although GPU computing can be
utilized, the speed-up is limited as it is hard to execute the entire NSGA-II on GPUs and
frequent data exchange is inevitable in partial parallelization. Therefore, this paper focuses
on filling these research gaps by developing a GPU-based fully parallel NSGA-II for solving
theMODFJSSP considering both efficiency and effectiveness. This implementation is highly
desired, particularly for large-scale manufacturing problems.

3 Problem description

3.1 MODFJSSP description

The FJSSP is a generalization of the Job Shop Scheduling Problem (JSSP) (Vallikavungal
Devassia et al., 2018). The JSSP mainly deals with determining the best sequence for pro-
cessing jobs where each job consists of a certain number of consecutive operations and each

123

Annals of Operations Research

operation is processed by a particular machine. The FJSSP could be treated as the multi-
purpose machine JSSP where each operation is allowed to be processed on any machine
among a set of available machines. According to whether all operations can be processed on
all machines, the FJSSP can be classified into two categories (Kacem et al., 2002a): (1) total
FJSSP that each operation can be processed on all machines; (2) partial FJSSP that at least
one operation can be processed on a subset of machines. The total FJSSP can be considered
as a special case of the partial FJSSP.

The MODFJSSP is a further development of the FJSSP where the working environment
changes dynamically by unpredictable real-time events. In this paper, only the job arrival
event which is the most frequent and common factor in the shop floor (Zhang et al., 2019),
is taken into consideration. If the number of idle machines reaches a specific level and
there are certain new arrival jobs, the rescheduling is triggered. The new arrival jobs should
be processed sequentially and non-preemptively from the beginning of the rescheduling
point with the remaining uncompleted operations of the original jobs. Processing time for
any operation of all jobs on any available machine and the original schedule are known. To
decrease disturbances, theMODFJSSP is constructed by using amulti-objective performance
measure as the objective function. Particularly, the first objective deals with efficiency as
measured by makespan and total tardiness while the second objective considers stability as
measured by starting time deviation and processing machine deviation.

3.2 Mathematical model

To describe the MODFFJSSP model, we summarize the used notations in Table 1.
The mathematical model for the MODFJSSP at a specific rescheduling point is derived

from the models presented in Demir and İşleyen (2013), Luo et al., (2019), where Luo et al.,
(2019) studies rescheduling in flexible flow shop scheduling, while (Demir & İşleyen, 2013)
outlines the general mathematical models for FJSSP. In terms of both shop efficiency and
schedule stability, the formalization is as follows:

Objective Function:

min : efficiency = 2 × T T + 5 × Cmax (1)

min : stability = T D + MD (2)

Subject to:

T T =
∑

j∈J∪J ′
Tj =

∑

j∈J∪J ′

⎛

⎝max

⎛

⎝S′
j(o j−1)m

+
∑

m∈K js

Pj(o j−1)m × x j(o j−1)m − Dj , 0

⎞

⎠

⎞

⎠

(3)

Cmax = max
j∈J∪J ′ C j = max

j∈J∪J ′

⎛

⎝S′
j(o j−1)m

+
∑

m∈K js

Pj(o j−1)m × x j(o j−1)m

⎞

⎠ (4)

T D =
∑

j∈J

∑

s∈Oj

∑

m∈K js

∣∣∣S′
jsm − S jsmb

∣∣∣ × x jsm (5)

MD =
∑

j∈J

∑

s∈Oj

∑

m∈K js

∣∣∣m − mb
∣∣∣ × x jsm (6)

∑

m∈K js

x jsm = 1 j ∈ J ∪ J ′, s ∈ Oj (7)

123

Annals of Operations Research

S′
j0m ≥ R j ≥ 0 j ∈ J ∪ J ′, m ∈ K j0 (8)

S′
jsm ≥ S′

j(s−1)m′ +
∑

m′∈K j(s−1)

Pj(s−1)m′ × x j(s−1)m′ j ∈ J ∪ J ′, s ∈ Oj ,m ∈ K js, s > 0

(9)
S′
irm ≥ S′

jsm +
∑

m∈K js

Pjsm × x jsm j ∈ J ∪ J ′, i ∈ J ∪ J ′, j �= i, s ∈ O j , r ∈ Oi ,m ∈ Kir

(10)

S′
jsm ≥ RS j ∈ J ∪ J ′, s ∈ Oj , m ∈ K js (11)

RS ≥ S j0mb j ∈ J (12)

∑

m∈K
ym(t) ≥ θ t ∈ H (13)

x jsm =
{
1 if operation s of job j is processed on machine m j ∈ J ∪ J ′, s ∈ O j , m ∈ K js
0 otherwise

(14)

Table 1 Notations used in the mathematical model

Notation Description

Sets and indices j, i Job indices

s, r Operation indices

m, m′ Machine index

t Time index

J Set of original jobs, J = {0, 1, 2, . . . , n − 1}
J ′ Set of new arrival jobs, J ′ = {

0, 1, 2, . . . , n′ − 1
}

O j Set of operations of job j,

O j = {
0, 1, 2, . . . , o j − 1

}

K js Set of available machines for operation s of job j,

K js = {
0, 1, 2, . . . , k js − 1

}

K Set of total machines, K = {0, 1, 2, . . . , k − 1}
H Set of time periods, H = {1, 2, 3, . . . , h}

Parameters n Number of original jobs

n′ Number of new arrival jobs

o j Number of operations of job j

k js Number of available machines for operation s of
job j

k Number of total machines

h Time horizon

θ Threshold number of idle machines triggering the
rescheduling point

Mm Machine m, m ∈ K

123

Annals of Operations Research

Table 1 (continued)

Notation Description

J j Job j, j ∈ J ∪ J ′

o j ,s Operation s of job j, j ∈ J ∪ J ′, s ∈ O j

R j Release time of job j, j ∈ J ∪ J ′

Dj Due time of job j, j ∈ J ∪ J ′

Pjsm Processing time when operation s of job j is
processed on machine m,

j ∈ J ∪ J ′, s ∈ O j ,m ∈ K js

mb Machine assigned to operation s of original job j
before the RS is executed

S jsmb Start time of operation s of original job j on machine

mb before the RS is executed, j ∈ J , s ∈ O j

RS Rescheduling point

Performance metrics Tj Tardiness of jobj, j ∈ J ∪ J ′

TT Total tardiness

C j Completion time of job j, j ∈ J ∪ J ′

Cmax Completion time of the last job, i.e., the makespan

TD Total starting time deviation

MD Total processing machine deviation

LB(T) Lower bound for total tardiness

LB(Cmax) Lower bound for the makespan

LB(TD) Lower bound of total starting time deviation

LB(MD) Lower bound of total processing machine deviation

Continuous decision variables S′
jsm

Start time of operation s of job j on machine m after

the RS is executed, j ∈ J ∪ J ′, s ∈ O j , m ∈ K js

Binary decision variables x jsm Indicating whether operation s of job j is assigned
to and processed on machine m,

j ∈ J ∪ J ′, s ∈ O j ,m ∈ K js

ym (t) Indicating whether machine m is idle at time t,
m ∈ K , t ∈ H

ym(t) =
{
1 if machine m is idle at time t m ∈ K , t ∈ H
0 otherwise

(15)

The optimization objectives are presented as shop efficiencymeasured by (1) and schedule
stability measured by (2). The shop efficiency consists of two factors. The first one is total
tardiness defined by criterion (3) and the second one is makespan defined by criterion (4).
The weights in (1) are suggested and verified by Fattahi and Fallahi (2010), Ishibuchi and
Murata (1998), Rangsaritratsamee et al., (2004) as the variance of the makespan is much
smaller than that of tardiness. The schedule stability is also described by two components.
The first one is the total starting time deviation defined by criterion (5) and the second one is

123

Annals of Operations Research

the total processing machine deviation defined by criterion (6). Constraint (7) states that each
operation can only be handled by one machine. Constraints (8) and (9) define the precedence
among operations, with constraint (8) addressing the start time for the first operation and
constraint (9) specifying the start times for subsequent operations. Constraint (10) describes
the precedence dictated by machine sequencing, where an operation can only begin once the
previous operation assigned to the same machine has been completed. Constraints (11) and
(12) establish the rescheduling criteria, with constraint (11) ensuring that the updated start
times of operations are no earlier than the rescheduling point, and constraint (12) requiring
that the rescheduling point occur after the start of the first operation of all original jobs.
Constraint (13) outlines that rescheduling is triggered when the number of idle machines
exceeds the threshold. Finally, constraint (14) introduces the Boolean decision variable for
machine assignment, and constraint (15) presents the Boolean decision variable for machine
idleness.

The lower bound for T T is calculated as the worst-case tardiness among all

jobs: LB(T T) = max j∈J∪J ′
(
max

(
0,

∑
s∈Oj

minm∈K js Pjsm − Dj

))
. The lower bound

on Cmax is calculated as the maximum value between the maximum total processing
time for any single job and the maximum workload on any machine: LB(Cmax) =
max(max j∈J∪J ′(

∑
s∈Oj

minm∈K js Pjsm), maxm∈K (
∑

j∈J∪J ′
∑

s∈Oj,m∈K js
Pjsm)). There-

fore, the lower bound for shop efficiency is computed as 2 ×LB(T T) + 5 ×
LB(Cmax). The lower bound for T D is represented as the minimum start-
ing time deviation across all machines for each operation s of original job j:

LB(T D) = ∑
j∈J

∑
s∈Oj

minm∈K js

∣∣∣S′
jsm − S jsmb

∣∣∣. The lower bound for MD is repre-

sented as theminimumprocessingmachine deviation across all machines for each operation s
of original job j: LB(MD) = ∑

j∈J
∑

s∈Oj
minm∈K js

∣∣m − mb
∣∣. Therefore, the lower bound

for shop stability is computed as LB(T D)+ LB(MD). Minimizing TT involves scheduling
jobs close to their due times, which can make it challenging to adhere to the original start
times, increasing TD. Minimizing Cmax typically requires optimizing the overall schedule
to finish as soon as possible, which might lead to more deviations in machine assignments
(higher MD). Therefore, there are significant conflicts between minimizing efficiency and
stability. Efforts to optimize one objective often lead to increased values in the other. How-
ever, trade-offs exist where some level of efficiency improvement might be achieved with
acceptable stability degradation, or vice versa.

