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Parallel asynchronous subdomain algorithms with flexible communication for the
numerical solution of nonlinear diffusion problems are presented. The discrete max-
imum principle is considered and the Schwarz alternating method and multisplitting
methods are studied. A connection is made with M-functions for a classical nonlin-
ear diffusion problem. Finally, computational experiments carried out on a shared
memory multiprocessor are presented and analyzed.
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1. Introduction

Large scale algebraic systems occur typically in the numerical solution of
boundary value problems. Due to the large amount of computation required,
parallel numerical algorithms seem well adapted to an efficient solution of this
class of problems. In particular, subdomain methods are naturally well suited to
the parallel numerical solution of boundary value problems. Among subdomain
methods, one can consider methods with overlap such as the Schwarz alternating
method which has been studied in [10], or methods without overlap (see [9], [14],
[15], [18], [23] and [24]). A new class of parallel asynchronous Schwarz alternating
methods with flexible communication whereby the current value of the compo-
nents of the iterate vector can be used at any time and without any fixed rule is
presented in this paper. This class of algorithms was first proposed in [20]. We
note that the theoretical context considered in this study for nonlinear problems
is based on monotone convergence and is different from the one considered in
[12], which uses essentially contraction techniques in the particular case of linear
systems. Note that the monotone convergence of classical asynchronous itera-
tions for the solution of mildly nonlinear equations has been studied by many
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authors, in particular reference is made to [1] and [27]. The proposed methods
present very good efficiency without making use of any load balancing techniques.
The very good performance is due to the non synchronization of the computa-
tional tasks and to flexible communication. The concept presented in this paper
generalizes classical asynchronous iterations studied in [5] to [9], [11], [13], [16],
[17] and [19]. In this paper, we use the discrete maximum principle thanks to
the M-function concept as defined by Rheinboldt in [22]. This permits us to
show the monotone convergence of parallel asynchronous iterations with flexible
communication. Note that the convergence of such parallel schemes of compu-
tation has been shown by using direct verification in [20] for various methods
in the M-function context for problems of the form A(y) = 0. In this paper,
we study general fixed point methods such as for example Newton like methods
and establish directly their monotone convergence by using a different approach.
Then, we use this result in order to show that the fixed point mapping consid-
ered for the solution of the nonlinear diffusion problem is an approximate fixed
point mapping, the so-called A-supermapping defined in [20] and we derive a new
convergence result for asynchronous iterations with flexible communication. In
this context, nonlinear boundary value problems are solved via a combination of
the asynchronous algorithms with flexible communication quoted above and the
Schwarz alternating method applied to Newton’s iterations. More precisely, we
consider the following nonlinear diffusion problem

{ —Au + ¢(u) = f, everywhere in Q,

u = 0, everywhere in 052,

(1.1)

where Q is an open domain in R? or R?, 0Q is the boundary of Q, f € L%(Q)
is a given function and ¢ is a monotone increasing, convex and continuously

differentiable nonlinear operator. For a convenient discretization, we show that
an M-function and a suitable approximate fixed point mapping can be obtained
from the system of equations and that the monotone convergence of asynchronous
iterations with flexible communication can be derived. Finally, we present and
analyze computational results for parallel synchronous and asynchronous itera-
tions with flexible communication carried out on a shared memory multiprocessor
IBM 3090-600 with 6 vector processors for the solution of the following problem

{ —Au + e = f, everywhere in Q C R?,

1.2
u = 0, everywhere in 052, (1.2)

where b is a given strictly positive real number.
Section 2 deals with preliminaries concerning M-functions and asynchronous it-

erations with flexible communication; a connection is also made with the Schwarz
alternating method. In Section 3, a general class of fixed point methods is pro-
posed and application to the nonlinear diffusion problem (1.1) is considered.
Convergence results are presented for asynchronous Schwarz and multisplitting
methods with flexible communication which constitute an original contribution of
the present work. Section 4 deals with the implementation of parallel algorithms
on a shared memory multiprocessor and the analysis of experimental results.
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2. Preliminaries

