4AESE - Analyse des Systèmes Non-Linéaires

Chapitre 1 : Introduction

Yassine ARIBA

$$\dot{x} = f(x)$$

version : 9-2024

Sommaire

- Nonlinear models?
- **2** Existence of a solution
- Sequilibrium point
- Linearization
- G Case study

Sommaire

Nonlinear models?

- Existence of a solution
- equilibrium point
- Linearization
- G Case study

Linear systems

What you have seen so far... Models of the form

 $\left(\begin{array}{c} {\sf Linear ordinary différential equ.}\\ \ddot{y}(t)+3\dot{y}(t)+2y(t)=u(t)\end{array}\right)$

 $\begin{array}{c} & \text{Transfer function} \\ & \frac{Y(s)}{U(s)} = \frac{1}{s^2 + 3s + 2} \end{array}$

Linear state space	
$\dot{x}(t) = Ax(t) + Bu(t)$	
y(t) = Cx(t) + Du(t)	

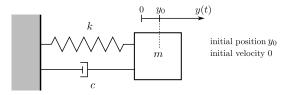
Fundamental property : superposition principle

$$\begin{cases} u_1(t) \xrightarrow{\text{lin. sys.}} y_1(t) \\ u_2(t) \xrightarrow{\text{lin. sys.}} y_2(t) \end{cases} \Rightarrow \quad a u_1(t) + b u_2(t) \xrightarrow{\text{lin. sys.}} a y_1(t) + b y_2(t)$$

 \hookrightarrow Allows to establish very strong and generic results

Example

Consider a mass spring damper system



A simple model is obtained from Newton's law

$$m\ddot{y} + c\dot{y} + ky = 0$$

One can derive a Laplace domain or a state space representation

$$Y(s) = \frac{y_0(ms+c)}{ms^2+cs+k} \qquad \qquad \dot{x} = \begin{pmatrix} 0 & 1\\ -\frac{k}{m} & -\frac{c}{m} \end{pmatrix} \times \\ y = \begin{pmatrix} 1 & 0 \end{pmatrix} \times$$

Nonlinear systems

More realistic models

$$\dot{x} = f(t, x, u)$$

where x is the state vector, u the input vector, $f(\cdot)$ a **nonlinear** function.

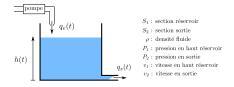
Other cases :

- Unforced system : $\dot{x} = f(t, x)$
- Autonomous system : $\dot{x} = f(x)$ (case considered in the following)
- Affine in u: $\dot{x} = f(x) + g(x)u$

Such a general modeling enables to better capture features of physical systems \hookrightarrow However, there is no general methods to deal with all nonlinear systems

Example 1

Liquid level control



The change in mass in the tank is

$$\dot{m}(t) = \rho S_1 \dot{h}(t) = q_e(t) - \underbrace{\rho S_2 v_2(t)}_{q_s(t)}$$

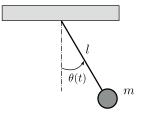
Using the Bernouilli's equation : $\frac{1}{2}\rho v_1^2(t) + P_1 + \rho gh(t) = \frac{1}{2}\rho v_2^2(t) + P_2$ $\hookrightarrow v_2(t) = \sqrt{2gh(t)}$

Let us define the state variable x = h, we get :

$$\dot{x}(t) = -a\sqrt{x(t)} + rac{1}{
ho}q_e(t), \qquad ext{with } a = rac{S_2}{S_1}\sqrt{2g}$$

Example 2

A simple free pendulum



Applying the Newton's second law, the equation of motion is obtained :

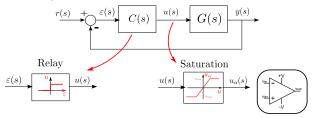
$$ml\ddot{\theta}(t) = -mg\sin\theta(t) - kl\dot{\theta}(t)$$

Let us define the state variables $x_1= heta$ and $x_2=\dot{ heta}$, we get :

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{g}{l} \sin x_1 - \frac{k}{m} x_2 \end{bmatrix}$$

Origins of nonlinearities

- Physical modeling. Inherent to laws of Physics as in previous examples
- Engineering design. Inherent to how the system work, introduced by the engineer, technological aspect...



Nonlinear phenomena

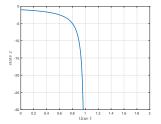
...that do not exist with linear modeling.

- Multiple isolated equilibria. Pendulum example
- Finite escape time. The state goes to infinity when time approaches a finite value. Example :

 $\dot{x} = -x^2$, with the initial condition x(0) = -1

 \Rightarrow The solution is

$$x(t) = rac{1}{t-1}$$



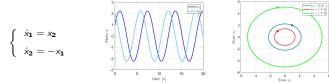
Nonlinear phenomena

Limit cycles.