The proposed mathematical model aims to balance shop efficiency and schedule stabil-
ity, incorporating a rescheduling mechanism that adapts to dynamic conditions, such as new
arrival jobs andmachine idle times. Themachine-idle-driven strategy is employed to resched-
ule new arrival jobs, ensuring the optimal utilization of available resources and enhancing
overall performance. The MODFJSSP model combines the complexities of the JSSP with
flexibility, new arrival jobs, machine idle times, and bi-objective optimization. The JSSP
is NP-hard and difficult to solve (Lenstra et al., 1977). Flexibility refers to the possibility
of assigning operations to any machine that can perform the required tasks, exponentially
increasing the number of potential solutions. New arrival jobs and machine idle times add
decision-making complexity, as they require continuous rescheduling once the rescheduling
point is triggered. The bi-objectives further complicate the scheduling process by seeking a
trade-off between shop efficiency and schedule stability simultaneously. Therefore, the pro-
posed mathematical model is inherently more complex due to its multifaceted nature, which
cannot be solved in polynomial time, and the complexity grows exponentially with the size
of the problem instance.

123

Annals of Operations Research

Fig. 1 Gantt chart of one of the best-found solutions for the original schedule in the illustrative example

3.3 Illustrative example

An example of the MODFFJSSP before the rescheduling is triggered is presented in Table 8
(Appendix A), encompassing a large-scale problem with 15 original jobs and 10 machines.
This example extends the widely recognized FJSSP instance (I4) as described in Kacem
et al., (2002b), providing a complex yet realistic scenario that enables thorough testing of
various solution approaches. One of the best-found solutions for this original schedule is
shown in the Gantt chart in Fig. 1. If rescheduling is triggered when there are at least 3 idle
machines and certain new arrival jobs, the rescheduling point is marked by the red dashed
line. Operations o13,3, o4,2, o4,3,o12,3, o7,3, o11,3 will be rescheduled from this red dashed
line along with the new arrival jobs.

4 Solving approach

4.1 Process of themachine-idle-driven rescheduling strategy

Tomake full use of the machine resources, the machine-idle-driven strategy derived from the
predictive–reactive rescheduling (Ouelhadj & Petrovic, 2009) is utilized to reschedule new
arrival jobs, and the flowchart is presented in Fig. 2. At the initial time, operations are assigned
to machines in order, following the original schedule. After all scheduled jobs have started
to be processed, the production line would keep monitoring the machine utilization level and
gathering new arrival jobs. Once the rescheduling is triggered, new arrival jobs need to be
scheduled with the remaining operations of original jobs in a limited time while operations
that are being executed are not terminated. The fully parallel NSGA-II is used to generate
a set of non-dominated schedules considering both shop efficiency and schedule stability.
Afterward, one schedule that fits the decision maker’s preference is selected. Finally, the
updated schedule is implemented until the next rescheduling point. This process continues
until all jobs appearing on the shop floor have been finished.

123

Annals of Operations Research

Fig. 2 Flow of the machine-idle-driven rescheduling for solving the MODFJSSP

4.2 Encoding scheme

The MODFJSSP is a combination of operation sequencing and machine assignment deci-
sions (Zhang et al., 2018). Therefore, both the operation sequence vector and the machine
assignment vector are used to represent the complete scheduling. The operation sequence
vector utilizes the operation-based encoding where each job is represented by a natural num-
ber and each number is present as many times as the number of operations of the job it
represents (May et al., 2015). The kth occurrence of a job number refers to the kth operation
in the technological sequence of this job and the sequence of job numbers expresses the order
where the operations of jobs are scheduled (Park et al., 2003). Themachine assignment vector
represents the assigned machine of each operation where the order is from the 0th operation
of job 0 to the (on+n′−1 − 1)th operation of job n + n′ − 1. Moreover, the length of the two
vectors is equal to

∑n+n′−1
j=0 o j , including both original jobs and new arrival jobs. Operations

whose starting times are earlier than the rescheduling point in the original schedule are treated
as completed ones and will not be interrupted by the rescheduling. Their job numbers and
machine numbers are taken directly from the original schedule where job numbers are placed
at the beginning of the sequence and machine numbers are located at their original positions.

123

Annals of Operations Research

Fig. 3 Example of the two-vector representation

The remaining values are randomly initialized. An example is shown in Fig. 3 where job 0,
job 1, job 2 are original jobs and job 3 is a new arrival job. Operation 2 of job 2 is scheduled
on machine 0 before operation 3 of job 0 is scheduled on machine 2. Besides, the numbers in
red represent the completed operations and machines used to process them while the rest in
blue display operations and machines waiting to be dealt with after the rescheduling point.
More details about the decoding procedure are discussed in Shen and Yao (2015).

4.3 NSGA-II and its full parallelization procedure

The NSGA-II (Deb et al., 2002) uses the ranking and crowding mechanisms to generate the
approximated Pareto fronts. Each individual in the population has two attributes: nondomina-
tion rank and crowding distance. If two individuals have different nondomination ranks, the
individual with the lower rank is preferred while if two individuals’ ranks are equal, the one
with higher crowding distance is better. To carry out the above-mentioned mechanisms, two
operators are designed: fast non-dominated sorting and crowding distance computation. The
fast non-dominated sorting operator assigns solutions to different Pareto fronts by a specific
data structure that saves a domination count variable Np and a set of dominated solutions Sp
where p represents a specific individual in NSGA-II. After calculating Np and Sp for every
individual p, individuals whose Np = 0 are assigned to the first nondominated front and
their ranks are set as 1. For individuals in the first nondominated front, Np of each member
q in Sp is reduced by one. If Np of any member q becomes zero, it is put in a separated
list Q. All members in Q are assigned to the second non-dominated front and their ranks are
set as 2. This procedure continues with individuals assigned to the last non-dominated front
until all ranks are identified. On the other hand, the crowding distance computation operator
first sorts individuals in the same non-dominated front according to each objective function
value in ascending order. Afterward, the boundary individuals for each objective function
are set to be an infinite value while other intermediates are assigned a value equal to the
absolute normalized difference in the objective function values of two adjacent individuals.
After conducting this calculation with all objective functions, the crowding distance value is
calculated as the sum of these values corresponding to each objective.

The procedure of the fully parallel NSGA-II is expressed in Fig. 4 where g represents
the current generation number, Pg denotes the parent population (a set of chromosomes at
generation g), and Qg displays the offspring population (a set of chromosomes obtained
by NSGA-II operators at generation g). The communication between CPU and GPUs is
minimized by running all NSGA-II components on GPUs. The parallel NSGA-II could
always obtain a set of feasible solutions once the termination condition is reached and send it
back to the CPU once at the end of the application. InMODFJSSP, the termination criterion is
generally set as the timeframe given by the decision maker where the parallel design enables

123

Annals of Operations Research

Fig. 4 Procedure of the fully parallel NSGA-II

the algorithm to be run with more generations and furthermore to have a larger chance to
obtain better solutions. The dummy fitness function is built based on the fast non-dominated
sorting and the crowding distance computation by combining two factors into one, which
facilitates the elitist preservation strategy designed in Deb et al. (2002) to be executed in
parallel.

5 Full parallelizationmodel

For an easy presentation, we summarize the notations used in the full parallelization model
in Table 2.

123

Annals of Operations Research

Table 2 Notations used in the full parallelization model

Notation Description

ps, size Number of individuals

Ordinary variable that holds the value of its type

* Pointer variable that holds the memory address of a vector

POP Individual vector where each element consists of eight members

RANK Non-domination rank matrix used to determine which Pareto
front an individual belongs to where each element consists of
four members

CROWD Crowding distance matrix where each element consists of two
members

d_POP, *pop A pointer that references the POP data structure in device
memory, referred to as d_POP in the launch parameters and
as *pop in the kernel functions. They are used to construct the
vector POP on GPUs

d_RANK, **rank A pointer that references an array of pointers to the RANK data
structure in device memory, referred to as d_RANK in the
launch parameters and as **rank in the kernel functions.
They are used to construct the matrix RANK on GPUs

d_CROWD, **crowd A pointer that references an array of pointers to the CROWD
data structure in device memory, referred to as d_CROWD in
the launch parameters and as **crowd in the kernel functions.
They are used to construct the matrix CROWD on GPUs

**RANK The declaration version of the pointer that references an array
of pointers to the RANK data structure in host memory

**d_RANK The declaration version of the pointer that references an array
of pointers to the RANK data structure in device memory,
specifically, the declaration forms of d_RANK and **rank

*h_R, **h_RANK ,*d_R Buffer pointers used to construct the RANK data structure in
device memory

om Other members in the data structure except *sp

threadIdx.x, blockIdx.x and blockDim.x CUDA predefined variables

offset Unique CUDA thread ID, calculated as threadIdx.x +
blockIdx.x * blockDim.x

funcno Objective function number

maxgen Max generation of NSGA-II

max, e_max Estimated maximum value of the kth objective function

min, e_min Estimated minimum value of the kth objective function

base, b Variable used to convert the crowding distance as an indicator
where the smaller value is preferable

