

# Recherche Opérationnelle

Yassine ARIBA

## Sommaire



## Introduction Programmation linéaire

Exemples introductifs Formulation du problème Méthode et interprétation

graphique

Algorithme du simplexe

## Théorie des graphes

Définitions et concepts

Chemins optimaux

Flots optimaux dans un réseau

de transport



Introduction

# Sommaire



#### Introduction

#### Programmation linéaire

Exemples introductifs

Formulation du problème

Méthode et interprétation

graphique

Algorithme du simplexe

## Théorie des graphes

Définitions et concepts

Chemins optimaux

Flots optimaux dans un réseau

de transport



#### Introduction

## Recherche opérationnelle

 $\Leftrightarrow$ 

résolution de problèmes d' ${\bf optimisation}$ 



#### Introduction

## Recherche opérationnelle

 $\Leftrightarrow$ 

résolution de problèmes d' ${f optimisation}$ 

 $\Leftrightarrow$ 

aide à la décision



#### Origine

En 1940, au cours de la seconde guerre mondiale, le gouvernement anglais charge Patrick Blackett de diriger une équipe de *recherche* pour résoudre certains problèmes tels que

- l'implantation optimale de radars de surveillance,
- la gestion des convois d'approvisionnement.

Le terme *opérationnelle* vient du fait que le travail du groupe était lié à des *opérations* militaires.



#### Origine

En 1940, au cours de la seconde guerre mondiale, le gouvernement anglais charge Patrick Blackett de diriger une équipe de *recherche* pour résoudre certains problèmes tels que

- l'implantation optimale de radars de surveillance,
- la gestion des convois d'approvisionnement.

Le terme *opérationnelle* vient du fait que le travail du groupe était lié à des *opérations* militaires.

Après la guerre, ces techniques se sont considérablement développées du fait de

- la multiplication des domaines d'application,
- l'explosion des capacités de calcul des ordinateurs.



La RO est généralement est liée à plusieurs domaines :

Mathématiques appliquées, Informatique, Économie



La RO est généralement est liée à plusieurs domaines :

Mathématiques appliquées, Informatique, Économie

## Les applications sont nombreuses :

- les chaînes logistiques, la planification,
- ▶ la gestion de production, l'ordonnancement, la gestion des stocks,
- les problèmes d'ingénierie, les réseaux de télécommunication,
- etc...



# Programmation linéaire





# Introduction

## Programmation linéaire

Exemples introductifs

Formulation du problème Méthode et interprétation

graphique

Algorithme du simplexe

## Théorie des graphes

Définitions et concepts

Chemins optimaux

Flots optimaux dans un réseau

de transport





#### **Exemple 1 :** problème de production

Un boulanger prépare tous les matins des croissants et des pains au chocolat





## il utilise 3 matières premières : farine, beurre et sucre

|                          | farine (kg) | beurre (kg) | sucre (kg) |
|--------------------------|-------------|-------------|------------|
| croissant $(1kg)$        | 0.4         | 0.4         | 0          |
| pain au chocolat $(1kg)$ | 0.4         | 0.2         | 0.1        |



- ▶ La vente de 1kg de croissants rapporte 15€.
- La vente de 1kg de pains au chocolat rapporte 10€.

## Le boulanger possède en stock chaque jour :

- ▶ 12kg de farine,
- ▶ 8kg de beurre,
- ▶ 2.5kg de sucre.



- ▶ La vente de 1kg de croissants rapporte 15€.
- La vente de 1kg de pains au chocolat rapporte 10€.

Le boulanger possède en stock chaque jour :

- ▶ 12kg de farine,
- ▶ 8kg de beurre,
- ▶ 2.5kg de sucre.

★ Question : combien faut-il fabriquer de croissants et pains au chocolat pour avoir le maximum de bénéfice ?

## Analysons le problème :



#### variables:

 $x_1 \rightarrow \text{nombre de kilo de croissants}$ 

 $x_2 \rightarrow$  nombre de kilo de pains au chocolat

le bénéfice est donné par :  $z = 15x_1 + 10x_2$ 

On est contraint par les stocks de matières

ightharpoonup quantité de farine utilisable :  $0.4x_1 + 0.4x_2 \le 12$ 

ightharpoonup quantité de beurre utilisable :  $0.4x_1 + 0.2x_2 \le 8$ 

• quantité de sucre utilisable :  $0.1x_2 \le 2.5$ 

## Analysons le problème :



variables:

 $x_1 \rightarrow \text{nombre de kilo de croissants}$ 

 $x_2 \rightarrow$  nombre de kilo de pains au chocolat

le bénéfice est donné par :  $z = 15x_1 + 10x_2$ 

On est contraint par les stocks de matières

▶ quantité de farine utilisable :  $0.4x_1 + 0.4x_2 \le 12$ 

ightharpoonup quantité de beurre utilisable :  $0.4x_1 + 0.2x_2 \le 8$ 

• quantité de sucre utilisable :  $0.1x_2 \le 2.5$ 

#### formulation du problème :

$$\begin{array}{rcl} \max & z & = & 15x_1 + 10x_2 \\ & & 0.4x_1 + 0.4x_2 & \leq & 12 \\ & & 0.4x_1 + 0.2x_2 & \leq & 8 \\ & & & 0.1x_2 & \leq & 2.5 \end{array}$$



#### Exemple 2 : problème de transport

Considérons 3 magasins, A, B et C, ayant commandés 200 containers de marchandises chacun.



Ces magasins sont approvisionnés par 2 dépôts :

- $\triangleright$  250 containers sont disponibles au dépôt  $D_1$ ,
- ▶ 450 containers sont disponibles au dépôt D₂.



 ${\it Magasins \ et \ d\'ep\^ots \ sont \ distants \ g\'eographiquement}.$ 

Les coûts de transport par containers sont :

| magasin     | Α   | В   | С   |
|-------------|-----|-----|-----|
| dépôt $D_1$ | 3.4 | 2.2 | 2.9 |
| dépôt $D_2$ | 3.4 | 2.4 | 2.5 |

par exemple : le transport d'un container de  $\mathit{D}_1$  vers  $\mathit{A}$  coute  $3.4 \cite{1mm}$ 



Magasins et dépôts sont distants géographiquement.

Les coûts de transport par containers sont :

| magasin     | Α   | В   | С   |
|-------------|-----|-----|-----|
| dépôt $D_1$ | 3.4 | 2.2 | 2.9 |
| dépôt $D_2$ | 3.4 | 2.4 | 2.5 |

par exemple : le transport d'un container de D₁ vers A coute 3.4€

★ Question : comment organiser le transport des dépôts vers les magasins pour minimiser le coût total ?



#### Analysons le problème :

#### variables :

 $x_{1A}$   $\rightarrow$  nombre de containers depuis le dépôt  $D_1$  vers le magasin A  $x_{2A}$   $\rightarrow$  nombre de containers depuis le dépôt  $D_2$  vers le magasin A

(idem pour *B* et 
$$C: x_{1B}, x_{2B}, x_{1C}, x_{2C}$$
)

le coût total de transport est donné par :

$$z = 3.4x_{1A} + 3.4x_{2A} + 2.2x_{1B} + 2.4x_{2B} + 2.9x_{1C} + 2.5x_{2C}$$

les contraintes sont liées à la disponibilité des dépôts et à la demande des magasins

#### Analysons le problème :



#### variables :

 $egin{array}{lll} x_{1A} & \to & \text{nombre de containers depuis le dépôt } D_1 \text{ vers le magasin } A \\ x_{2A} & \to & \text{nombre de containers depuis le dépôt } D_2 \text{ vers le magasin } A \\ \end{array}$ 

(idem pour B et 
$$C: x_{1B}, x_{2B}, x_{1C}, x_{2C}$$
)

le coût total de transport est donné par :

$$z = 3.4x_{1A} + 3.4x_{2A} + 2.2x_{1B} + 2.4x_{2B} + 2.9x_{1C} + 2.5x_{2C}$$

les contraintes sont liées à la disponibilité des dépôts et à la demande des magasins

#### formulation du problème :

min 
$$z = 3.4x_{1A} + 3.4x_{2A} + 2.2x_{1B} + 2.4x_{2B} + 2.9x_{1C} + 2.5x_{2C}$$
  
 $\begin{array}{rcl} x_{1A} + x_{1B} + x_{1C} & \leq & 250 \\ x_{2A} + x_{2B} + x_{2C} & \leq & 450 \\ x_{1A} + x_{2A} & = & 200 \\ x_{1B} + x_{2B} & = & 200 \\ x_{1C} + x_{2C} & = & 200 \end{array}$ 



#### 2 problèmes différents $\rightarrow$ même formulation

$$\begin{array}{rclcrcl} \max & z & = & 15x_1 + 10x_2 \\ & & 0.4x_1 + 0.4x_2 & \leq & 12 \\ & & 0.4x_1 + 0.2x_2 & \leq & 8 \\ & & 0.1x_2 & \leq & 2.5 \end{array}$$

$$\begin{array}{lll} \min & z = 3.4x_{1A} + 3.4x_{2A} + 2.2x_{1B} \\ & + 2.4x_{2B} + 2.9x_{1C} + 2.5x_{2C} \\ \\ & x_{1A} + x_{1B} + x_{1C} & \leq & 250 \\ & x_{2A} + x_{2B} + x_{2C} & \leq & 450 \\ & x_{1A} + x_{2A} & = & 200 \\ & x_{1B} + x_{2B} & = & 200 \\ & x_{1C} + x_{2C} & = & 200 \\ \end{array}$$



#### 2 problèmes différents $\rightarrow$ même formulation

$$\begin{array}{rcl} \max & z & = & 15x_1 + 10x_2 \\ & & 0.4x_1 + 0.4x_2 & \leq & 12 \\ & & 0.4x_1 + 0.2x_2 & \leq & 8 \\ & & 0.1x_2 & \leq & 2.5 \end{array}$$

$$\begin{array}{lll} \min & z = 3.4x_{1A} + 3.4x_{2A} + 2.2x_{1B} \\ & + 2.4x_{2B} + 2.9x_{1C} + 2.5x_{2C} \\ \\ & x_{1A} + x_{1B} + x_{1C} & \leq & 250 \\ & x_{2A} + x_{2B} + x_{2C} & \leq & 450 \\ & x_{1A} + x_{2A} & = & 200 \\ & x_{1B} + x_{2B} & = & 200 \\ & x_{1C} + x_{2C} & = & 200 \\ \end{array}$$

- une fonction à optimiser (valeur min ou max)
- un ensemble d'inégalités / égalités
- ★ Question : existe-t-il une méthode générique pour résoudre ce problème ?