Linear case LTI systems oscillate if they have pure imaginary poles.

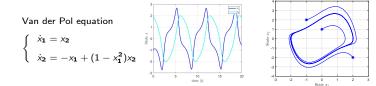
 \hookrightarrow It is a critical stability and nonrobust condition

 \hookrightarrow Oscillation amplitude depends on initial condition



Nonlinear case Can produce stable oscillations

 \hookrightarrow with fixed amplitude and frequency independently from initial conditions



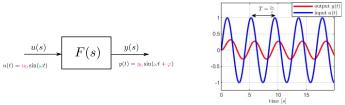
Nonlinear phenomena

Frequency response

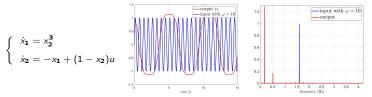
Linear case The response to a sine function is also a sine function (at steady state)

 \hookrightarrow with the same frequency ω

 \hookrightarrow and different amplitude and phase shift w.r.t. ω



Nonlinear case Can produce harmonics, subharmonics, and even almost-periodic output



Sommaire

• Nonlinear models?

- **2** Existence of a solution
- e Equilibrium point
- Linearization
- G Case study

Existence of a solution

Question : (Cauchy problem)

Let be the system

 $\dot{x} = f(t, x)$, with the initial condition $x(t_0) = x_0 \in \mathbb{R}^n$

Does a solution x(t) exist for $t > t_0$? Is it unique? dependence on init. cond.?

Theorem : local existence and uniqueness

If f(t, x) is piecewise continuous in t and satisfy the Lipschitz condition, that is, there exists a constant L > 0 such that $\forall x_1, x_2 \in B = \{x \in \mathbb{R}^n \mid ||x - x_0|| \le r\}$, and $\forall t \in [t_0, t_1]$

$$||f(t, x_2) - f(t, x_1)|| < L||x_2 - x_1||$$

then, there exists some $\delta > 0$ such that the above system has a **unique solution** over $[t_0, t_0 + \delta]$.

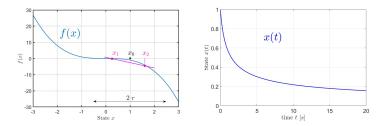
Example 1

$$\dot{x} = -x^3$$
 with $x(0) = 1$

 $-x^3$ is Lipschitz for all x such that $|x-x_0| \leq r = 1.5$ $\frac{|-x_2^3 - (-x_1^3)|}{|x_2-x_1|} \leq L$

(but not true $\forall x \in \mathbb{R}$)

 \Rightarrow It exists a unique solution : $x(t) = \frac{1}{\sqrt{1+2t}}$



Example 2

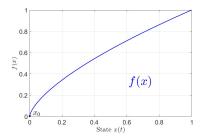
$$\dot{x} = x^{2/3}$$
 with $x(0) = 0$

has two solutions (non unicity) : x(t) = 0 and $x(t) = \frac{1}{27}t^3$.

 \Rightarrow actually, $x^{2/3}$ not Lipschitz around 0

$$\frac{|x^{2/3} - 0|}{|x - 0|} = |x^{-1/3}|$$

(not bounded when $x \rightarrow 0$)



Example 3

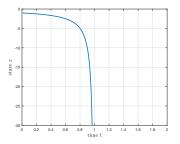
$$\begin{aligned} \dot{x} &= -x^2, \qquad \text{with } x(0) = -1 \\ \Rightarrow -x^2 \text{ is Lipschitz for } \forall x_1, x_2 \in B = \{x \in \mathbb{R} \mid |x - x_0| \le r\} \\ &\frac{|-x_2^2 - (-x_1^2)|}{|x_2 - x_1|} \le L \end{aligned}$$

(locally Lipschitz $\forall x \in \mathbb{R}$)

 \Rightarrow a unique solution for $t\in [0,\delta]$

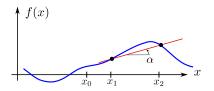
$$x(t)=\frac{1}{t-1}$$

but $\delta < 1$



Lipschitz condition and derivative of f

Scalar and autonomous example : $\dot{x} = f(x)$ with $x \in \mathbb{R}$



A unique solution exists if

$$\frac{|f(x_2) - f(x_1)|}{|x_2 - x_1|} = \alpha \le L \qquad \qquad \forall x_1, x_2 \in B = \{x \in \mathbb{R} \mid |x - x_0| \le r\}$$

 \hookrightarrow then f(x) is Lipschitz if |f'(x)| is bounded by L

Chapitre 1 : Introduction Existence of a solution

Lipschitz condition and derivative of f

This observation extends to vector-valued functions

$$\left\| \frac{\partial f}{\partial x}(t,x) \right\| \le L$$
 f is Lipschitz (for some domain)

Lemma : Locally Lipschitz

If f(t, x) and $\frac{\partial f}{\partial x}(t, x)$ are continuous on $[t_0, t_1] \times D$, for some domain $D \subset \mathbb{R}^n$, then f is locally Lipschitz on $[t_0, t_1] \times D$.