5.1 Data structures

Due to the importance of the memory hierarchy in NSGA-II, three data structures, POP,
RANK and CROWD, are designed. POP is a ps × 1 individual vector where each element
consists of eightmembers: #chrom, #objvalue, #dummy (dummyfitness value), #index, #flag,
#np (Np), #dp, *sp. #chrom is a

∑n+n′−1
j=0 o j × 2 matrix storing a two-vector representation

123

Annals of Operations Research

chromosome and #objvalue is a 2×1 vector saving objective function values. #index is used
to share information among POP, RANK and CROWD while #flag is an indicator working
with #np to assign individuals to the next non-dominated front. *sp is a pointer to store the
memory address of a ps × 1 vector for Sp . The vector used to save Sp is sparse because
the number of elements in Sp is unknown when the NSGA-II starts where #dp works as a
counter for elements in Sp . RANK is a ps × ps non-domination matrix where each element
consists of four members: #value, #index, #dp, *sp. CROWD is a ps × ps crowding distance
matrix where each element consists of two members: #value, #index. Each row of RANK or
CROWD could be considered as the separated listQwhere information about individuals that
are in row k (indexed from 0) present individuals in the k + 1th non-dominated front. Since
the number of non-dominated fronts and the number of individuals in each non-dominated
front are also unknown when the NSGA-II starts, RANK and CROWD are sparse as well.
POP, RANK and CROWD are defined as static data structures. Static allocations have the
drawback of oversizing RANK , CROWD and the vector used to save Sp to guarantee enough
memory due to the unknown dominance patterns. However, the memory requirements can
be greatly reduced if the number of fronts is a priori known (Ortega et al., 2017).

The GPU-based fully parallel NSGA-II is developed using the CUDA programming
model where both the CPU and GPUs are used. In CUDA, the host refers to the CPU while
the device refers to the GPUs (Harris, 2012). The host and device in CUDA have separate
memory spaces and device pointers cannot be referenced in the host code. Therefore, three
buffer pointers are designed to read from or write to the data structure RANK between the
host and the device, where *h_R and **h_RANK are host pointers, and *d_R is a device
pointer, as illustrated in Fig. 5. The solid arrows display the copy of addresses, where each
arrow in blue or in orange points to the same 1 ×ps array on the device, each arrow in green
or in red points to the same ps × 1 array on the device. After non-dominated sorting, the
values (without pointers) referenced in **d_RANK are copied to the values (without pointers)
referenced in **RANK , as indicated by the pink hollow arrows. Moreover, the data structures
of POP and CROWD on CPU and GPUs are designed in a similar way, which are omitted
here due to space limitations.

123

Annals of Operations Research

Fi
g.
5
D
at
a
st
ru
ct
ur
e
of

R
A
N
K
an
d
co
py
in
g
of

ad
dr
es
se
s
an
d
va
lu
es

be
tw

ee
n
ho

st
an
d
de
vi
ce

123

Annals of Operations Research

5.2 Dummy fitness calculation

In CUDA, a function of code on the device is called as a kernel. It is launched by the host and
executed by an array of threads in parallel. All threads run the same code and are grouped
into blocks, which are equal cardinality subsets of threads while blocks are in turn logically
arranged into a grid, which is a 1-, 2-, or 3-dimensional array of blocks (Boschetti et al.,
2016). The implementation of the fully parallel NSGA-II starts with the host code as shown
in Algorithm 1. Eight kernels (lines 4–15) are launched to obtain the dummy fitness value
by the non-dominated sorting (lines 5–8) and the crowd distance computation (lines 9–13).
The parameters within < < < > > > are the execution configuration, which specifies the
number of blocks and the number of threads in one block that are used to execute the kernel.
Each thread is designed to process one individual and identified by the unique global id as
threadIdx.x + blockIdx.x * blockDim.x where threadIdx.x, blockIdx.x and blockDim.x are
CUDA predefined variables.

After initialization, kernel fast_nondom_first_front (Algorithm 2) is launched to com-
pute the first non-dominated front while Np and Sp are saved. As the next step, kernel
fast_nondom_other_front (Algorithm 3) is launched iteratively to identify all other fronts
while redundant kernel launch may occur if the total number of non-dominated fronts is less
than ps. Moreover, the reduction in Algorithm 3 is executed by the atomic operation (line
4) while the correctness of the parallel NSGA-II is guaranteed. These two kernels are used
to compute elements stored in RANK on GPUs where elements in the same row are pro-
cessed in parallel. Instead of sorting individuals in the same front according to each objective
function value in ascending order, the device code sorts them in each RANK row on GPUs
in decreasing order by the Bitonic Merge Sorting (Pharr & Fernando, 2005). As #value of
RANK on GPUs is initialized as -1, all valid elements are saved at the left side of RANK on
GPUs and the crowding distance is obtained by iteratively launching kernel crowd_distance
(Algorithm 4). In order to have an overall merit for the non-dominated front and the crowding
distance, kernel dummy_fitness (Algorithm 5) is launched at the end to calculate the dummy
fitness value. After sorting elements in each CROWD row on GPUs by their crowding dis-
tance in decreasing order using the Bitonic Merge Sorting, the variable ‘base’ is imported in
Algorithm 5. It is computed as 10k when ps is any value within the interval of all k-digits
numbers and used to convert the crowding distance as an indicator where the smaller value
is preferable (line 5). Finally, the fitness value of each individual is obtained as the sum of
the non-dominated front and the converted crowding distance (line 6) where any individual
with the smaller dummy fitness value has the priority to be saved by the NSGA-II operators.
Elements stored in the same column are processed in parallel in these two kernels. Moreover,
details about NSGA-II operators in the while loop are discussed in Sect. 5.3.

123

Annals of Operations Research

Algorithm 1: Host code of the fully parallel NSGA-II

Algorithm 2: Device code for identifying the first non-dominated front

123

Annals of Operations Research

Algorithm 3: Device code for identifying the remaining non-dominated fronts

Algorithm 4: Device code for computing the crowding distance

Algorithm 5: Device code for computing the dummy fitness

123

Annals of Operations Research

Fig. 6 Example of the crossover operation

5.3 NSGA-II operations on GPUs

5.3.1 Selection operator and elitist preservation strategy

With the data structures and the dummy fitness calculation presented in the previous subsec-
tions, the fully parallel NSGA-II can be considered as a verbatim port of the conventional
NSGA-II. Therefore, operators of the conventional NSGA-II can be kept intact. At the
beginning of each generation, the usual binary tournament selection, crossover and mutation
operators are used to create an offspring population Qg where the individual with the lowest
dummy fitness value is selected for crossover and mutation. After merging the parent popu-
lation Pg with the offspring population Qg, all individuals are sorted by their dummy fitness
values in ascending order using the Bitonic-Merge sort while the top ps individuals are saved
as an elite group for the next generation.

5.3.2 Crossover operator

Firstly, the Fisher-Yates shuffle (Capodieci & Burgio, 2015) is utilized to pair two individuals
on GPUs randomly. Afterward, the operation-based order crossover (Luo et al., 2020) is used
for the operation sequence vector and works for genes representing uncompleted operations.
On the other hand, the traditional single-point crossover is applied to the machine assignment
vector. The full procedure for an example is shown in Fig. 6 where job 0, job 1, job 2 are
original jobs and job 3 is a new arrival job. The integers highlighted in yellow indicate
completed operations and machines used to process them while the integers in red mark the
loci of randomly chosen operations in the operation sequence vector and the single crossover
point in the machine assignment vector. Since the vectors are not related to each other, the
two crossover operators are implemented independently.

5.3.3 Mutation operator

The mutation operation only executes with genes representing uncompleted operations and
machines used to process them. The swap mutation is applied for the operation sequence
vector where different arbitrary genes are chosen and exchanged values. Concerning the
machine assignment vector, n + n′ genes are substituted by randomly generated values
within the range, aside from the original ones. Following the above example, this procedure
is illustrated in Fig. 7, where genes in green display the execution of the mutation operation.

123

Annals of Operations Research

Fig. 7 Example of the mutation operation

5.4 Insights on full parallelization

It is obvious that the fully parallel NSGA-II keeps the original structure of the conventional
NSGA-II. The time complexity of the fast non-dominated sorting in sequential is O(MN2).
However, if the number of GPU threads is larger than the number of individuals, the actual
time complexity is reduced to O(MN) as the domination check executed in the first front can
be implemented in parallel. In exchange, the storage requirement is increased to O(MN3) as
individuals on all fronts have to keep a local copy of Sp . The complexity of the crowding
distance is governed by the sorting algorithm as it requires to sort the population according
to each objective function value. Instead of the sorting algorithm used in the sequential
NSGA-II whose computational complexity isO(MNlogN), the Bitonic-Merge sort is utilized
in the parallel version. Although the Bitonic-Merge sort suffers from O(MNlog2N) (Pharr
& Fernando, 2005), the actual time complexity can be decreased to O(Mlog2N) under the
condition that the number of GPU threads is larger than the number of individuals. Therefore,
the computational burden of the fully parallel NSGA-II is the fast non-dominated sorting.
If we have enough GPU threads, the overall time complexity is reduced from O(MN2) to
O(MN).

6 Computational experiments

Test 1 checks the efficiency and the effectiveness of the fully parallel NSGA-II on GPUs by
solving nine MODFJSSP instances while test 2 evaluates the performance of MODFJSSP
by a case study. The GPU code implementation is carried out using CUDA 9.2 on NVIDIA
TITAN X (Pascal) with 3584 single-precision CUDA cores. All programs are written in C,
except for the GPU kernels in CUDA C.