#### Formulation du problème

Optimisation d'une fonction  $f(\cdot)$ , dépendant de variables  $x_i$  devant satisfaire un ensemble de d'inégalités et/ou égalités.

opt 
$$z = f(x)$$

$$g(x) \le d$$

$$h(x) = b$$

avec  $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ .



#### Formulation du problème

Optimisation d'une fonction  $f(\cdot)$ , dépendant de variables  $x_i$  devant satisfaire un ensemble de d'inégalités et/ou égalités.

opt 
$$z = f(x)$$

$$g(x) \leq d$$

$$h(x) = b$$

avec  $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ .

#### Vocabulaire

- x<sub>i</sub> : variables de décision,
- $ightharpoonup f(\cdot)$ : fonction coût, ou économique,
- $\triangleright$   $g(\cdot)$  et  $h(\cdot)$ : contraintes, donnent les solutions admissibles.



## Problème de programmation linéaire



#### ou sous forme matrielle



#### ou sous forme matrielle

- ▶ Programmation = planification, organisation, plan d'action (≠ informatique)
- Linéaire = les fonctions (objectif et contraintes) sont linéaires en x



## Problème de programmation linéaire, retour sur l'exemple 1

$$\begin{array}{rcl} \text{max} & z & = & 15x_1 + 10x_2 \\ & & 0.4x_1 + 0.4x_2 & \leq & 12 \\ & 0.4x_1 + 0.2x_2 & \leq & 8 \\ & & 0.1x_2 & \leq & 2.5 \end{array}$$
 
$$x_1 \geq 0 \ \text{et} \ x_2 \geq 0$$



#### Problème de **programmation linéaire**, retour sur l'exemple 1

$$\begin{array}{rclrcl} \text{max} & z & = & 15x_1 + 10x_2 \\ & & & 0.4x_1 + 0.4x_2 & \leq & 12 \\ & & & 0.4x_1 + 0.2x_2 & \leq & 8 \\ & & & & 0.1x_2 & \leq & 2.5 \end{array}$$
 
$$x_1 \geq 0 \ \text{et} \ x_2 \geq 0$$

ou encore

$$\max \quad z = \begin{bmatrix} 15 & 10 \end{bmatrix} x$$

$$\begin{bmatrix} 0.4 & 0.4 \\ 0.4 & 0.2 \\ 0 & 0.1 \end{bmatrix} x \leq \begin{bmatrix} 12 \\ 8 \\ 2.5 \end{bmatrix}$$

$$x > 0$$



## Méthode et interprétation graphique

Pour des problèmes à 2 variables ightarrow résolution graphique possible

- ightharpoonup contraintes tracées dans le plan  $(x_1, x_2)$
- visualisation de l'espace des solutions admissibles
- ightharpoonup détermination du point  $(x_1^*, x_2^*)$  optimisant la fonction économique.



## Méthode et interprétation graphique

Pour des problèmes à 2 variables  $\rightarrow$  résolution graphique possible

- ightharpoonup contraintes tracées dans le plan  $(x_1, x_2)$
- visualisation de l'espace des solutions admissibles
- détermination du point  $(x_1^*, x_2^*)$  optimisant la fonction économique.

## Réécrivons le problème de l'exemple 1 :

$$\max z = 15x_1 + 10x_2$$

$$x_1 + x_2 \leq 30 \tag{1}$$

$$2x_1 + x_2 \leq 40 \tag{2}$$

$$x_2 \leq 25 \tag{3}$$

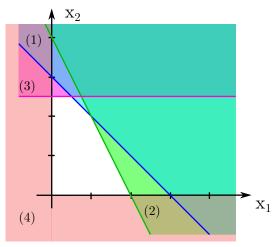
$$x_i \geq 0 \qquad i = \{1, 2\} \tag{4}$$



Représentons dans le plan  $(x_1, x_2)$ , les 4 contraintes.



Représentons dans le plan  $(x_1, x_2)$ , les 4 contraintes.



- ⇒ Nous pouvons visualiser l'espace des solutions admissibles.
- ⇒ Quel point choisir?



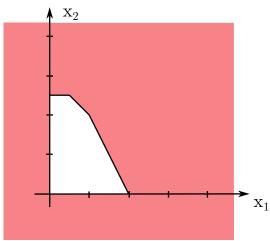
fonction objectif: 
$$z = 15x_1 + 10x_2$$

soit : 
$$x_2 = -\frac{3}{2}x_1 + \frac{z}{10}$$



fonction objectif: 
$$z = 15x_1 + 10x_2$$

soit : 
$$x_2 = -\frac{3}{2}x_1 + \frac{z}{10}$$

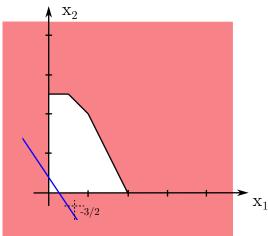




fonction objectif: 
$$z = 15x_1 + 10x_2$$

soit : 
$$x_2 = -\frac{3}{2}x_1 + \frac{z}{10}$$

Méthode et interprétation graphique

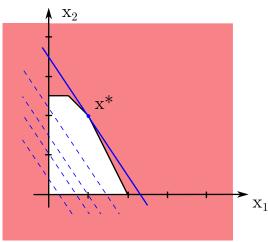




fonction objectif: 
$$z = 15x_1 + 10x_2$$

soit : 
$$x_2 = -\frac{3}{2}x_1 + \frac{z}{10}$$

Méthode et interprétation graphique





La solution  $x^*$  est appelée la solution optimale.

- ▶ Solution à l'intersection des contraintes (1)-(2) :  $(x_1^*, x_2^*) = (10, 20)$
- ▶ Bénéfice maximal : z = 350€.



La solution  $x^*$  est appelée la solution optimale.

- Solution à l'intersection des contraintes (1)-(2) :  $(x_1^*, x_2^*) = (10, 20)$
- ▶ Bénéfice maximal :  $z = 350 \in$ .

Bénéfice dans d'autres cas :

• équilibre entre les produits  $\rightarrow x_1 = x_2 = 13$ 

$$\Rightarrow$$
 z = 325€ perte de 7%



La solution  $x^*$  est appelée la **solution optimale**.

- Solution à l'intersection des contraintes (1)-(2) :  $(x_1^*, x_2^*) = (10, 20)$
- Bénéfice maximal : z = 350€.

Bénéfice dans d'autres cas :

• équilibre entre les produits  $\rightarrow x_1 = x_2 = 13$ 

$$\Rightarrow z = 325$$
€ perte de 7%

ightharpoonup maximum de croissants  $\rightarrow x_1 = 20$  et  $x_2 = 0$ 

$$\Rightarrow$$
 z = 300€ perte de 14%



La solution  $x^*$  est appelée la solution optimale.

- Solution à l'intersection des contraintes (1)-(2) :  $(x_1^*, x_2^*) = (10, 20)$
- Bénéfice maximal : z = 350€.

#### Bénéfice dans d'autres cas :

• équilibre entre les produits  $\rightarrow x_1 = x_2 = 13$ 

$$\Rightarrow z = 325$$
€ perte de 7%

maximum de croissants  $\rightarrow x_1 = 20$  et  $x_2 = 0$   $\Rightarrow z = 300€$  perte de 14%

maximum de pains au chocolat  $\rightarrow x_1 = 0$  et  $x_2 = 25$ ⇒ z = 250€ perte de 29%



## Exemple 3:

$$\max z = 6x_1 + 5x_2$$

$$x_1 + x_2 \leq 8 \tag{1}$$

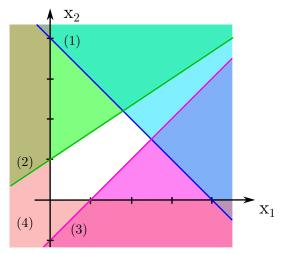
$$-2x_1 + 3x_2 \leq 6 (2)$$

$$x_1-x_2 \leq 2 \tag{3}$$

$$x_i \geq 0 \qquad i = 1, 2 \tag{4}$$



Représentons dans le plan  $(x_1, x_2)$ , les 4 contraintes.