2.1. Definitions and notations

The n-dimensional linear space of column vectors will be denoted by R" and

A will denote a continuous mapping from R" onto itself. Let 4 be a surjective M-

function, then the mapping A is off-diagonally monotone decreasing and inverse

monotone increasing (see [21] and [22]). We consider the solution of the following
system of equations

A(y) =0. (2.1)

Under the above assumptions, problem (2.1) has a unique solution y* (see [21]
and [22]). Let R" be denoted also by E and consider the following decomposition

of E, E = [[;-, E;, where « is a positive integer, E; = R"™, and > ;' n; = n.
Each subspace E; is endowed with the natural partial ordering (i.e. component
by component). Let w € E and consider the following block-decomposition of w
w = {wla"' y Wiy -+ - 7w0¢} € H?:l Eia
and the corresponding block-decomposition of A
Aw) = {A; ()., As(w), ..., Ag(w)} € T2, B
For all « € {1,...,a}, we introduce the following mapping from E; onto itself
yi = Ai(yisw) = Ai(wi, .., Wim1, Yis Wi, - -+, Wa)-
Since A is a continuous, surjective M-function, it follows from Theorem 3.5 in
[22] that for all i € {1,...,a} and all w € E, the mapping y; — A;(y;; w), is a
continuous, surjective M-function. Moreover, for all i € {1,...,a} and w € E,
the system
Ai(zi;w) =0, (2.2)
has a unique solution Z;. Hence, we can define a fixed point mapping F' : E — FE,
associated with problem (2.1) such that
Flw)y=2={21,...,%iy.--, 2a}, (2.3)
the mapping F' is well defined and monotone increasing on E (i.e. for all z,y € F
such that z <y, F(z) < F(y)) (see [19]). In order to solve problem (2.1), we will
consider general fixed point iterative methods. The following concept permits
one to define a set of starting points for the fixed point iterations.

Definition 2.1. A vector y € R™ is an A-supersolution if A(y) > 0.

In the sequel, asynchronous sequences will be studied by using the order
interval concept which is defined as follows.

Definition 2.2. Let z;,y; € E; such that z; < y;, then the order interval (z;,y;);
is defined as {z; € E; | z; < z; < y;}.

The definition is similar for (z,y), z,y € E. We introduce now a particular
class of fixed point mappings which is very useful in the definition of asynchronous
iterations with flexible communication.

Definition 2.3. Let A be an M-function. F4 is an A-supermapping associated
with F if for all i € {1,...,a} and y € E such that A;(y) > 0, there exists
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F{\(y) € B;, such that FA(y) <wi, Ai(FA(y);y) > 0 and FA(y) # yi if Fi(y) #
Yi-
2.2. Asynchronous iterations with flexible communication

We consider now the parallel asynchronous fixed point iterations with flex-
ible communication {y”},cny which are defined by using the following concepts.

Definition 2.4. A steering of block-components of the iterate vector is a se-
quence {s(p)},p € N, such that s(p) € {1,...,a}, forallp € N, where N
denotes the set of natural integers. A sequence of delayed iteration numbers
{p(p)} of vectors p(p) = (p1(p),---,pPi(P),---,pa(p)) € N* is such that for all
p € Nandi € {1,...,a} we have 0 < p;(p) < pand p;j(p) = pif i = s(p).
For all p € N and i € {1,...,a}, the set K of iteration numbers lower than p,
which are relative to the computation of the i-th block-component is such that
— {jEN|s(j) =i,0<j <p}.