6.1 Evaluation

6.1.1 Instances description

Firstly, we have extended six representative FJSSP instances (2 sets of 10-job instances,
2 sets of 15-job instances, and 2 sets of 20-job instances) (Brandimarte, 1993) by fix-
ing dynamic factors as shown in Table 3. Second, three DFJSSP instances derived from
Nguyen et al. (2018) are also considered where PF f% implies that f% of the total num-
ber of machines in the shop are available to process an operation. Finally, the release
time, the due time and the number of idle machines triggering the rescheduling point are
set up by simulation following the rules as defined in Table 4. Furthermore, all instance

123

Annals of Operations Research

Table 3 Benchmark problems

Source Problem n n′ k k js

Brandimarte (1993) MK01 10 6 6 3

MK02 10 5 6 6

MK04 15 8 8 3

MK05 15 1 4 2

MK07 20 6 5 5

MK08 20 2 10 2

Nguyen et al. (2018) PF20% 10 Till RS, new jobs arrive following
the Poisson distribution

10 n× 20% = 2

PF50% 10 10 n× 50% = 5

PF100% 10 10 n× 100% = 10

Table 4 Experimental relative data

R j U[0, P], where P = ∑

j∈J∪J ′

⎛

⎝ ∑
s∈O j

⎛

⎝ ∑
m∈K js

Pjsm/k js

⎞

⎠/o j

⎞

⎠

Dj R j + P j × (1 + σ), where σ = U[0, 2] and P j = ∑
s∈O j

⎛

⎝ ∑
m∈K js

Pjsm/k js

⎞

⎠

θ Discrete U(0, T)
∣∣∣m − mb

∣∣∣ 1, if m �= mb

data can be downloaded from https://www.dropbox.com/scl/fo/je7yu1f0uhrt60x1hd52l/
AMaEkEI2JJXvdlSP6a2LJQs?rlkey=01407hsysw67tuujd8qtzhvzt&st=t7yll789&dl=0.

6.1.2 Performance measures

The performance of multi-objective algorithms is frequently evaluated by performance met-
rics (Audet et al., 2021). Since the true Pareto fronts for the tested MODFJSSP instances are
unknown in advance, four popular metrics (Ahmadi et al., 2016) are used to evaluate their
performance. Their explanations are expressed as follows:

• Number of Pareto Solutions (NPS): Solution quality metric where the higher value implies
that decision-makers have access to more alternative solutions.

• Spacing: Solution quality metric where the lower value indicates that the consistency of
spacing among non-dominated solutions is higher.

• Modified Mean Ideal Distance (MMID): Solution quality metric where the lower value
presents that the algorithmhas better convergence performance. It is the normalized version
of the Mean Ideal Distance.

• Time: Execution time metric where the lower value expresses that the algorithm’s running
time is shorter.

123

https://www.dropbox.com/scl/fo/je7yu1f0uhrt60x1hd52l/AMaEkEI2JJXvdlSP6a2LJQs?rlkey=01407hsysw67tuujd8qtzhvzt\newentity ampst=t7yll789\newentity ampdl=0

Annals of Operations Research

Table 5 Parameter tuning results

Crossover rate Mutation rate NPS Spacing MMID Time

0.9000 0.0500 26.5000 5.7016 0.6822 219.1044

0.9000 0.1000 26.6667 3.3916 0.6918 218.5694

0.9000 0.1500 24.8667 5.2916 0.6996 224.7204

0.9000 0.2000 25.6667 4.1126 0.6967 225.6631

0.9000 0.2500 26.6667 3.9832 0.7065 225.5075

6.1.3 Parameter tuning

Considering the existing experiences, the most appropriate crossover rate ranges between
0.75 and 0.9 (Schaffer, 1989) and the mutation rate should be much lower than the crossover
rate (Cabrera et al. 2002). The crossover rate and the mutation rate were set as 0.9 and 1/
funcno respectively in NSGA-II (Deb et al., 2002) for real-coded GAs. Therefore, we would
like to keep the crossover rate and the mutation rate of the fully parallel NSGA-II as 0.9 and
0.5 respectively since there are only two decision variables in MODFJSSP. However, as 0.5
is not much lower than 0.9, we further apply the fully parallel NSGA-II on MK01 with five
groups of mutation rates as shown in Table 5. Concerning the average results of 30 iterations,
we could find parameters do not have a great impact on the algorithm performance if they
are kept within the acknowledged range. Since the proposed algorithm has achieved the best
result on 3 metrics when mutation rate = 0.1, the crossover rate and the mutation rate are
finally set as 0.9 and 0.1 respectively. For the fairness of comparison, we keep the same
values for all algorithms in the following tests. Moreover, the population size is kept as 256
while the island size for the multi-objective hybrid GA is specified as 64 (Luo et al., 2019).
Finally, the termination criterion is fixed as 500 generations rather than a reasonable time
budget to have an easier comparison among different algorithms. The criterion was chosen
after verifying no significant improvement in the Pareto front, indicating that convergence
has been achieved.

6.1.4 Computational results

The proposed algorithm is compared with two GPU-based parallel Genetic Algorithms
(GAs): the cellular GA and the hybrid GA. The cellular GA (Alba & Dorronsoro, 2009)
maps individuals in a grid environment where two-parent individuals are selected from a
smaller neighborhood area and recombined to generate a new one. Afterward, this new indi-
vidual undertakes the mutation and replaces the original individual if its solution is better.
The hybrid GA (Luo et al., 2019) is designed with a fine-grained GA at the lower level and
an island GA at the upper level. The selection, crossover, and mutation are executed at the
lower level while an elitism-based replacement after every generation inside the island and a
migration among islands after every ten generations are carried out at the upper level. These
two GPU-based parallel GAs cannot be used directly for seeking the Pareto front. There-
fore, the data structures designed in Sect. 5.1 and the dummy fitness defined in Sect. 5.2 are
implemented while the rest is kept intact.

We examine the threeGPU-based parallel algorithms for 150 independent runs. The results
are shown in Table 6 where each row represents an instance and each column indicates the

123

Annals of Operations Research

Ta
bl
e
6
E
ffi
ci
en
cy

an
d
ef
fe
ct
iv
en
es
s
co
m
pa
ri
so
n

Fu
lly

pa
ra
lle
lN

SG
A
-I
I

M
ul
ti-
ob
je
ct
iv
e
ce
llu

la
r
G
A

M
ul
ti-
ob
je
ct
iv
e
hy
br
id

G
A

N
PS

Sp
ac
in
g

M
M
ID

T
im

e
N
PS

Sp
ac
in
g

M
M
ID

T
im

e
N
PS

Sp
ac
in
g

M
M
ID

T
im

e

M
K
01

24
.4
00

0
4.
47

18
0.
68

24
21

2.
04

28
19

.5
80

0
7.
59

85
0.
70

68
21

3.
80

40
16

.0
06

7
7.
21

41
0.
74

53
29

1.
61

03

M
K
02

38
.1
60

0
2.
96

34
0.
67

66
21

9.
79

55
23

.7
26

7
6.
30

53
0.
70

22
22

6.
23

63
20

.4
73

3
5.
38

02
0.
74

41
31

3.
47

25

M
K
04

14
.4
40

0
8.
66

56
0.
70

05
20

8.
02

19
13

.2
40

0
10

.7
43

3
0.
72

13
20

3.
92

53
12

.0
86

7
10

.1
06

2
0.
75

49
28

4.
93

02

M
K
05

10
9.
46

00
5.
65

46
0.
66

36
28

6.
43

34
68

.8
60

0
8.
69

55
0.
68

10
28

9.
86

94
32

.1
46

7
15

.1
34

2
0.
76

41
39

0.
68

46

M
K
07

9.
58

00
17

.6
72

5
0.
73

99
24

7.
72

02
8.
19

33
26

.9
98

8
0.
73

66
25

1.
12

18
8.
92

67
19

.1
91

6
0.
71

73
34

6.
95

67

M
K
08

17
.4
40

0
16

.5
11

9
0.
67

20
20

2.
79

41
17

.0
60

0
18

.7
78

5
0.
67

23
18

0.
77

88
15

.1
60

0
19

.7
53

8
0.
68

50
27

3.
39

85

PF
20

%
11

.9
80

0
9.
17

52
0.
68

83
17

5.
48

95
10

.7
26

7
11

.3
64

4
0.
69

65
17

0.
67

42
10

.6
40

0
9.
89

04
0.
72

41
22

0.
96

93

PF
50

%
18

.0
53

3
4.
82

93
0.
69

52
19

1.
66

25
13

.5
86

7
8.
84

25
0.
73

75
18

2.
76

41
14

.2
80

0
7.
38

16
0.
74

19
23

3.
37

37

PF
10

0%
14

.2
66

7
8.
64

52
0.
70

11
19

0.
15

55
13

.5
13

3
11

.9
69

2
0.
70

56
19

5.
99

63
12

.5
93

4
8.
69

45
0.
70

29
23

8.
69

80

123

Annals of Operations Research

average value for one metric. The best values are highlighted in bold. Overall, the proposed
algorithm achieves the best performance in most instances from all metrics. Concerning the
solution quality, the fully parallel NSGA-II obtains the best results on NPS and Spacing.
It also overcomes the other two algorithms on MMID for most instances while the differ-
ence between the proposed method and the multi-objective hybrid GA in instance MK07
is insignificant. Consequently, it is important to keep the original structure of NSGA-II.
Although other parallel evolutionary algorithms can be modified to solve multi-objective
problems, it is hard for them to keep the solution quality as good as the NSGA-II. In terms
of execution time, the fully parallel NSGA-II works most efficiently in 5 instances out of
9. Since the cellular model is designed particularly for the 2D environment (Dorronsoro &
Bouvry, 2013), the execution time of multi-objective cellular GA is not so different from
the proposed method and even gets the lowest value for instances MK4, MK8, PF20% and
PF50%. The multi-objective hybrid GA needs a longer execution time than the other two
algorithms as it has to implement more times the ranking and crowding mechanisms for
carrying out the migration.