Lemma : Globally Lipschitz

If f(t,x) and $\frac{\partial f}{\partial x}(t,x)$ are continuous on $[t_0, t_1] \times \mathbb{R}^n$, then f is globally Lipschitz on $[t_0, t_1] \times \mathbb{R}^n$ if and only if $\frac{\partial f}{\partial x}$ is uniformly bounded on $[t_0, t_1] \times \mathbb{R}^n$.

Back on previous examples

Example 2:
$$\dot{x} = x^{2/3}$$
, with $x(0) = 0$
 $(x^{2/3})' = \frac{2}{3}x^{-1/3}$

Hence, |f(x)'| unbounded at $0 \Rightarrow f$ not Lipschitz around 0

Example 3 : $\dot{x} = -x^2$, with x(0) = -1 $\left(-x^2\right)' = -2x$

Hence, |f(x)'| bounded for any x in some domain $D \Rightarrow f$ locally Lipschitz $\forall x \in \mathbb{R}$

Exercise

Consider system

$$\dot{x} = f(x) = -x^2 + a\sin(x)$$

Is f(x) Lipschitz (locally or globally) or not?

Exercise

Consider system

$$\dot{x} = \underbrace{\begin{bmatrix} -x_1 + x_1 x_2 \\ x_2 - x_1 x_2 \end{bmatrix}}_{f(x)}$$

Is f(x) Lipschitz (locally or globally) or not?

Exercise

Consider system

$$\dot{x} = f(x) = -x + a\sin(x)$$

Is f(x) Lipschitz (locally or globally) or not?

Sommaire

• Nonlinear models?

- **2** Existence of a solution
- equilibrium point
- Linearization
- **6** Case study

Equilibrium point

Definition

A point x^* is an **equilibrium point** if when the current state $x = x^*$, the system remains at this point ($\rightarrow \dot{x} = 0$). The equilibrium points are given by the roots of

f(x)=0

For the pendulum example, equilibrium points are characterized by

$$\begin{cases} 0 = x_2 \\ 0 = -\frac{g}{l} \sin x_1 - \frac{k}{m} x_2 \end{cases} \Rightarrow \begin{cases} x_2^* = 0 \\ x_1^* = 0 \pm n\pi, \quad n = 0, 1, 2, \dots \end{cases}$$

 \hookrightarrow mathematically infinitely many points, physically two positions

Exercise

Consider system

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1(1 - a^2 x_1^2) - x_2 \end{cases}$$

where a > 0 is a constant parameter.

Calculate the equilibrium point(s)?

Reminder : for linear systems

 $\dot{x} = Ax + Bu$ (A being non-singular)

there can be only one isolated equilibrium point $x^* = -A^{-1}Bu^*$.

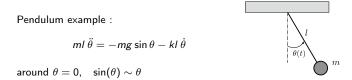
- This equilibrium point is 0 in the case of an unforced system $\dot{x} = Ax$.
- If A is singular, there are infinitely many continuous equilibrium points (not isolated), this set is a subspace in the state-space.

Sommaire

- Nonlinear models?
- **2** Existence of a solution
- equilibrium point
- Linearization
- G Case study

Linearization

Linear approximation of a nonlinear model around an equilibrium point



A linear model is obtained :

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{g}{l} \sin x_1 - \frac{k}{m} x_2 \end{bmatrix} \xrightarrow{\text{around } \theta = 0} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} \simeq \begin{bmatrix} x_2 \\ -\frac{g}{l} x_1 - \frac{k}{m} x_2 \end{bmatrix}$$
$$\simeq \underbrace{ \begin{bmatrix} 0 & 1 \\ -\frac{g}{l} & -\frac{k}{m} \end{bmatrix}}_{A} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

More generally

Let's consider an equilibrium point x^* for system

 $\dot{x} = f(x),$ with $x(0) = x_0$

and define the deviation variable : $\tilde{x} = x - x^{\star}$

Its dynamic is

$$\dot{\tilde{x}} = \dot{x} = f(x) = f(x^* + \tilde{x}), \quad \text{with } \tilde{x}(0) = x_0 - x^*$$