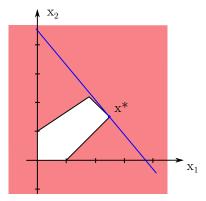
fonction objectif: 
$$z = 6x_1 + 5x_2$$

soit : 
$$x_2 = -\frac{6}{5}x_1 + \frac{z}{5}$$



fonction objectif : 
$$z = 6x_1 + 5x_2$$

soit : 
$$x_2 = -\frac{6}{5}x_1 + \frac{z}{5}$$

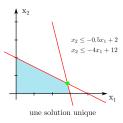


- ► Solution à l'intersection des contraintes (1)-(3) :  $(x_1^*, x_2^*) = (5, 3)$
- ▶ Valeur optimale : z = 45.

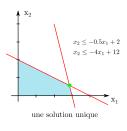


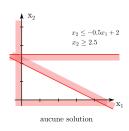
# Quatre possibilités



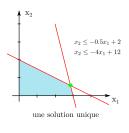


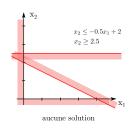


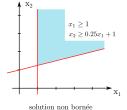




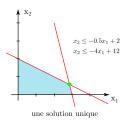


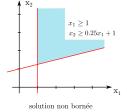


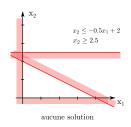


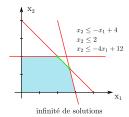














# Algorithme du simplexe

Commençons par quelques définitions...

Un ensemble  $\mathcal C$  est **convexe** ssi le segment de droite entre 2 points quelconques x, y de  $\mathcal C$  appartient à  $\mathcal C$ .

$$\forall \lambda \in [0,1], \quad x, \ y \ \in \mathcal{C} \quad \Rightarrow \quad (1-\lambda)x + \lambda y \in \mathcal{C}$$





# Algorithme du simplexe

# Commençons par quelques définitions...

Un ensemble  $\mathcal C$  est **convexe** ssi le segment de droite entre 2 points quelconques x, y de  $\mathcal C$  appartient à  $\mathcal C$ .

$$\forall \lambda \in [0,1], \quad x, y \in \mathcal{C} \quad \Rightarrow \quad (1-\lambda)x + \lambda y \in \mathcal{C}$$



Un nombre fini d'inégalités linéaires définissent un polyèdre convexe  $\mathcal{P}.$ 

$$\mathcal{P} = \{ x \in \mathbb{R}^n : Ax \le b \}$$





Un point  $x_e$  d'un ensemble convexe  $\mathcal C$  est un *point extrême* s'il n'existe pas 2 points distincts x, y de  $\mathcal C$  tels que  $x_e$  appartienne à la droite (x,y).

Les points extrêmes d'un polyèdre convexe sont ses sommets.



Un point  $x_e$  d'un ensemble convexe  $\mathcal C$  est un *point extrême* s'il n'existe pas 2 points distincts x, y de  $\mathcal C$  tels que  $x_e$  appartienne à la droite (x,y).

Les points extrêmes d'un polyèdre convexe sont ses sommets.

#### Théorème

Si le polyèdre formé par l'ensemble des solutions admissibles d'un problème de PL est borné, alors il existe au moins une solution optimale et l'une d'elles est sur un sommet.



Un point  $x_e$  d'un ensemble convexe  $\mathcal C$  est un point extrême s'il n'existe pas 2 points distincts x, y de  $\mathcal C$  tels que  $x_e$  appartienne à la droite (x,y).

Les points extrêmes d'un polyèdre convexe sont ses sommets.

#### Théorème

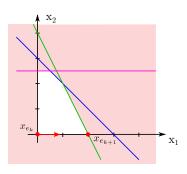
Si le polyèdre formé par l'ensemble des solutions admissibles d'un problème de PL est borné, alors il existe au moins une solution optimale et l'une d'elles est sur un sommet.

★ Pour trouver l'optimum, il "suffit" alors d'examiner les sommets de la région des solutions admissibles.

# icam

# Première idée d'un algorithme

- 1. Se positionner sur une point extrême  $\mathbf{x}_{e_k}$  de la zone admissible
- 2. Déterminer une arêtes le long de laquelle l'objectif augmente
- 3. S'il n'en existe pas,  $x_{e_k}$  est optimal, FIN
- 4. Sinon se déplacer le long de l'arête jusqu'au point extrême  $x_{e_{k+1}}$  suivant
- S'il n'en existe pas, le problème est non borné, FIN
- 6. Sinon  $x_{e_k} \longleftarrow x_{e_{k+1}}$  et aller à 2





# Retour sur le problème de PL

#### Formulation:

n variables de décision, m contraintes



# Forme standard du problème de PL

Les inégalités sont transformées en égalités avec l'introduction de variables d'écart

$$3x_1 + x_2 + 5x_3 < 12$$
  $\Leftrightarrow$   $3x_1 + x_2 + 5x_3 + e = 12$ 

$$\Leftrightarrow$$

$$3x_1 + x_2 + 5x_3 + e = 12$$



# Forme standard du problème de PL

Les inégalités sont transformées en égalités avec l'introduction de variables d'écart

$$3x_1 + x_2 + 5x_3 \le 12$$
  $\Leftrightarrow$   $3x_1 + x_2 + 5x_3 + e = 12$   $e \ge 0$ 



Notons n le nombre de variables total : var. initiales  $x_i$  + var. d'écart  $e_j$ .

Notons x la concaténation des  $x_i$  et  $e_j$ . Le problème se réécrit sous la forme :

$$\begin{array}{rcl} opt & z = cx \\ & Tx & = & d \\ & x & \geq & 0 \end{array}$$



Notons n le nombre de variables total : var. initiales  $x_i$  + var. d'écart  $e_i$ .

Notons x la concaténation des  $x_i$  et  $e_j$ . Le problème se réécrit sous la forme :

$$\begin{array}{rcl} opt & z = cx \\ & Tx & = & d \\ & x & \geq & 0 \end{array}$$

#### Exemple 1

$$\max z = 15x_1 + 10x_2 \qquad \max z = [15\ 10\ 0\ 0\ 0]x$$

$$\begin{array}{cccc} x_1 + x_2 & \leq & 30 \\ 2x_1 + x_2 & \leq & 40 \\ x_2 & \leq & 25 \end{array} \Leftrightarrow \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 30 \\ 40 \\ 25 \end{bmatrix}$$

$$x_1 \text{ et } x_2 \geq 0$$



Si une variable d'écart est nulle ( $e_j=0$ ), la contrainte j est vérifiée à l'égalité  $\Rightarrow$  contrainte saturée, ou active



Si une variable d'écart est nulle ( $e_j=0$ ), la contrainte j est vérifiée à l'égalité  $\Rightarrow$  contrainte saturée, ou active

La forme standard est un système d'équations linéaires

$$\underbrace{T}_{m\times(n+m)}\underbrace{x}_{(n+m)\times 1} = \underbrace{d}_{m\times 1}$$

soit m équations, (n+m) inconnues



Si une variable d'écart est nulle  $(e_j = 0)$ , la contrainte j est vérifiée à l'égalité  $\Rightarrow$  contrainte saturée, ou active

La forme standard est un système d'équations linéaires

$$\underbrace{T}_{m\times(n+m)}\underbrace{x}_{(n+m)\times 1} = \underbrace{d}_{m\times 1}$$

soit m équations, (n+m) inconnues

Si on annule n variables  $\Rightarrow$  il reste un système à m équations, m inconnues



# Posons $x_1 = 0$ et $x_2 = 0$ .

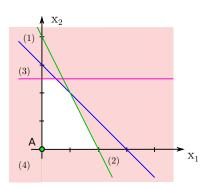
$$\max z = 15 \times 0 + 10 \times 0$$

$$0 + 0 + x_3 = 30 \tag{1}$$

$$2 \times 0 + 0 + x_4 = 40$$
 (2)

$$0 + x_5 = 25$$
 (3)

$$x_i \geq 0 \qquad i = \{1, \ldots, 5\}$$





## Posons $x_1 = 0$ et $x_2 = 0$ .

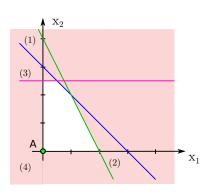
$$\max z = 15 \times 0 + 10 \times 0$$

$$0 + 0 + x_3 = 30$$
 (1)

$$2 \times 0 + 0 + x_4 = 40$$
 (2)

$$0 + x_5 = 25$$
 (3)

$$x_i \geq 0 \qquad i = \{1, \ldots, 5\}$$
(4)



$$\Rightarrow solution \begin{cases} x_3 = 30 \\ x_4 = 40 \\ x_5 = 25 \end{cases}$$
 (solution admissible)

 $\Rightarrow$  correspond au sommet A



## Posons $x_1 = 0$ et $x_5 = 0$ .

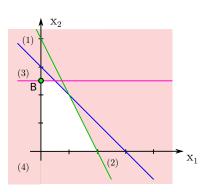
$$\max z = 15 \times 0 + 10x_2$$

$$\frac{0 + x_2 + x_3}{0 + x_2 + x_3} = 30 \tag{1}$$

$$2 \times 0 + x_2 + x_4 = 40 \tag{2}$$

$$x_2 + 0 = 25$$
 (3)

$$x_i \geq 0 \qquad i = \{1,\ldots,5\}$$





## Posons $x_1 = 0$ et $x_5 = 0$ .

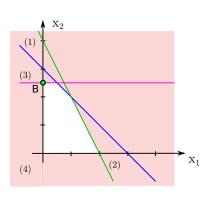
$$\max \quad z = 15 \times \frac{0}{10} + 10 \times \frac{1}{2}$$

$$\frac{0 + x_2 + x_3}{0} = 30 \tag{1}$$

$$2 \times 0 + x_2 + x_4 = 40$$
 (2)

$$x_2 + 0 = 25$$
 (3)

$$x_i \geq 0 \qquad i = \{1, \ldots, 5\}$$
(4)



$$\Rightarrow solution \begin{cases} x_2 = 25 \\ x_4 = 15 \\ x_5 = 5 \end{cases}$$
 (solution admissible)