Moreover, the Wilcoxon signed ranks test (Derrac et al., 2011) is utilized to investigate
to what extent the fully parallel NSGA-II differs from the other two algorithms on overall
performance. The significance level is set as 0.1 while the R−, R+ and p values are computed
by SPSS (https://www.ibm.com/analytics/spss-statistics-software) and displayed in Table 7.
We can find that the proposed method overcomes the multi-objective cellular GA on NPS
for instances MK01, MK02, MK05, MK7, PF20%, PF50% on Spacing for all instances, on
MMID for instances MK1, MK2, MK4, MK5, PF50%, on Time for instances MK01, MK2,
MK5, MK7, PF100%. Meanwhile, it shows an improvement over the multi-objective hybrid
GA on NPS for instances MK01, MK02, MK04, MK5, MK8, PF20%, PF50%, PF100%,
on Spacing for all instances, on MMID for instances MK01, MK02, MK04, MK05, MK08,
PF20%, PF50%, on Time for all instances.

6.2 Case study

6.2.1 Case data

The illustrative example in Sect. 3.3 is expanded to include dynamic factors as a case study.
In addition to the original fifteen jobs, five new arrival jobs are introduced. The processing
times for each operation of these new jobs on the available machines are generated using a
discrete uniformdistribution over the range [0, 10]. Their release anddue times are determined
according to the rules specified in Table 4. Further details can be found in Table 9 (Appendix
A).

The original schedule is established as one of the best-found solutions shown in Fig. 1,
where rescheduling is triggered when there are at least three idle machines after all scheduled
jobs have begun processing. The machine assigned to operation o j,s of original job j and
the start time of operation o j,s on that machine prior to the rescheduling point are fixed, as
illustrated in the Gantt chart. Operations o13,3, o4,2, o4,3,o12,3, o7,3, o11,3 will be rescheduled
from the rescheduling point, along with the five new arrival jobs, with a fixed time cost of 1
for transferring them to a different machine.

123

https://www.ibm.com/analytics/spss-statistics-software

Annals of Operations Research

Ta
bl
e
7
W
ilc
ox
on

si
gn
ed
-r
an
k
te
st
re
su
lts

N
PS

Sp
ac
in
g

M
M
ID

T
im

e

R
−

R
+

p
va
lu
e

R
−

R
+

p
va
lu
e

R
−

R
+

p
va
lu
e

R
−

R
+

p
va
lu
e

Fu
lly

pa
ra
lle

l
N
SG

A
-I
I
vs
.

m
ul
ti-

ob
je
ct
iv
e

ce
llu

la
r
G
A

M
K
01

73
53
.5
00
0

32
31
.5
00
0

0.
00
00

37
06
.0
00
0

76
19
.0
00
0

0.
00
00

44
,4
41
.0
00
0

68
84
.0
00
0

0.
02
20

31
80
.0
00
0

81
45
.0
00
0

0.
00
00

M
K
02

88
66
.5
00
0

17
18
.5
00
0

0.
00
00

22
40
.0
00
0

90
85
.0
00
0

0.
00
00

40
78
.0
00
0

72
47
.0
00
0

0.
00
30

76
3.
00
00

10
,5
62
.0
00
0

0.
00
00

M
K
04

57
18
.5
00
0

44
34
.5
00
0

>
0.
10
00

46
38
.0
00
0

66
87
.0
00
0

0.
05
50

47
53
.0
00
0

65
72
.0
00
0

0.
08
80

99
33
.0
00
0

13
92
.0
00
0

0.
00
00

M
K
05

10
,5
92
.0
00
0

58
3.
00
00

0.
00
00

19
99
.0
00
0

93
26
.0
00
0

0.
00
00

41
78
.0
00
0

71
47
.0
00
0

0.
00
50

39
70
.0
00
0

73
55
.0
00
0

0.
00
10

M
K
07

61
02
.0
00
0

33
51
.0
00
0

0.
00
30

41
08
.0
00
0

72
17
.0
00
0

0.
00
40

57
45
.0
00
0

55
80
.0
00
0

>
0.
10
00

25
73
.0
00
0

87
52
.0
00
0

0.
00
00

M
K
08

56
19
.0
00
0

48
21
.0
00
0

>
0.
10
00

46
23
.0
00
0

67
02
.0
00
0

0.
05
10

54
91
.0
00
0

58
34
.0
00
0

>
0.
10
00

11
,3
25
.0
00
0

0.
00
00

0.
00
00

PF
20
%

59
31
.0
00
0

36
60
.0
00
0

0.
01
60

43
90
.0
00
0

69
35
.0
00
0

0.
01
70

53
46
.0
00
0

59
79
.0
00
0

>
0.
10
00

92
34
.0
00
0

20
91
.0
00
0

0.
00
00

PF
50
%

69
66
.0
00
0

30
45
.0
00
0

0.
00
00

29
13
.0
00
0

84
12
.0
00
0

0.
00
00

38
16
.0
00
0

75
09
.0
00
0

0.
00
10

98
41
.0
00
0

14
84
.0
00
0

0.
00
00

PF
10
0%

58
42
.5
00
0

51
83
.5
00
0

>
0.
10
00

40
38
.0
00
0

72
87
.0
00
0

0.
00
20

52
52
.0
00
0

60
73
.0
00
0

>
0.
10
00

20
33
.0
00
0

92
92
.0
00
0

0.
00
00

Fu
lly

pa
ra
lle

l
N
SG

A
-I
I
vs
.

m
ul
ti-

ob
je
ct
iv
e

hy
br
id

G
A

M
K
01

97
79
.5
00
0

10
98
.5
00
0

0.
00
00

29
69
.0
00
0

83
56
.0
00
0

0.
00
00

24
53
.0
00
0

88
72
.0
00
0

0.
00
00

0.
00
00

11
,3
25
.0
00
0

0.
00
00

M
K
02

10
,4
40
.5
00
0

73
4.
50
00

0.
00
00

12
99
.0
00
0

10
,0
26
.0
00
0

0.
00
00

15
65
.0
00
0

97
60
.0
00
0

0.
00
00

0.
00
00

11
,3
25
.0
00
0

0.
00
00

M
K
04

66
30
.0
00
0

35
23
.0
00
0

0.
00
20

46
51
.0
00
0

66
74
.0
00
0

0.
05
80

36
33
.0
00
0

76
92
.0
00
0

0.
00
00

0.
00
00

11
,3
25
.0
00
0

0.
00
00

M
K
05

11
,1
75
.0
00
0

0.
00
00

0.
00
00

57
2.
00
00

10
,7
53
.0
00
0

0.
00
00

30
3.
00
00

11
,0
22
.0
00
0

0.
00
00

0.
00
00

11
,3
25
.0
00
0

0.
00
00

M
K
07

50
48
.5
00
0

37
29
.5
00
0

>
0.
10
00

46
91
.0
00
0

66
34
.0
00
0

0.
06
80

65
56
.0
00
0

47
69
.0
00
0

0.
09
40

0.
00
00

11
,3
25
.0
00
0

0.
00
00

M
K
08

73
13
.0
00
0

31
27
.0
00
0

0.
00
00

40
94
.0
00
0

72
31
.0
00
0

0.
00
30

46
95
.0
00
0

66
30
.0
00
0

0.
06
90

0.
00
00

11
,3
25
.0
00
0

0.
00
00

PF
20
%

63
05
.0
00
0

38
48
.0
00
0

0.
01
20

46
43
.0
00
0

66
82
.0
00
0

0.
05
60

37
67
.0
00
0

75
58
.0
00
0

0.
00
00

14
5.
00
00

11
,1
80
.0
00
0

0.
00
00

PF
50
%

69
40
.5
00
0

34
99
.5
00
0

0.
00
10

30
74
.0
00
0

82
51
.0
00
0

0.
00
00

30
96
.0
00
0

82
29
.0
00
0

0.
00
00

0.
00
00

11
,3
25
.0
00
0

0.
00
00

PF
10
0%

62
22
.0
00
0

39
31
.0
00
0

0.
02
00

47
57
.0
00
0

65
68
.0
00
0

0.
08
90

53
79
.0
00
0

59
46
.0
00
0

>
0.
10
00

0.
00
00

11
,3
25
.0
00
0

0.
00
00

R
− :

va
lu
e
of

th
e
m
et
ri
c
go

tb
y
th
e
fu
lly

pa
ra
lle

lN
SG

A
-I
I
>

va
lu
e
of

th
e
m
et
ri
c
go

tb
y
th
e
m
ul
ti-
ob

je
ct
iv
e
ce
llu

la
r
G
A
(m

ul
ti-
ob

je
ct
iv
e
hy
br
id

G
A
)

R
+ :

va
lu
e
of

th
e
m
et
ri
c
go

tb
y
th
e
fu
lly

pa
ra
lle

lN
SG

A
-I
I
<

va
lu
e
of

th
e
m
et
ri
c
go

tb
y
th
e
m
ul
ti-
ob

je
ct
iv
e
ce
llu

la
r
G
A
(m

ul
ti-
ob

je
ct
iv
e
hy
br
id

G
A
)

123

Annals of Operations Research

Fig. 8 Best-found Pareto solutions of the case study problem generated by the fully parallel NSGA-II on GPUs

6.2.2 Managerial insights

The Pareto solutions for the case study problem are displayed in Fig. 8. It is the best-found
result of 150 independent runs of the fully parallel NSGA-II onGPUswhile all parameters are
kept the same as in Sect. 6.1.3.We can easily observe the inverse relationship between sched-
ule stability and shop efficiency. As shop efficiency increases, schedule stability decreases,
indicating a trade-off between the two metrics. For instance, the highest shop efficiency of
251.54 is associated with the lowest schedule stability of 1.00, while the lowest shop effi-
ciency of 218.48 corresponds to the highest stability of 10.00. This trend suggests that efforts
to boost efficiency may compromise stability, resulting in potential disruptions in opera-
tions. The diminishing returns evident in the increments of both metrics underscore the need
for strategic decision-making. Decision-makers should strive to achieve a balance that opti-
mizes performance without sacrificing operational stability, utilizing continuous monitoring
to effectively adjust strategies and sustain this essential equilibrium.