Use **Taylor series** around x^{\star}

$$f(x^{\star} + h) = f(x^{\star}) + f'(x^{\star})h + \frac{1}{2!}f''(x^{\star})h^{2} + \frac{1}{3!}f^{(3)}(x^{\star})h^{3} + \cdots$$

valid if $h \ (= \tilde{x})$ small enough

Linear approximation (scalar case)

$$f(x^{*} + h) \simeq \underbrace{f(x^{*})}_{=0} + f'(x^{*})h + \frac{1}{2!} \underbrace{f''(x^{*})h^{2}}_{=0} + \frac{1}{3!} \underbrace{f^{(3)}(x^{*})h^{3}}_{=0} + \cdots$$

For our system

$$\dot{\tilde{x}} = f(x^{\star} + \tilde{x})$$

 $\simeq f'(x^{\star}) \tilde{x}$

 \Rightarrow linear model of the form : $\dot{\tilde{x}} \simeq a \tilde{x}$, with $\tilde{x}(0) = x_0 - x^*$

Linear approximation (general case)

Let x^* be an equilibrium point for system $\dot{x} = f(x)$, a linear model around that point is given by :

$$\dot{\tilde{x}} \simeq \underbrace{\frac{\partial f}{\partial x}(x^*)}_{A} \tilde{x}$$
 with $\tilde{x} = x - x^*$

and $\frac{\partial f}{\partial x}(\cdot)$ the Jacobian matrix of the vector-valued function f at the equ. pt.

Reminder, Jacobian matrix :

$$\frac{\partial f}{\partial x}(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & & \vdots \\ \vdots & & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

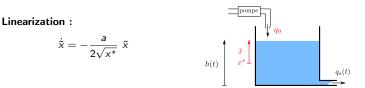
One could also linearize around an operating point or a trajectory

Back on the liquid level example

Nonlinear model :

$$\dot{x}(t) = -a\sqrt{x(t)} + rac{1}{
ho}q_e(t), \qquad ext{with } x(0) = 0.5 \; m$$

For a constant input mass flow rate $q_e(t) = q_0 \ kg/s \Rightarrow$ equilibrium pt $x^* = \left(\frac{q_0}{a\rho}\right)^2$



Nonlinear model :

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{g}{l} \sin x_1 - \frac{k}{m} x_2 \end{bmatrix}$$

Consider the equilibrium pt $x^* = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$

Linearization :

Jacobian matrix

$$\frac{\partial f}{\partial x}(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{l} \cos x_1 & -\frac{k}{m} \end{bmatrix}$$

Linear model

$$\dot{\tilde{x}} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{l} & -\frac{k}{m} \end{bmatrix} \tilde{x}$$

Exercise

Consider system

$$\begin{cases} \dot{x}_1 = -x_1 + x_1 x_2 \\ \dot{x}_2 = x_1 + x_2 - 2x_1 x_2 \end{cases}$$

Calculate the equilibrium point(s)? Linearize the system around (1,1)

Sommaire

- Nonlinear models?
- **2** Existence of a solution
- equilibrium point
- Linearization
- G Case study

Case study

Population dynamics study the evolution of the size N(t) of a population

First simple model : Malthus model

$$\dot{N}(t) = \alpha N(t) - \beta N(t)$$

 α is the birth rate and β the death rate

- Model is linear are nonlinear?
- What is (are) the equilibrium point(s)?
- Existence and unicity of the solution ?

Chapitre 1 : Introduction └─Case study

Solution

Second case

Second model : Verhulst (or logistic) model

$$\dot{N}(t) = rN(t)\left(1 - rac{N(t)}{\kappa}\right)$$

that takes into account a maximal critical size of the population K (carrying capacity). r is the growth rate.

- Model is linear are nonlinear ?
- What is (are) the equilibrium point(s)?
- Existence and unicity of the solution ?

Solution

Chapitre 1 : Introduction └─ In short

In short

Nonlinear model are very general model

 $\dot{x} = f(x)$

Results for linear model $\dot{x} = Ax$ not applicable

• A solution exists and is unique if a Lipschitz condition is satisfied.

The equilibrium points x* are given by the roots of

f(x) = 0

A nonlinear system may be approximated by a linear system around an equilibrium point

 $\dot{x} = f(x) \xrightarrow{approx} \delta \dot{x} = A \, \delta x$ with $x = x^* + \delta x$ and $A = \frac{\partial f}{\partial x}(x^*)$