 $\Rightarrow$  correspond au sommet B



## Posons $x_3 = 0$ et $x_5 = 0$ .

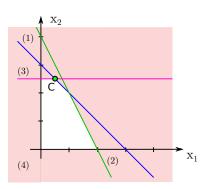
$$max z = 15x_1 + 10x_2$$

$$x_1 + x_2 + 0 = 30$$
 (1)

$$2x_1 + x_2 + x_4 = 40 (2)$$

$$x_2 + 0 = 25$$
 (3)

$$x_i \geq 0 \qquad i = \{1,\ldots,5\}$$
 (4)





## Posons $x_3 = 0$ et $x_5 = 0$ .

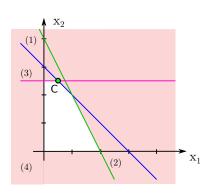
$$max z = 15x_1 + 10x_2$$

$$x_1 + x_2 + 0 = 30$$
 (1)

$$2x_1 + x_2 + x_4 = 40 (2)$$

$$x_2 + 0 = 25$$
 (3)

$$x_i \geq 0 \qquad i = \{1, \ldots, 5\}$$
 (4)



$$\Rightarrow \text{ solution } \begin{cases} x_1 = 5 \\ x_2 = 25 \\ x_4 = 5 \end{cases}$$
 (solution admissible)

 $\Rightarrow$  correspond au sommet C



### Posons $x_4 = 0$ et $x_5 = 0$ .

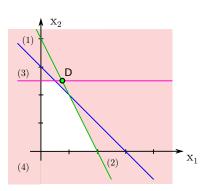
$$max z = 15x_1 + 10x_2$$

$$x_1 + x_2 + x_3 = 30$$
 (1)

$$2x_1 + x_2 + 0 = 40 (2)$$

$$x_2 + 0 = 25$$
 (3)

$$x_i \geq 0 \qquad i = \{1, \ldots, 5\} \tag{4}$$





### Posons $x_4 = 0$ et $x_5 = 0$ .

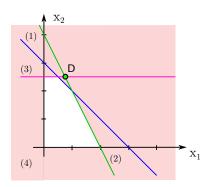
$$max z = 15x_1 + 10x_2$$

$$x_1 + x_2 + x_3 = 30$$
 (1)

$$2x_1 + x_2 + 0 = 40 (2)$$

$$x_2 + 0 = 25$$
 (3)

$$x_i \geq 0 \qquad i = \{1, \ldots, 5\}$$
(4)



$$\Rightarrow \text{ solution } \begin{cases} x_1 = 7.5 \\ x_2 = 25 \\ x_3 = -2.5 \end{cases}$$

(solution  $\underline{\mathsf{non}}$  admissible)

 $\Rightarrow$  correspond au point D



### Commentaires:

- Le problème de PL s'écrit comme un système à m équations et (n+m) variables
- En annulant n variables, on obtient un système à m équations et m variables
- ▶ Si la matrice associée est de rang *m*, il y a une solution unique
- ▶ Si les composantes sont positives, la solution est admissible
- ► Solution admissible = sommet



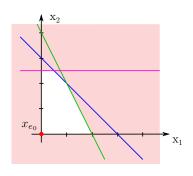
On se positionne sur un point extrême initial  $x_{e_0}: x_1=0$  et  $x_2=0$ 

$$z = 15x_1 + 10x_2$$

$$x_1 + x_2 + x_3 = 30$$

$$2x_1 + x_2 + x_4 = 40$$

$$x_2 + x_5 = 25$$





On se positionne sur un point extrême initial  $x_{e_0}: x_1=0$  et  $x_2=0$ 

$$z = 15x_1 + 10x_2$$

$$x_1 + x_2 + x_3 = 30$$

$$2x_1 + x_2 + x_4 = 40$$

$$x_2 + x_5 = 25$$

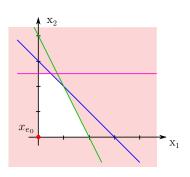
x3, x4, x5 sont appelées les variables de base

$$z = 15x_1 + 10x_2$$

$$x_3 = 30 - x_1 - x_2$$

$$x_4 = 40 - 2x_1 - x_2$$

$$x_5 = 25 - x_2$$



# icam

## Déroulement pas à pas de l'algorithme

On se positionne sur un point extrême initial  $x_{e_0}: x_1=0$  et  $x_2=0$ 

$$z = 15x_1 + 10x_2$$

$$x_1 + x_2 + x_3 = 30$$

$$2x_1 + x_2 + x_4 = 40$$

$$x_2 + x_5 = 25$$

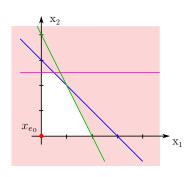
 $x_3$ ,  $x_4$ ,  $x_5$  sont appelées les variables de base

$$z = 15x_1 + 10x_2$$

$$x_3 = 30 - x_1 - x_2$$

$$x_4 = 40 - 2x_1 - x_2$$

$$x_5 = 25 - x_2$$

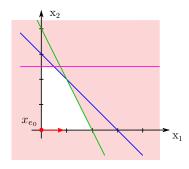


 $\Rightarrow z = 0$ , comment améliorer la solution?



On peut jouer sur  $x_1$  (coefficient plus intéressant par rapport à  $x_2$ )

 $\hookrightarrow$  jusqu'où augmenter  $x_1$  ?

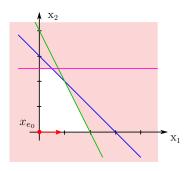




On peut jouer sur  $X_1$  (coefficient plus intéressant par rapport à  $x_2$ )

 $\hookrightarrow$  jusqu'où augmenter  $x_1$ ?

$$x_3 = 30 - x_1 - x_2 \Rightarrow x_1 \le 30$$
  
 $x_4 = 40 - 2x_1 - x_2 \Rightarrow x_1 \le 20$   
 $x_5 = 25 - x_2 \Rightarrow x_1 \le +\infty$ 





On peut jouer sur  $X_1$  (coefficient plus intéressant par rapport à  $x_2$ )

 $\hookrightarrow$  jusqu'où augmenter  $x_1$ ?

$$x_3 = 30 - x_1 - x_2 \Rightarrow x_1 \le 30$$
  
 $x_4 = 40 - 2x_1 - x_2 \Rightarrow x_1 \le 20$   
 $x_5 = 25 - x_2 \Rightarrow x_1 \le +\infty$ 

On pose 
$$x_1 = 20$$
, et donc  $x_4 = 0$ 

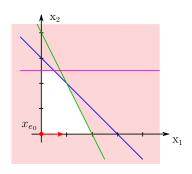
$$\Rightarrow \begin{vmatrix} x_1 & \text{passe dans la base} \\ x_4 & \text{devient hors base} \end{vmatrix}$$

$$z = 15x_1 + 10x_2$$

$$x_3 = 30 - x_1 - x_2$$

$$x_4 = 40 - 2x_1 - x_2$$

$$x_5 = 25 - x_2$$





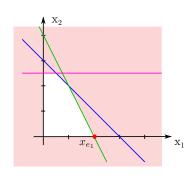
Nous obtenons un nouveau point extrême  $x_{e_1}: x_2 = 0$  et  $x_4 = 0$ 

$$z = 300 - \frac{15}{2}x_4 + \frac{5}{2}x_2$$

$$x_3 = 10 + \frac{1}{2}x_4 - \frac{1}{2}x_2$$

$$x_1 = 20 - \frac{1}{2}x_4 - \frac{1}{2}x_2$$

$$x_5 = 25 - x_2$$



# icam

## Déroulement pas à pas de l'algorithme

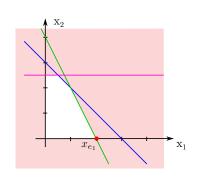
Nous obtenons un nouveau point extrême  $x_{e_1}$ :  $x_2 = 0$  et  $x_4 = 0$ 

$$z = 300 - \frac{15}{2}x_4 + \frac{5}{2}x_2$$

$$x_3 = 10 + \frac{1}{2}x_4 - \frac{1}{2}x_2$$

$$x_1 = 20 - \frac{1}{2}x_4 - \frac{1}{2}x_2$$

$$x_5 = 25 - x_2$$

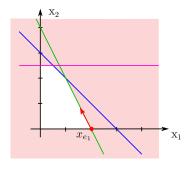


 $\Rightarrow$  z = 300, comment améliorer la solution?



On peut jouer sur  $X_2$  (dégradation avec  $X_4$ )

 $\hookrightarrow$  jusqu'où augmenter  $x_2$  ?