The above-mentioned trade-off can be verified with more detail by the Gantt charts pre-
sented in Figs. 9 and 10. Figure 9 shows the solution located at the bottom-right of the Pareto
front in Fig. 8, while Fig. 10 illustrates the solution at the top-left. Compared to the original
schedule in Fig. 1, only o13,3 is moved from M1 to M0 in Fig. 9. Although its starting time
is kept as original, it takes more processing time in the update schedule. Most new arrival
jobs are scheduled after completing operations of the original schedule on each machine.
However, o19,0, o19,1 are two exceptions as their processing time on M5 are as short as the
idle interval between o3,3 and o12,3. On the opposite, many operations of new arrival jobs are
scheduled before the completion of operations of original jobs in Fig. 10. Although the values
of total tardiness and makespan are decreased in this case, certain operations of original jobs
must change processing machines or/and starting time while only o4,2 and o4,3 are kept as
in the original schedule.

The updated schedule in Fig. 9 minimizes disruption and ensures smoother operations,
which can be particularly beneficial in environments where consistency and predictability
are crucial. Decision-makers should consider this strategy when stability is a priority, as it

123

Annals of Operations Research

Fig. 9 Gantt chart of the solution from the Pareto front of the case study problem with the minimum value of
schedule stability

Fig. 10 Gantt chart of the solution from the Pareto front of the case study problem with the minimum value of
shop efficiency

reduces the risk of operational bottlenecks. Conversely, Fig. 10 shows a more efficiency-
driven approach, leading to reduced total tardiness and makespan. This strategy is more
appropriate in highly competitive environments where meeting deadlines and maximizing
throughput are critical, even if it introduces instability. In addition to these two extreme exam-
ples, decision-makers are encouraged to explore other potential solutions along the Pareto
front presented in Fig. 8 that align with their specific preferences and operational priorities.
The balance between stability and efficiency is crucial for making informed, context-driven
decisions. This approach allows decision-makers to achieve an optimal balance, tailored to
the unique demands and constraints of their organization.

123

Annals of Operations Research

7 Conclusions and future works

In this paper, we have first studied a multi-objective dynamic flexible job shop scheduling
model. The machine-idle-driven strategy was used to reschedule new arrival jobs while
both shop efficiency and schedule stability are considered. To reach a quick response in
the dynamic scenario, a GPU-based fully parallel NSGA-II was proposed with respect to
the original structure to keep the solutions’ quality. Three data structures, POP, RANK and
CROWD were designed particularly to make the memory hierarchy in NSGA-II compatible
with the CUDA programming model. With the dummy fitness calculation, the proposed
algorithm could be executed entirely on GPUs with minimal data exchange between the host
and the device. The efficiency and effectiveness of our approach were verified by comparison
with the other two GPU-based parallel methods. Numerical experiments showed the fully
parallel NSGA-II gained better performance than the multi-objective cellular GA and the
multi-objective hybrid GA in most cases from four metrics: NPS, Spacing, MMID and
Time. Finally, a large-size multi-objective dynamic flexible job shop scheduling instance
was simulated. It displayed the conflicting relationship between shop efficiency and schedule
stability. Therefore, decision-makers were suggested to consider all optional solutions on the
Pareto front on their preferences.

In the future, the internal relationship between schedule stability components will be ana-
lyzed first. Although various weights for makespan and total tardiness have been studied,
a few works have discussed the weights for total starting time deviation and total process-
ing machine deviation. Second, experiments with data from real-world implementations are
planned to be carried out. Since most experiments in this domain are conducted with simula-
tion data, real datamight bringmore interestingmanagerial insights. Third, the data structures
designed to enable all NSGA-II components to be run on GPUs will be improved. As the
sparse structures cannot make optimal usage of the underlying hardware, techniques to con-
vert them into dense structures deserve further discussion. Fourth, FPGA-based approaches
will be considered. Owing to the inherent parallelism of FPGAs, FPGA-based approaches
and some codesign approaches are also expected to have good performance. Finally, we
would also like to study parallel designs for other multi-objective evolutionary algorithms.
It is hard to execute NSGA-II completely on GPUs due to its ranking and crowding mecha-
nisms. Some algorithms, like MOEA/D Zhang and Li (2007), working with different fitness
assignments and diversity preservation strategies may be more suitable for GPU computing.

Appendix A: Case data

See Tables 8 and 9.

123

Annals of Operations Research

Table 8 The case data of the original jobs

J j o j,s M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 R j D j

J0 o0,0 1 4 6 9 3 5 2 8 9 4 5 29.63

o0,1 1 1 3 4 8 10 4 11 4 3

o0,2 2 5 1 5 6 9 5 10 3 2

o0,3 10 4 5 9 8 4 15 8 4 4

J1 o1,0 4 8 7 1 9 6 1 10 7 1 3 31.31

o1,1 6 11 2 7 5 3 5 14 9 2

o1,2 8 5 8 9 4 3 5 3 8 1

o1,3 9 3 6 1 2 6 4 1 7 2

J2 o2,0 7 1 8 5 4 9 1 2 3 4 6 19.04

o2,1 5 10 6 4 9 5 1 7 1 6

o2,2 4 2 3 8 7 4 6 9 8 4

o2,3 7 3 12 1 6 5 8 3 5 2

J3 o3,0 6 2 5 4 1 2 3 6 5 4 4 23.63

o3,1 8 5 7 4 1 2 36 5 8 5

o3,2 9 6 2 4 5 1 3 6 5 2

o3,3 11 4 5 6 2 7 5 4 2 1

J4 o4,0 6 9 2 3 5 8 7 4 1 2 9 37.04

o4,1 5 4 6 3 5 2 28 7 4 5

o4,2 6 2 4 3 6 5 2 4 7 9

o4,3 6 5 4 2 3 2 5 4 7 5

J5 o5,0 4 1 3 2 6 9 8 5 4 2 7 12.24

o5,1 1 3 6 5 4 7 5 4 6 5

J6 o6,0 1 4 2 5 3 6 9 8 5 4 1 5.17

o6,1 2 1 4 5 2 3 5 4 2 5

J7 o7,0 2 3 6 2 5 4 1 5 8 7 2 32.29

o7,1 4 5 6 2 3 5 4 1 2 5

o7,2 3 5 4 2 5 49 8 5 4 5

o7,3 1 2 36 5 2 3 6 4 11 2

J8 o8,0 6 3 2 22 44 11 10 23 5 1 8 66.95

o8,1 2 3 2 12 15 10 12 14 18 16

o8,2 20 17 12 5 9 6 4 7 5 6

o8,3 9 8 7 4 5 8 7 4 56 2

J9 o9,0 5 8 7 4 56 3 2 5 4 1 0 18.62

o9,1 2 5 6 9 8 5 4 2 5 4

o9,2 6 3 2 5 4 7 4 5 2 1

o9,3 3 2 5 6 5 8 7 4 5 2

J10 o10,0 1 2 3 6 5 2 1 4 2 1 14 36.67

o10,1 2 3 6 3 2 1 4 10 12 1

o10,2 3 6 2 5 8 4 6 3 2 5

o10,3 4 1 45 6 2 4 1 25 2 4

J11 o11,0 9 8 5 6 3 6 5 2 4 2 13 51.39

123

Annals of Operations Research

Table 8 (continued)

J j o j,s M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 R j D j

o11,1 5 8 9 5 4 75 63 6 5 21

o11,2 12 5 4 6 3 2 5 4 2 5

o11,3 8 7 9 5 6 3 2 5 8 4

J12 o12,0 4 2 5 6 8 5 6 4 6 2 11 29.65

o12,1 3 5 4 7 5 8 6 6 3 2

o12,2 5 4 5 8 5 4 6 5 4 2

o12,3 3 2 5 6 5 4 8 5 6 4

J13 o13,0 2 3 5 4 6 5 4 85 4 5 12 44.69

o13,1 6 2 4 5 8 6 5 4 2 6

o13,2 3 25 4 8 5 6 3 2 5 4

o13,3 8 5 6 4 2 3 6 8 5 4

J14 o14,0 2 5 6 8 5 6 3 2 5 4 5 17.75

o14,1 5 6 2 5 4 2 5 3 2 5

o14,2 4 5 2 3 5 2 8 4 7 5

o14,3 6 2 11 14 2 3 6 5 4 8

The processing time of operation o j ,s on machine Mm and the release time R j are collected from I4 (Kacem
et al., 2002b).
The due time Dj is generated following the rule as defined in Table 4.

Table 9 The case data of the new arrival jobs

J j o j,s M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 R j D j

J15 o15,0 9 7 1 4 6 6 1 8 7 7 15.29 33.61

o15,1 5 9 3 5 2 6 7 5 4 2

o15,2 3 5 7 9 1 9 8 1 9 3

o15,3 8 3 3 6 8 9 9 3 1 10

J16 o16,0 5 8 7 5 3 5 2 8 4 2 15.29 29.89

o16,1 8 4 7 9 10 2 9 6 6 2

J17 o17,0 7 8 6 5 4 3 2 3 3 9 15.29 32.71

o17,1 5 6 1 10 4 2 8 3 6 2

o17,2 1 6 5 10 2 2 1 1 4 4

o17,3 2 2 4 1 1 8 8 7 8 4

J18 o18,0 9 5 7 7 4 3 7 2 1 10 15.29 28.97

o18,1 2 8 2 1 6 7 1 6 7 1

o18,2 4 7 6 9 7 3 2 8 10 1

123

Annals of Operations Research

Table 9 (continued)

J j o j,s M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 R j D j

o18,3 9 9 1 10 9 6 6 8 2 8

J19 o19,0 1 6 9 6 6 1 1 10 5 10 15.29 43.86

o19,1 8 10 5 6 5 2 10 8 3 2

o19,2 8 1 7 8 9 1 10 8 5 9

o19,3 6 7 2 5 1 1 3 8 4 10

The processing time of operation o j ,s on machine Mm , the release time R j and the due time Dj are generated
following the rule as defined in Table 4.

Funding This work is supported by the National Natural Science Foundation of China (Grant No. 72104016
andGrant No. 72304025), the Natural Science Foundation of Chongqing, China (Grant No. CSTB2023NSCQ-
MSX0391), BeijingNatural Science Foundation (Grant No. 9242003), the R&DProgram ofBeijingMunicipal
Education Commission (Grant No. SM202110005011 and Grant No. SM202010005004), the Japan Society
for the Promotion of Science (Grant No. P19800), the Funding of Centre International de Mathematiques
et d’Informatique de Toulouse (Grant No. CIMI-ANR-ll-LABX-0040-LABX-2011) and the Foundation of
Key Laboratory of Education Informatization for Nationalities (Yunnan Normal University), the Ministry of
Education (Grant No. EIN2024C006).

Declaration

Conflict of interest The authors declare no potential conflicts of interest concerning the research, authorship,
and/or publication of this article.

Ethical approval This article does not contain any studies with human participants or animals performed by
any of the authors.

References

Agarwal, M., Agrawal, N., Sharma, S., Vig, L., & Kumar, N. (2015). Parallel multi-objective multi-robot
coalition formation. Expert Systems with Applications, 42(21), 7797–7811.

Aguilar-Rivera, A. (2020). A GPU fully vectorized approach to accelerate performance of NSGA-2 based on
stochastic non-domination sorting and grid-crowding. Applied Soft Computing, 88, 106047.

Ahmadi, E., Zandieh, M., Farrokh, M., & Emami, S. M. (2016). A multi objective optimization approach for
flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms.
Computers & Operations Research, 73, 56–66.

Akram, K., Bhutta, M. U., Butt, S. I., Jaffery, S. H. I., Khan, M., Khan, A. Z., & Faraz, Z. (2024). A Pareto-
optimality based black widow spider algorithm for energy efficient flexible job shop scheduling problem
considering new job insertion. Applied Soft Computing, 164, 111937.

Alba, E., & Dorronsoro, B. (2009). Cellular genetic algorithms. New York: Springer.
Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., & Salomon, L. (2021). Performance indicators in multiob-

jective optimization. European Journal of Operational Research, 292(2), 397–422.
Baykasoğlu, A., Madenoğlu, F. S., & Hamzadayı, A. (2020). Greedy randomized adaptive search for dynamic

flexible job-shop scheduling. Journal of Manufacturing Systems, 56, 425–451.
Boschetti, M. A., Maniezzo, V., & Strappaveccia, F. (2016). Using GPU computing for solving the two-

dimensional guillotine cutting problem. INFORMS Journal on Computing, 28(3), 540–552.
Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations

Research, 41(3), 157–183.
Cabrera, J. A., Simon, A., & Prado, M. (2002). Optimal synthesis of mechanisms with genetic algorithms.

Mechanism and Machine Theory, 37(10), 1165–1177.

123

Annals of Operations Research

Capodieci, N., & Burgio, P. (2015). Efficient implementation of genetic algorithms on gp-gpu with scheduled
persistent cuda threads. In: 2015 Seventh International Symposium on Parallel Architectures, Algorithms
and Programming (PAAP) (pp. 6–12). IEEE.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

Demir, Y., & İşleyen, S. K. (2013). Evaluation of mathematical models for flexible job-shop scheduling
problems. Applied Mathematical Modelling, 37(3), 977–988.

Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm
and Evolutionary Computation, 1(1), 3–18.

Dorronsoro, B., & Bouvry, P. (2013). Cellular genetic algorithms without additional parameters. The Journal
of Supercomputing, 63(3), 816–835.

Fattahi, P., & Fallahi, A. (2010). Dynamic scheduling in flexible job shop systems by considering simultane-
ously efficiency and stability. CIRP Journal of Manufacturing Science and Technology, 2(2), 114–123.

Gao, K., Cao, Z., Zhang, L., Chen, Z., Han, Y., & Pan, Q. (2019). A review on swarm intelligence and evolu-
tionary algorithms for solving flexible job shop scheduling problems. IEEE/CAA Journal of Automatica
Sinica, 6(4), 904–916.

Gupta, S., & Tan, G. (2015). A scalable parallel implementation of evolutionary algorithms for multi-objective
optimization on GPUs. In: 2015 IEEE Congress on Evolutionary Computation (CEC) (pp. 1567–1574).
IEEE.

Harada, T., & Alba, E. (2020). Parallel genetic algorithms: A useful survey. ACMComputing Surveys (CSUR),
53(4), 1–39.

Harris, M. (2012). An easy introduction to CUDAC and C++, https://devblogs.nvidia.com/parallelforall/easy-
introduction-cuda-c-and-c/ .

https://www.dropbox.com/scl/fo/je7yu1f0uhrt60x1hd52l/AMaEkEI2JJXvdlSP6a2LJQs?rlkey=
01407hsysw67tuujd8qtzhvzt&st=t7yll789&dl=0

https://www.ibm.com/analytics/spss-statistics-software
Hu, Y., Zhang, L., Zhang, Z., Li, Z., &Tang, Q. (2024).Matheuristic and learning-orientedmulti-objective arti-

ficial bee colony algorithm for energy-aware flexible assembly job shop scheduling problem.Engineering
Applications of Artificial Intelligence, 133, 108634.

Ishibuchi, H., & Murata, T. (1998). A multi-objective genetic local search algorithm and its application to
flowshop scheduling. IEEE Transactions on Systems Man and Cybernetics Part C (Applications and
Reviews), 28(3), 392–403.

Kacem, A., & Dammak, A. (2021). Multi-objective scheduling on two dedicated processors. TOP, 29(3),
694–721.

Kacem, I., Hammadi, S., & Borne, P. (2002a). Approach by localization and multiobjective evolutionary
optimization for flexible job-shop scheduling problems. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews), 32(1), 1–13.

Kacem, I., Hammadi, S., & Borne, P. (2002b). Pareto-optimality approach for flexible job-shop scheduling
problems: Hybridization of evolutionary algorithms and fuzzy logic. Mathematics and Computers in
Simulation, 60(3–5), 245–276.

Kefalas, M., Limmer, S., Apostolidis, A., Olhofer, M., Emmerich, M., & Bäck, T. (2019). A tabu search-based
memetic algorithm for the multi-objective flexible job shop scheduling problem. In: Proceedings of the
Genetic and Evolutionary Computation Conference Companion (pp. 1254–1262).

Kim, D., & Kim, J. (2024). GPU-accelerated non-dominated sorting genetic algorithm III for maximizing
protein production. Electronic Research Archive, 32(4), 2514–2540.

Lenstra, J. K., Kan, A. R., & Brucker, P. (1977). Complexity of machine scheduling problems. Annals of
Discrete Mathematics, 1, 343–362.

Li, Y., &Wang, J. (2020).Multi-objective dynamic scheduling model of flexible job shop based on nsgaii algo-
rithm and scroll window technology. In: International Conference on Swarm Intelligence (pp. 435–444).
Springer, Cham.

Li, K., Deng, Q., Zhang, L., Fan, Q., Gong, G., & Ding, S. (2021). An effective MCTS-based algorithm
for minimizing makespan in dynamic flexible job shop scheduling problem. Computers & Industrial
Engineering, 155, 107211.

Li, R., Gong, W., & Lu, C. (2022). Self-adaptive multi-objective evolutionary algorithm for flexible job shop
scheduling with fuzzy processing time. Computers & Industrial Engineering, 168, 108099.

Liu, J., Sun, B., Li, G., & Chen, Y. (2024). Multi-objective adaptive large neighbourhood search algorithm for
dynamic flexible job shop schedule problem with transportation resource. Engineering Applications of
Artificial Intelligence, 132, 107917.

123

https://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/
https://www.dropbox.com/scl/fo/je7yu1f0uhrt60x1hd52l/AMaEkEI2JJXvdlSP6a2LJQs?rlkey=01407hsysw67tuujd8qtzhvzt\newentity ampst=t7yll789\newentity ampdl=0
https://www.ibm.com/analytics/spss-statistics-software

Annals of Operations Research

Luan, F., Zhao, H., Liu, S. Q., He, Y., & Tang, B. (2023). Enhanced NSGA-II for multi-objective energy-saving
flexible job shop scheduling. Sustainable Computing: Informatics and Systems, 39, 100901.