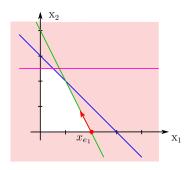




On peut jouer sur  $x_2$  (dégradation avec  $x_4$ )

 $\hookrightarrow$  jusqu'où augmenter  $x_2$ ?

$$x_3 = 10 + \frac{1}{2}x_4 - \frac{1}{2}x_2 \Rightarrow x_2 \le 20$$
  
 $x_1 = 20 - \frac{1}{2}x_4 - \frac{1}{2}x_2 \Rightarrow x_2 \le 40$   
 $x_5 = 25 - x_2 \Rightarrow x_2 \le 25$ 





On peut jouer sur  $X_2$  (dégradation avec  $X_4$ )

 $\hookrightarrow$  jusqu'où augmenter  $x_2$ ?

$$\begin{array}{llll} x_3 & = & 10 + \frac{1}{2}x_4 - \frac{1}{2}x_2 & \Rightarrow x_2 \leq 20 \\ x_1 & = & 20 - \frac{1}{2}x_4 - \frac{1}{2}x_2 & \Rightarrow x_2 \leq 40 \\ x_5 & = & 25 - x_2 & \Rightarrow x_2 \leq 25 \end{array}$$

On pose 
$$x_2=20$$
, et donc  $x_3=0$ 

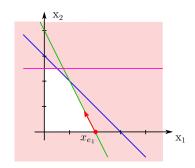
$$\Rightarrow \begin{vmatrix} x_2 & \text{passe dans la base} \\ x_3 & \text{devient hors base} \end{vmatrix}$$

$$z = 300 - \frac{15}{2}x_4 + \frac{5}{2}x_2$$

$$x_3 = 10 + \frac{1}{2}x_4 - \frac{1}{2}x_2$$

$$x_1 = 20 - \frac{1}{2}x_4 - \frac{1}{2}x_2$$

 $x_5 = 25 - x_2$ 





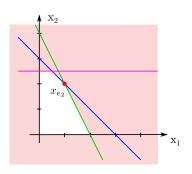
Nous obtenons un nouveau point extrême  $x_{e_2}: x_3=0$  et  $x_4=0$ 

$$z = 350-5x_4 - 5x_3$$

$$x_2 = 20 + x_4 - 2x_3$$

$$x_1 = 10 - x_4 + x_3$$

$$x_5 = 5 + 2x_3 - x_4$$





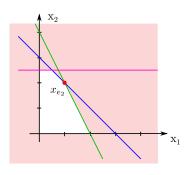
Nous obtenons un nouveau point extrême  $x_{e_2}: x_3=0$  et  $x_4=0$ 

$$z = 350-5x_4 - 5x_3$$

$$x_2 = 20 + x_4 - 2x_3$$

$$x_1 = 10 - x_4 + x_3$$

$$x_5 = 5 + 2x_3 - x_4$$



 $\Rightarrow$  z = 350, comment améliorer la solution?



### Pas d'amélioration possible

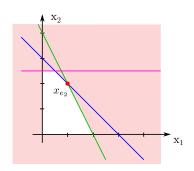
 $\Rightarrow$  solution optimale atteinte

### Solution optimale:

$$x^* = x_{e_2} = \left(10 , 20\right)$$

### Coût optimal:

$$z^* = 350$$





## Autre exemple

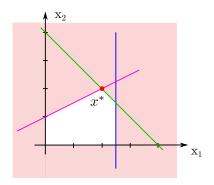
## Soit le problème de PL suivant :

max 
$$z = 2x_1 + 3x_2$$
  
 $-2x_1 + 4x_2 \le 8$   
 $x_1 + x_2 \le 8$   
 $x_1 \le 5$   
 $x_i \ge 0$   $i = \{1, 2\}$ 

## Autre exemple



### Représentation graphique :



Solution optimale :  $x_1^* = 4$  et  $x_2^* = 4$ 

Coût optimale :  $z^* = 20$ 



### Utilisation d'un solveur

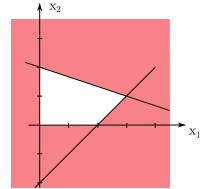
$$\begin{array}{rcl} \max & z \; = \; x_1 + x_2 \\ & x_1 + 3x_2 \; \leq \; 12 \\ & x_1 - x_2 \; \leq \; 4 \end{array}$$
 
$$x_i \; \geq \; 0 \qquad i = 1, 2$$



### Utilisation d'un solveur

$$\begin{array}{rcl}
 \text{max} & z &= x_1 + x_2 \\
 & x_1 + 3x_2 &\leq 12 \\
 & x_1 - x_2 &\leq 4
\end{array}$$

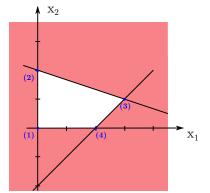
$$\begin{array}{rcl}
 x_i &\geq 0 & i = 1, 2
\end{array}$$





### Utilisation d'un solveur

max 
$$z = x_1 + x_2$$
  
 $x_1 + 3x_2 \le 12$   
 $x_1 - x_2 \le 4$   
 $x_i \ge 0$   $i = 1, 2$ 



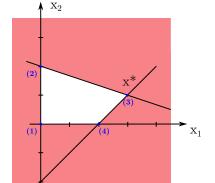
## valeur sur chaque sommet :

- $(1) \rightarrow z = 0$
- $\triangleright (2) \rightarrow z = 4$
- $\triangleright (3) \rightarrow z = 8$
- $\blacktriangleright (4) \rightarrow z = 4$

# icam

### Utilisation d'un solveur

max 
$$z = x_1 + x_2$$
  
 $x_1 + 3x_2 \le 12$   
 $x_1 - x_2 \le 4$   
 $x_i \ge 0$   $i = 1, 2$ 



valeur sur chaque sommet :

- $(1) \rightarrow z = 0$
- $\triangleright (2) \rightarrow z = 4$
- $(3) \rightarrow z = 8 \rightarrow$  optimal
- $\triangleright (4) \rightarrow z = 4$

Solution :  $x_1 = 6$  et  $x_2 = 2$ .



### Solveur d'Excel

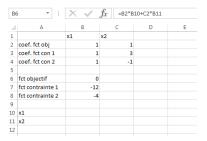


Le solver est intégré à Excel mais doit être simplement activé.



### Solveur d'Excel





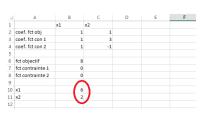
Le solver est intégré à Excel mais doit être simplement activé.













### Solveur de Scilab

La fonction karmarkar() permet de résoudre le problème :

$$min \quad c^T x$$

$$A_e x = b_e$$

$$A_i x \leq b_i$$

D'autres solveurs sont disponibles à partir de modules d'extension du logiciel.



### Solveur de Scilab

La fonction karmarkar() permet de résoudre le problème :

$$min \quad c^{T} x$$

$$A_{e} x = b_{e}$$

$$A_{i} x \leq b_{i}$$

Syntaxe:

D'autres solveurs sont disponibles à partir de modules d'extension du logiciel.



## Dans le cas de notre exemple :

min 
$$[-1-1]x$$

$$\begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} x \le \begin{bmatrix} 12 \\ 4 \end{bmatrix}$$

avec 
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$



## Dans le cas de notre exemple :

$$\min \quad \left[ -1-1 \right] x$$

$$\begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix} x \le \begin{bmatrix} 12 \\ 4 \end{bmatrix} \qquad \text{avec} \qquad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

### Dans Scilab:

```
-> c = [-1 -1]';

-> Ai = [1 3 ; 1 -1];

-> bi = [12 ; 4];

->

-> [xopt,fopt] = karmarkar([], [], c, [], [], [], [], Ai, bi)

fopt =

- 7.9999347

xopt =

5.9999347

2.
```



Théorie des graphes





# Introduction Programmation linéaire

Formulation du problème

Méthode et interprétation

grapmque

Algorithme du simplexe

## Théorie des graphes

Définitions et concepts

Chemins optimaux

Flots optimaux dans un réseau

de transport



## Définitions et concepts

La théorie des graphes fournit un outil mathématique naturel pour la modélisation de nombreux problèmes en recherche opérationnelle.

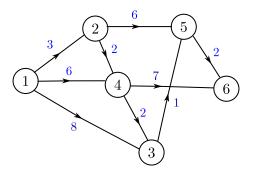
 $\Rightarrow$  applications : réseau de transport, logistique, télécommunication...



## Définitions et concepts

La théorie des graphes fournit un outil mathématique naturel pour la modélisation de nombreux problèmes en recherche opérationnelle.

 $\Rightarrow$  applications : réseau de transport, logistique, télécommunication...



Un graphe est composé de *sommets* ou *noeuds* et d'*arcs* (orientés ou non) valués.



## Un graphe, noté G(X, U), est défini par

- X un ensemble de sommets,
- U un ensemble d'arcs u qui relient de manière orientée un sommet i à un sommet j. A chaque arc u=(i,j) est associé une valeur  $w_{ij} \geq 0$

Nous noterons |X| = n (correspond à l'ordre du graphe) et |U| = m. Si l'arc liant le sommet i au sommet j n'existe pas, on pose  $w_{ij} = \infty$ .



Un graphe, noté G(X, U), est défini par

- X un ensemble de sommets,
- U un ensemble d'arcs u qui relient de manière orientée un sommet i à un sommet j. A chaque arc u=(i,j) est associé une valeur  $w_{ij} \geq 0$

Nous noterons |X| = n (correspond à l'ordre du graphe) et |U| = m. Si l'arc liant le sommet i au sommet j n'existe pas, on pose  $w_{ij} = \infty$ .

L'exemple précédent est un graphe d'ordre n=6 avec m=9 arcs.

$$w_{12} = 3$$
  $w_{25} = 6$   
 $w_{14} = 6$   $w_{24} = 2$   
 $w_{13} = 8$   $w_{35} = 1$ 

. . .

Chemins optimaux

Comment trouver le chemin optimal (de valeur minimale) du sommet 1 au sommet 1 au sommet 1



## Comment trouver le chemin optimal (de valeur minimale) du sommet 1 au sommet i cam

#### Algorithme de Dijkstra

A chaque itération, une étiquette  $\lambda_i$  est associée à chaque sommet  $i \in X$ . Une étiquette  $\lambda_i$  est

- soit définitive, et vaut alors la valeur minimale du chemin allant de 1 à i,
- soit provisoire, et représente la valeur courante du chemin allant de 1 à i.