Luna, F., & Alba, E. (2015). Parallel multiobjective evolutionary algorithms. In: Springer Handbook of Com-
putational Intelligence (pp. 1017–1031). Springer, Berlin, Heidelberg.

Luo, J., El Baz, D., Xue, R., & Hu, J. (2020). Solving the dynamic energy aware job shop scheduling problem
with the heterogeneous parallel genetic algorithm. Future Generation Computer Systems, 108, 119–134.

Luo, J., Fujimura, S., El Baz, D., & Plazolles, B. (2019). GPU based parallel genetic algorithm for solving
an energy efficient dynamic flexible flow shop scheduling problem. Journal of Parallel and Distributed
Computing, 133, 244–257.

Luo, S. (2020). Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement
learning. Applied Soft Computing, 91, 106208.

Mahmud, S., Chakrabortty, R. K., Abbasi, A., & Ryan, M. J. (2022). Swarm intelligent based metaheuristics
for a bi-objective flexible job shop integrated supply chain scheduling problems.Applied Soft Computing,
121, 108794.

May, G., Stahl, B., Taisch, M., & Prabhu, V. (2015). Multi-objective genetic algorithm for energy-efficient job
shop scheduling. International Journal of Production Research, 53(23), 7071–7089.

Minella, G., Ruiz, R., & Ciavotta, M. (2008). A review and evaluation of multiobjective algorithms for the
flowshop scheduling problem. INFORMS Journal on Computing, 20(3), 451–471.

Nguyen, S., Zhang, M., Alahakoon, D., & Tan, K. C. (2018). Visualizing the evolution of computer programs
for genetic programming [research frontier]. IEEE Computational Intelligence Magazine, 13(4), 77–94.

Nouiri,M., Bekrar, A., Jemai, A., Niar, S., &Ammari, A. C. (2018). An effective and distributed particle swarm
optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing,
29(3), 603–615.

Ortega, G., Filatovas, E., Garzon, E. M., & Casado, L. G. (2017). Non-dominated sorting procedure for Pareto
dominance ranking on multicore CPU and/or GPU. Journal of Global Optimization, 69(3), 607–627.

Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling in manufacturing systems. Journal of
Scheduling, 12(4), 417–431.

Padurariu, F. R., & Marinescu, C. (2014). NSGA-II: Implementation and performance metrics extraction
for CPU and GPU. In: 2014 16th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (pp. 494–499). IEEE.

Park, B. J., Choi, H. R., &Kim, H. S. (2003). A hybrid genetic algorithm for the job shop scheduling problems.
Computers & Industrial Engineering, 45(4), 597–613.

Pharr, M., & Fernando, R. (2005). Gpu gems 2: for high-performance graphics and general-purpose compu-
tation. Boston: Addison-Wesley Professional.

Rahimi, I., Gandomi, A. H., Deb, K., Chen, F., & Nikoo, M. R. (2022). Scheduling by NSGA-II: Review and
bibliometric analysis. Processes, 10(1), 98.

Rangsaritratsamee, R., Ferrell, W. G., Jr., & Kurz, M. B. (2004). Dynamic rescheduling that simultaneously
considers efficiency and stability. Computers & Industrial Engineering, 46(1), 1–15.

Reddy, M. S., Ratnam, C., Rajyalakshmi, G., & Manupati, V. K. (2018). An effective hybrid multi objective
evolutionary algorithm for solving real time event in flexible job shop scheduling problem.Measurement,
114, 78–90.

Schaffer, J. D. A. R. (1989). A study of control parameters affecting online performance of genetic algorithms
for function optimization. California: San Mateo.

Schryen, G. (2020). Parallel computational optimization in operations research: A new integrative framework,
literature review and research directions. European Journal of Operational Research, 287(1), 1–18.

Shao, X., Liu,W., Liu, Q., &Zhang, C. (2013). Hybrid discrete particle swarm optimization formulti-objective
flexible job-shop scheduling problem.The International Journal of AdvancedManufacturing Technology,
67(9), 2885–2901.

Shen, X. N., & Yao, X. (2015). Mathematical modeling and multi-objective evolutionary algorithms applied
to dynamic flexible job shop scheduling problems. Information Sciences, 298, 198–224.

Tran, B. T., & Luong, N. H. (2024, July). On the investigation of multimodal evolutionary algorithms using
search trajectory networks. In: Proceedings of the Genetic and Evolutionary Computation Conference
(pp. 32–40).

Türkyılmaz, A., Şenvar, Ö., Ünal, İ, & Bulkan, S. (2020). A research survey: Heuristic approaches for solving
multi objective flexible job shop problems. Journal of Intelligent Manufacturing, 31(8), 1949–1983.

Vallikavungal Devassia, J., Salazar-Aguilar, M. A., & Boyer, V. (2018). Flexible job-shop scheduling problem
with resource recovery constraints. International Journal of Production Research, 56(9), 3326–3343.

Wang, Y., & Han, J. (2021). A FJSSP method based on dynamic multi-objective squirrel search algorithm.
International Journal of Antennas and Propagation, 2021(1), 6062689.

123

Annals of Operations Research

Wong,M. L., &Cui, G. (2013). Datamining using parallel multi-objective evolutionary algorithms on graphics
processing units. In:Massively Parallel Evolutionary Computation onGPGPUs (pp. 287–307). Springer,
Berlin, Heidelberg.

Xie, J., Gao, L., Peng, K., Li, X., & Li, H. (2019). Review on flexible job shop scheduling. IET Collaborative
Intelligent Manufacturing, 1(3), 67–77.

Xiong, J., Tan, X., Yang, K. W., Xing, L. N., & Chen, Y. W. (2012). A hybrid multiobjective evolutionary
approach for flexible job-shop scheduling problems. Mathematical Problems in Engineering, 2012(1),
478981.

Xu, Y., Zhang, M., Yang, M., & Wang, D. (2024). Hybrid quantum particle swarm optimization and variable
neighborhood search for flexible job-shop scheduling problem. Journal of Manufacturing Systems, 73,
334–348.

Zadeh, M. S., Katebi, Y., & Doniavi, A. (2019). A heuristic model for dynamic flexible job shop scheduling
problem considering variable processing times. International Journal of Production Research, 57(10),
3020–3035.

Zarrouk, R., Daoud,W. B., Mahfoudhi, S., & Jemai, A. (2022). Embedded PSO for solving FJSP on embedded
environment (Industry 4.0 Era). Applied Sciences, 12(6), 2829.

Zhang, F., Mei, Y., & Zhang, M. (2019). Evolving dispatching rules for multi-objective dynamic flexible job
shop scheduling via genetic programming hyper-heuristics. In: 2019 IEEE Congress on Evolutionary
Computation (CEC) (pp. 1366–1373). IEEE.

Zhang, F., Mei, Y., Nguyen, S., & Zhang, M. (2022). Multitask multiobjective genetic programming for
automated scheduling heuristic learning in dynamic flexible job-shop scheduling. IEEE Transactions on
Cybernetics, 53(7), 4473–4486.

Zhang, G., Hu, Y., Sun, J., & Zhang, W. (2020). An improved genetic algorithm for the flexible job shop
scheduling problem with multiple time constraints. Swarm and Evolutionary Computation, 54, 100664.

Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on Evolutionary Computation, 11(6), 712–731.

Zhang, Z., Wu, L., Peng, T., & Jia, S. (2018). An improved scheduling approach for minimizing total energy
consumption and makespan in a flexible job shop environment. Sustainability, 11(1), 179.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Jia Luo1,2,3 · Didier El Baz4 · Rui Xue1 · Jinglu Hu3 · Lei Shi5,6

B Rui Xue
xue.rui.bjut@hotmail.com

Jia Luo
jia.luo1125@qq.com

Didier El Baz
didier.el-baz@laas.fr

Jinglu Hu
jinglu@waseda.jp

Lei Shi
leiky_shi@cuc.edu.cn

123

http://orcid.org/0000-0003-3914-8865

Annals of Operations Research

1 College of Economics and Management, Beijing University of Technology, No. 100 Ping Le Yuan,
Chaoyang District, Beijing 100124, China

2 Chongqing Research Institute, Beijing University of Technology, Chongqing 401121, China
3 Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino,

Wakamatsu Ward, Kitakyushu, Fukuoka 808-0135, Japan
4 LAAS-CNRS, Université de Toulouse, CNRS, 7 Avenue du Colonel Roche, 31031 Toulouse,

France
5 State Key Laboratory of Media Convergence and Communication, Communication University of

China, Beijing 100024, China
6 Key Laboratory of Education Informatization for Nationalities (Yunnan Normal University),

Ministry of Education, Kunming 650092, China

123

	A fully parallel multi-objective genetic algorithm for optimization of flexible shop floor production performance and schedule stability under dynamic environments
	Abstract
	1 Introduction
	2 Related works
	3 Problem description
	3.1 MODFJSSP description
	3.2 Mathematical model
	3.3 Illustrative example

	4 Solving approach
	4.1 Process of the machine-idle-driven rescheduling strategy
	4.2 Encoding scheme
	4.3 NSGA-II and its full parallelization procedure

	5 Full parallelization model
	5.1 Data structures
	5.2 Dummy fitness calculation
	5.3 NSGA-II operations on GPUs
	5.3.1 Selection operator and elitist preservation strategy
	5.3.2 Crossover operator
	5.3.3 Mutation operator

	5.4 Insights on full parallelization

	6 Computational experiments
	6.1 Evaluation
	6.1.1 Instances description
	6.1.2 Performance measures
	6.1.3 Parameter tuning
	6.1.4 Computational results

	6.2 Case study
	6.2.1 Case data
	6.2.2 Managerial insights

	7 Conclusions and future works
	Appendix A: Case data
	References