L'ensemble des sommets à étiquette définitive est noté D (mis à jour à chaque itération).

#### Algorithme:

initialisation

$$\lambda_1 = 0$$
 ;  $\lambda_i = w_{1i} \quad \forall i \neq 1$  ;  $D = \{1\}$ 

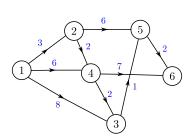
- tant que  $D \neq X$ 
  - $\blacktriangleright$  déterminer la plus petite étiquette provisoire  $\rightarrow$  elle devient définitive

$$\lambda_i = \min_{j \in X \setminus D} \lambda_j$$
 et  $D \leftarrow D \cup \{i\}$ 

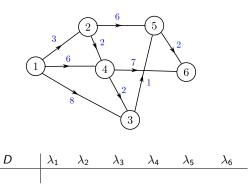
calculer les nouvelles étiquette provisoire

$$\lambda_j = \min\left(\lambda_j, \lambda_i + w_{ij}\right) \qquad j \in X \setminus D$$

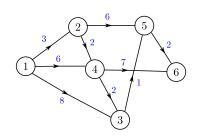






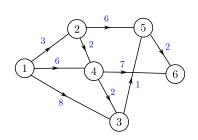






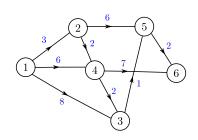
| <br>D | $\lambda_1$ | $\lambda_2$ | $\lambda_3$ | $\lambda_4$ | $\lambda_{5}$ | $\lambda_6$ |
|-------|-------------|-------------|-------------|-------------|---------------|-------------|
| 1     | 0           | 3(1)        | 8(1)        | 6(1)        | $\infty$      | $\infty$    |





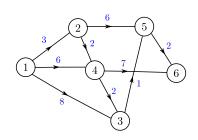
| D    | $\lambda_1$ | $\lambda_2$ | $\lambda_3$ | $\lambda_4$ | $\lambda_{5}$ | $\lambda_6$ |
|------|-------------|-------------|-------------|-------------|---------------|-------------|
| 1    | 0           | 3(1)        | 8(1)        | 6(1)        | $\infty$      | $\infty$    |
| 1, 2 | _           | _           | 8(1)        | 5(2)        | 9(2)          | $\infty$    |





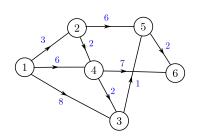
| D       | $\lambda_1$ | $\lambda_2$      | $\lambda_3$ | $\lambda_4$ | $\lambda_5$ | $\lambda_6$ |
|---------|-------------|------------------|-------------|-------------|-------------|-------------|
| 1       | 0           | <u>3(1)</u><br>_ | 8(1)        | 6(1)        | $\infty$    | $\infty$    |
| 1, 2    | _           | _                | 8(1)        | 5(2)        | 9(2)        | $\infty$    |
| 1, 2, 4 | _           | _                | 7(4)        | -           |             | 12(4)       |





| D          | $\lambda_1$ | $\lambda_2$ | $\lambda_3$ | $\lambda_4$ | $\lambda_5$ | $\lambda_6$ |
|------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 1          | 0           | 3(1)        | 8(1)        | 6(1)        | $\infty$    | $\infty$    |
| 1, 2       | _           | _           | 8(1)        | 5(2)        | 9(2)        | $\infty$    |
| 1, 2, 4    | _           | _           | 7(4)        | _           | 9(2)        | 12(4)       |
| 1, 2, 4, 3 | -           | _           | _           | _           | 8(3)        | 12(4)       |



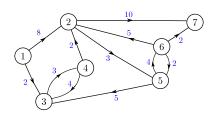


| D             | $\lambda_1$ | $\lambda_2$ | $\lambda_3$ | $\lambda_4$ | $\lambda_5$ | $\lambda_{6}$ |
|---------------|-------------|-------------|-------------|-------------|-------------|---------------|
| 1             | 0           | 3(1)        | 8(1)        | 6(1)        | $\infty$    | $\infty$      |
| 1, 2          | _           | _           | 8(1)        | 5(2)        | 9(2)        | $\infty$      |
| 1, 2, 4       | _           | _           | 7(4)        | _           | 9(2)        | 12(4)         |
| 1, 2, 4, 3    | _           | _           | _           | _           | 8(3)        | 12(4)         |
| 1, 2, 4, 3, 5 | _           | _           | _           | _           | _           | 10(5)         |

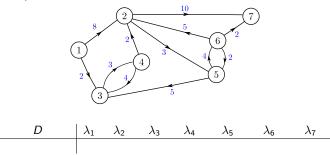
Le chemin le plus court du sommet 1 au 6 est : 1, 2, 4, 3, 5, 6 et de valeur 10

## Chemins optimaux

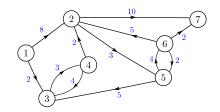
# Jeam



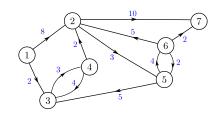
# Jeam



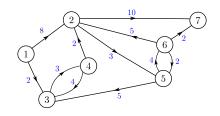
# Jeam



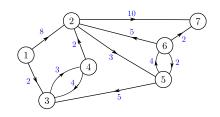
|   | D | $\lambda_1$ | $\lambda_2$ | $\lambda_3$ | $\lambda_{4}$ | $\lambda_{5}$ | $\lambda_6$ | $\lambda_7$ |  |
|---|---|-------------|-------------|-------------|---------------|---------------|-------------|-------------|--|
| - | 1 | 0           | 8(1)        | 2(1)        | $\infty$      | $\infty$      | $\infty$    | $\infty$    |  |



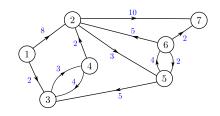
| D | $\lambda_1$ | $\lambda_2$ | $\lambda_3$ | $\lambda_{4}$ | $\lambda_5$ | $\lambda_6$ | $\lambda_7$ |  |
|---|-------------|-------------|-------------|---------------|-------------|-------------|-------------|--|
| 1 | 0           | 8(1)        | 2(1)        | $\infty$      | $\infty$    | $\infty$    | $\infty$    |  |
|   |             |             |             |               |             | $\infty$    |             |  |



| D       | $\lambda_1$ | $\lambda_2$ | $\lambda_3$ | $\lambda_4$ | $\lambda_5$ | $\lambda_6$                | $\lambda_7$ |
|---------|-------------|-------------|-------------|-------------|-------------|----------------------------|-------------|
| 1       | 0           | 8(1)        | 2(1)        | $\infty$    | $\infty$    | $\infty$ $\infty$ $\infty$ | $\infty$    |
| 1,3     | _           | 8(1)        | _           | 5(3)        | $\infty$    | $\infty$                   | $\infty$    |
| 1, 3, 4 | _           | 7(4)        | _           | _           | $\infty$    | $\infty$                   | $\infty$    |

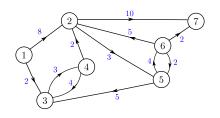


| D          | $\lambda_1$ | $\lambda_2$                                                                                                   | $\lambda_3$                            | $\lambda_4$                                           | $\lambda_5$                                           | $\lambda_6$                                           | $\lambda_7$                                          |
|------------|-------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| 1          | 0           | 8(1)                                                                                                          | 2(1)                                   | $\infty$                                              | $\infty$                                              | $\infty$                                              | $\infty$                                             |
| 1,3        | _           | 8(1)                                                                                                          |                                        | 5(3)                                                  | $\infty$                                              | $\infty$                                              | $\infty$                                             |
| 1, 3, 4    | _           | 7(4)                                                                                                          | _                                      | _                                                     | $\infty$                                              | $\infty$                                              | $\infty$                                             |
| 1, 3, 4, 2 | _           | _                                                                                                             | _                                      | _                                                     | 10(2)                                                 |                                                       | 17(2)                                                |
|            | *           | $ \begin{array}{c cccc} D & \lambda_1 \\ \hline 1 & 0 \\ 1,3 & - \\ 1,3,4 & - \\ 1,3,4,2 & - \\ \end{array} $ | 1 0 8(1)<br>1,3 - 8(1)<br>1,3,4 - 7(4) | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |



| $\lambda_1$ | $\lambda_2$      | $\lambda_3$      | $\lambda_4$                    | $\lambda_5$                                           | $\lambda_6$                                           | $\lambda_7$                                          |
|-------------|------------------|------------------|--------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| 0           | 8(1)             | 2(1)             | $\infty$                       | $\infty$                                              | $\infty$                                              | $\infty$                                             |
| _           | 8(1)             | _                | 5(3)                           | $\infty$                                              | $\infty$                                              | $\infty$                                             |
| _           | 7(4)             | _                | _                              | $\infty$                                              | $\infty$                                              | $\infty$                                             |
| _           | _                | _                | _                              | 10(2)                                                 | $\infty$                                              | 17(2)                                                |
| _           | _                | _                | _                              | _                                                     | 14(5)                                                 | 17(2)                                                |
|             | 0<br>-<br>-<br>- | 0 8(1)<br>- 8(1) | 0 8(1) <u>2(1)</u><br>- 8(1) - | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

### Autre exemple



| D                | $\lambda_1$ | $\lambda_2$ | $\lambda_3$ | $\lambda_4$ | $\lambda_5$ | $\lambda_6$ | $\lambda_7$ |
|------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                  |             |             |             |             |             |             |             |
| 1                | 0           | 8(1)        | 2(1)        | $\infty$    | $\infty$    | $\infty$    | $\infty$    |
| 1,3              | _           | 8(1)        | _           | 5(3)        | $\infty$    | $\infty$    | $\infty$    |
| 1, 3, 4          | _           | 7(4)        | _           | _           | $\infty$    | $\infty$    | $\infty$    |
| 1, 3, 4, 2       | _           | _           | _           | _           | 10(2)       | $\infty$    | 17(2)       |
| 1, 3, 4, 2, 5    | _           | _           | _           | _           | _           | 14(5)       | 17(2)       |
| 1, 3, 4, 2, 5, 6 | _           | _           | _           | _           | _           | _           | 16(6)       |

Le chemin le plus court du sommet 1 au 7 est : 1, 3, 4, 2, 5, 6, 7 et de valeur 16



### Flots optimaux dans un réseau de transport

Un **réseau de transport** est un graphe orienté sans boucle, avec un sommet d'entrée s (source) et un sommet de sortie p (puit). Pour chaque sommet  $i \in X$ ,

- ll existe au moins un chemin allant de s à i,
- ll existe au moins un chemin allant de i à p.

Pour tout arc  $u \in U$ , il existe une capacité c(u), non négative, représentant le flux maximal pouvant circuler sur cet arc. Nous noterons le réseau de transport : R(X,U,C).

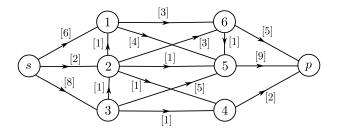


### Flots optimaux dans un réseau de transport

Un **réseau de transport** est un graphe orienté sans boucle, avec un sommet d'entrée s (source) et un sommet de sortie p (puit). Pour chaque sommet  $i \in X$ ,

- ll existe au moins un chemin allant de s à i,
- il existe au moins un chemin allant de i à p.

Pour tout arc  $u \in U$ , il existe une capacité c(u), non négative, représentant le flux maximal pouvant circuler sur cet arc. Nous noterons le réseau de transport : R(X,U,C).



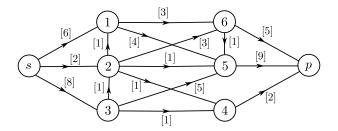


### Flots optimaux dans un réseau de transport

Un **réseau de transport** est un graphe orienté sans boucle, avec un sommet d'entrée s (source) et un sommet de sortie p (puit). Pour chaque sommet  $i \in X$ ,

- ll existe au moins un chemin allant de s à i,
- il existe au moins un chemin allant de i à p.

Pour tout arc  $u \in U$ , il existe une capacité c(u), non négative, représentant le flux maximal pouvant circuler sur cet arc. Nous noterons le réseau de transport : R(X,U,C).



 $\bigstar$  Le flot peut correspondre à des containers, des camions, des flux électriques, des flux d'information, des débits de liquide...

## Jeam

#### Définitions

On note  $\varphi(u) = \varphi_{ij}$ , le **flux** d'un arc u reliant le sommet i au sommet j.

- Si  $\varphi(u) = c(u)$ , l'arc est dit saturé.
- Si  $\varphi(u) = 0$ , l'arc est dit bloqué.

Le principe de conservation de la matière est appliqué : tout ce qui arrive à un sommet i est égal à ce qui en part.

#### Définitions

On note  $\varphi(u) = \varphi_{ii}$ , le flux d'un arc u reliant le sommet i au sommet j.

- ▶ Si  $\varphi(u) = c(u)$ , l'arc est dit saturé.
- ▶ Si  $\varphi(u) = 0$ , l'arc est dit bloqué.

Le principe de conservation de la matière est appliqué : tout ce qui arrive à un sommet i est égal à ce qui en part.

La **valeur du flot**  $V(\varphi)$  du réseau est la quantité totale de flux circulant de s à p

$$V(\varphi) = \sum_{i} \varphi_{sj} = \sum_{i} \varphi_{jp}$$
  $j \in X \setminus \{s, p\}$ 

#### Définitions

On note  $\varphi(u) = \varphi_{ii}$ , le flux d'un arc u reliant le sommet i au sommet j.

- Si  $\varphi(u) = c(u)$ , l'arc est dit saturé.
- ▶ Si φ(u) = 0, l'arc est dit bloqué.

Le principe de conservation de la matière est appliqué : tout ce qui arrive à un sommet i est égal à ce qui en part.

La **valeur du flot**  $V(\varphi)$  du réseau est la quantité totale de flux circulant de s à p

$$V(\varphi) = \sum_{j} \varphi_{sj} = \sum_{j} \varphi_{jp}$$
  $j \in X \setminus \{s, p\}$ 

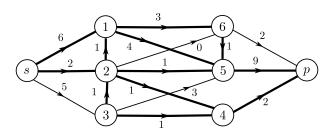
Considérons une chaîne CH (séquence non orientée). On appelle

- ► arc direct u<sup>+</sup>, un arc dont l'orientation va dans le même sens que la séquence,
- ightharpoonup arc indirect  $u^-$ , un arc dont l'orientation va dans le sens inverse de la séquence.

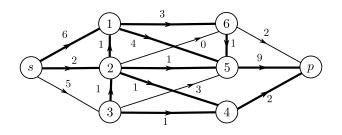
La chaîne est dite augmentante pour un flot donné si

$$\varphi(u^+) < c(u^+) \quad \forall u^+ \in CH,$$



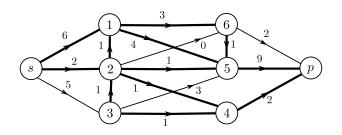






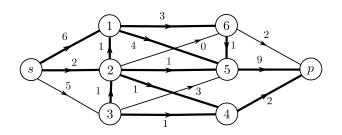
- $ightharpoonup \varphi_{16} = 3$ ,  $\varphi_{s3} = 5$ ,  $\varphi_{5p} = 9$ .
- $ightharpoonup \varphi_{s1}$  et  $\varphi_{16}$  sont saturés,  $\varphi_{26}$  est bloqué.





- ho  $\varphi_{16} = 3$ ,  $\varphi_{s3} = 5$ ,  $\varphi_{5p} = 9$ .
- $\varphi_{s1}$  et  $\varphi_{16}$  sont saturés,  $\varphi_{26}$  est bloqué.
- La valeur actuelle du flot est 13.





- $ightharpoonup \varphi_{16} = 3$ ,  $\varphi_{s3} = 5$ ,  $\varphi_{5p} = 9$ .
- $\varphi_{s1}$  et  $\varphi_{16}$  sont saturés,  $\varphi_{26}$  est bloqué.
- La valeur actuelle du flot est 13.
- La chaîne (s, 3, 5, 6, p) est une chaîne augmentante.
- (s,3), (3,5) et (6,p) sont des arcs directs; (6,5) est indirect.
- Pour cette chaîne augmentante, on a  $\delta = 1$ .



Pour un réseau donné R(X, U, C), le **problème du flot maximum** consiste à déterminer un flot admissible dont la valeur est maximale :

$$\hat{V} = \max_{\varphi} V(\varphi)$$



Pour un réseau donné R(X, U, C), le **problème du flot maximum** consiste à déterminer un flot admissible dont la valeur est maximale :

$$\hat{V} = \max_{\varphi} V(\varphi)$$

#### Propriété utile :

S'il existe une chaîne augmentant par rapport à un flot  $\varphi$ , il est possible de construire un flot  $\varphi'$  tel que  $V(\varphi') > V(\varphi)$ . Pour cela, on pose :

$$ightharpoonup \varphi'(u^+) = \varphi(u) + \delta, \qquad \forall u^+ \in CH,$$

$$ightharpoonup \varphi'(u^-) = \varphi(u) - \delta, \quad \forall u^- \in CH$$

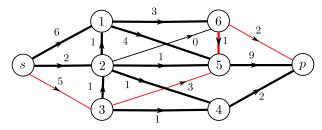
 $\delta$  est défini par :

$$\begin{cases} c'(u^+) &= c(u) - \varphi(u) & \forall u^+ \in CH \\ c'(u^-) &= \varphi(u) & \forall u^- \in CH \end{cases} \Rightarrow \delta = \min_{u \in CH} c'(u) > 0$$



#### Reprenons l'exemple précédent.

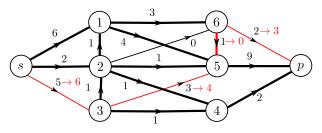
- La valeur actuelle du flot est 13.
- La chaîne (s, 3, 5, 6, p) est une chaîne augmentante.
- $\triangleright$  (s,3), (3,5) et (6,p) sont des arcs directs; (6,5) est indirect.





#### Reprenons l'exemple précédent.

- La valeur actuelle du flot est 13.
- La chaîne (s, 3, 5, 6, p) est une chaîne augmentante.
- (s,3), (3,5) et (6,p) sont des arcs directs; (6,5) est indirect.



- Pour cette chaîne augmentante, on a  $\delta = 1$ .
- Nous pouvons modifier les flux :  $\varphi'_{s3}=6$ ,  $\varphi'_{35}=4$ ,  $\varphi'_{65}=0$  et  $\varphi'_{6p}=3$
- La valeur du flot est maintenant égale à 14.

Théorie des graphes

Flots optimaux dans un réseau de transport

Comment trouver le flot maximal?



#### Comment trouver le flot maximal?

#### Algorithme de Ford et Fulkerson

- on part d'un flot initial  $\varphi_0$  (qui peut être nul)
- à l'itération k :
  - $\triangleright$  déterminer une chaîne augmentante par rapport au flot courant  $\varphi_{k-1}$ ,
  - construire le nouveau flot  $\varphi_k$  tel que  $V(\varphi_k) > V(\varphi_{k-1})$ ,
- ightharpoonup s'il n'existe aucune chaîne augmentante  $\rightarrow$  le flot courant est optimal.

### Comment trouver le flot maximal?



#### Algorithme de Ford et Fulkerson

- on part d'un flot initial  $\varphi_0$  (qui peut être nul)
- à l'itération k :
  - déterminer une chaîne augmentante par rapport au flot courant  $\varphi_{k-1}$ ,
  - construire le nouveau flot  $\varphi_k$  tel que  $V(\varphi_k) > V(\varphi_{k-1})$ ,
- s'il n'existe aucune chaîne augmentante → le flot courant est optimal.

#### Algorithme pour le recherche d'une chaîne augmentante :

- ightharpoonup initialement, seul le sommet s est marqué avec l'étiquette  $(+,\infty)$ ,
- ightharpoonup si à partir d'un sommet i déjà marqué, il y a un arc direct  $u^+=(i,j)$ , le sommet j est marqué avec

$$(+i, \delta_j)$$
 avec  $\delta_j = \min\{\delta_i, c_{ij} - \varphi_{ij}\},\$ 

si à partir d'un sommet i déjà marqué, il y a un arc indirect  $u^- = (j, i)$ , le sommet i est marqué avec

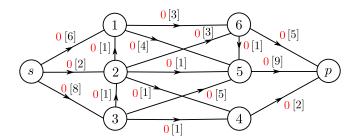
$$(-i, \delta_j)$$
 avec  $\delta_j = \min\{\delta_i, \varphi_{ji}\},\$ 

le marquage s'arrête quand le sommet p est marqué.



Reprenons l'exemple précédent.

Partons d'un flot nul,  $\varphi_0=0$ .



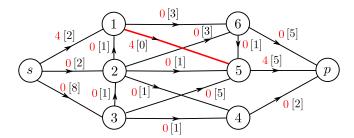
Flots optimaux dans un réseau de transport



Reprenons l'exemple précédent.

Partons d'un flot nul,  $\varphi_0 = 0$ .

itér. 1 chaîne augmentante (s, 1, 5, p) avec les étiquettes : (+s, 6), (+1, 4), (+5, 4),



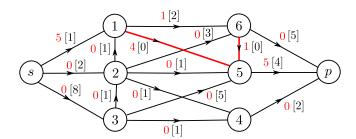
Flots optimaux dans un réseau de transport



# Reprenons l'exemple précédent.

Partons d'un flot nul,  $\varphi_0 = 0$ .

- itér. 1 chaîne augmentante (s, 1, 5, p) avec les étiquettes : (+s, 6), (+1, 4), (+5, 4),
- itér. 2 chaîne augmentante (s,1,6,5,p) avec les étiquettes : (+s,2), (+1,2), (+6,1), (+5,1),



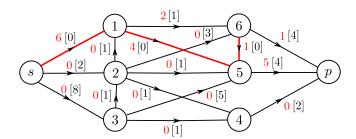
Flots optimaux dans un réseau de transport



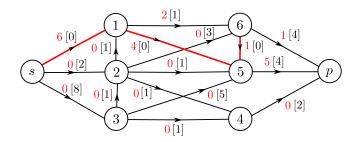
## Reprenons l'exemple précédent.

Partons d'un flot nul,  $\varphi_0 = 0$ .

- itér. 1 chaîne augmentante (s,1,5,p) avec les étiquettes : (+s,6), (+1,4), (+5,4),
- itér. 2 chaîne augmentante (s,1,6,5,p) avec les étiquettes : (+s,2), (+1,2), (+6,1), (+5,1),
- itér. 3 chaîne augmentante (s, 1, 6, p) avec les étiquettes : (+s, 1), (+1, 1), (+6, 1).

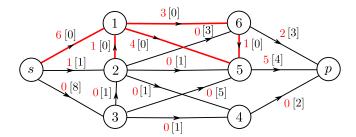






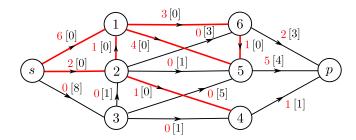


itér. 4 chaîne augmentante (s,2,1,6,p) avec les étiquettes : (+s,2), (+2,1), (+1,1), (+6,1),



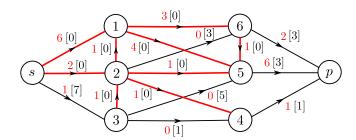


- itér. 4 chaı̂ne augmentante (s,2,1,6,p) avec les étiquettes : (+s,2), (+2,1), (+1,1), (+6,1),
- itér. 5 chaîne augmentante (s, 2, 4, p) avec les étiquettes : (+s, 1), (+2, 1), (+4, 1),

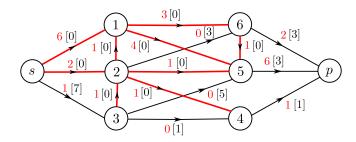




- itér. 4 chaı̂ne augmentante (s,2,1,6,p) avec les étiquettes : (+s,2), (+2,1), (+1,1), (+6,1),
- itér. 5 chaîne augmentante (s, 2, 4, p) avec les étiquettes : (+s, 1), (+2, 1), (+4, 1),
- itér. 6 chaı̂ne augmentante (s,3,2,5,p) avec les étiquettes : (+s,8), (+3,1), (+2,1), (+5,1).

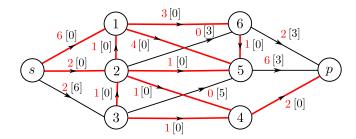






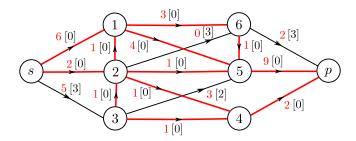


itér. 7 chaîne augmentante (s, 3, 4, p) avec les étiquettes : (+s, 7), (+3, 1), (+4, 1),



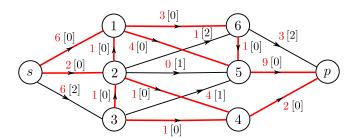


itér. 7 chaîne augmentante (s, 3, 4, p) avec les étiquettes : (+s, 7), (+3, 1), (+4, 1), itér. 8 chaîne augmentante (s, 3, 5, p) avec les étiquettes : (+s, 6), (+3, 5), (+5, 3),



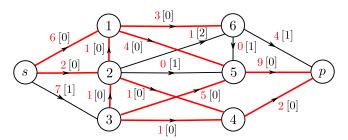


- itér. 7 chaîne augmentante (s,3,4,p) avec les étiquettes : (+s,7), (+3,1), (+4,1),
- itér. 8 chaîne augmentante (s,3,5,p) avec les étiquettes : (+s,6), (+3,5), (+5,3),
- itér. 9 chaîne augmentante (s, 3, 5, 2, 6, p) avec les étiquettes : (+s, 3), (+3, 2), (-5, 1), (+2, 1), (+6, 1).





- itér. 7 chaîne augmentante (s,3,4,p) avec les étiquettes : (+s,7), (+3,1), (+4,1),
- itér. 8 chaîne augmentante (s,3,5,p) avec les étiquettes : (+s,6), (+3,5), (+5,3),
- itér. 9 chaîne augmentante (s, 3, 5, 2, 6, p) avec les étiquettes : (+s, 3), (+3, 2), (-5, 1), (+2, 1), (+6, 1).
- itér. 10 chaîne augmentante (s,3,5,6,p) avec les étiquettes : (+s,2), (+3,1), (-5,1), (+6,1).



- ⇒ il n'y a plus de chaîne augmentante : le flot est maximal,
- ⇒ le flot maximal est 15.



D'autres algorithmes et extensions existent, en particulier pour les cas :

- d'un réseau non orienté R(X, E, C),
- d'un réseau R(X, U, C) pour lequel il existe une capacité max pour les sommets c(x),
- b d'un réseau R(X, U, B, C) avec aussi des bornes inférieures sur les arcs b(u),
- d'un réseau R(X, U, C, W) pour lequel les arcs sont valorisés w(u).

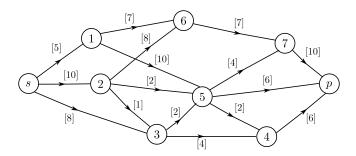
Il faut aussi tenir compte de la complexité des algorithmes.



### Capacité d'un réseau routier

2 villes sont reliées par un réseau routier.

Chaque route possède une capacité maximale en centaine de véhicules par heure. Ces capacités tiennent compte des ralentissements, des feux, des traversées de villages...

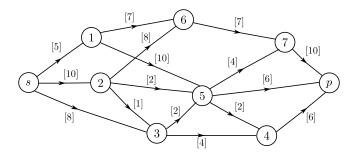




### Capacité d'un réseau routier

2 villes sont reliées par un réseau routier.

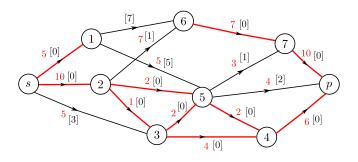
Chaque route possède une capacité maximale en centaine de véhicules par heure. Ces capacités tiennent compte des ralentissements, des feux, des traversées de villages...



 $\Rightarrow$  Quel est le débit horaire maximal de véhicules allant de la ville s à la ville p?



après application de l'algorithme, nous avons :



⇒ La valeur du flot maximal est 20, soit 2000 véhicules par heure.