Definition 2.5. The general class of asynchronous iterative methods with flex-
ible communication is defined recursively as follows. For all p € N and
ie{l,...,a}, we have

g = FAGP) if i = s(p), 04
p+1 _ p e ( . )
yz - yz if i 7& S(p)a

where
7% = 4° is an A-supersolution, (2.5)

§P € (yP, min (y*®), §9)) if p > 1,

the vector yp( P) denotes an element of E with block- components y pi(p ), 1 €
{1,...,a} and ¢ = Max{j € K } and s(p), p(p) and K? s(p) are defined according

to Deﬁn1t1on 2.4.
Remark 2.6. In the particular case where K = (), we have g? € (y?, y”(p)>.

Remark 2.7. Asynchronous iterations with flexible communication defined recur-
sively by (2.4) to (2.6) are general iterative methods whereby iterations are carried
out in parallel by up to « processor without any order nor synchronization. The
main feature of this class of iterative methods is to allow very flexible communi-
cation between the processors. In a typical update of the i-th block-component of
the iterate vector at iteration p+1, all the values gjg-’ of the block-components of the
iterate vector can be taken anywhere in the order interval (y?, min (y?j (p ),gj;?)) i
where gj? was the value used in the last update of the i-th block-component
and y]'?j ®) odels the nondeterministic behavior of the iterative scheme and are
not explicitly labelled by an iteration number. Thus, the values of the block-
components of the iterate vector which are used in a computation may come
from updates which are still in progress. It is important to note that the values
of the components of the same block of the iterate vector which are used in such
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a typical update, can be relative to different iteration numbers as opposed to the
classical case (see [5], [6], [7] and [16]). Practically, one will choose partial update
corresponding to the last avaible value of each component.

We recall now an important result (see [20]).

Proposition 2.8. Let A be a continuous surjective M-function, F' the fixed
point mapping associated with A defined by (2.2) and (2.3), FA an A-
supermapping associated with F, y° € E an A-supersolution. Then, the asyn-
chronous iteration {y?} given by (2.4) to (2.6) is well defined and satisfies

y' L 7,p — oo, (2.7)
where 7 is an A-supersolution of problem (2.1) and (2.7) means that lim,, o, ¢y =
gand 7 < - <Pt <y <<y

We introduce an order relation between A-supermappings.
Definition 2.9. Two A-supermappings F* and FB associated with F' satisfy
the relation FA < FB, if for all i € {1,...,a} and y € E such that A;(y) > 0,
we have: FP(y) € (F/(y), yi)i-

We concentrate now on a particular class of A-supermappings.
Definition 2.10. F is an M-continuous A-supermapping associated with F' if
there exists an A-supermapping FB associated with F such that F* < FB and

yP | y*,p — oo, implies FiB(yp) 1 FiB(y*),p —ooforallie{l,...,a}. (2.8)
Remark 2.11. The relation (2.8) can be interpreted as a property of continuity

at the point y* of the mapping F® with respect to the partial ordering.

We recall now a global convergence result for asynchronous iterations with flexible
communication associated with M-continuous A-supermappings (see [20]).
Proposition 2.12. Let assumptions of Proposition 2.8 hold and F* be an M-
continuous A-supermapping associated with F. Assume that the steering satisfies

{p € N |i € s(p)} is infinite, for all i € {1,...,a}, (2.9)
and assume also that we have
plLrgo pi(p) = +oo, foralli e {1,...,a}. (2.10)

Then, the sequence {y?} defined by (2.4) to (2.6) satisfies y” | y*, where y* is
the unique solution of problem (2.1).

2.8.  Link with the Schwarz alternating method

We concentrate now on the Schwarz alternating method which is used for
the solution of boundary value problems. This method is also well suited to
parallel computing and represents an interesting domain of application for the
above theoretical study. The mapping A being a surjective M-function, we study
the solution of the following nonlinear simultaneous equations

A(z) =0, (2.11)
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via an asynchronous subdomain method derived from the Schwarz alternating
method. We note that the augmentation process of the Schwarz alternating

method transforms the nonlinear mapping A into the mapping A which is also a
surjective M-function (see [20]). Thus the convergence results quoted above can
be applied directly in the context of asynchronous Schwarz alternating methods
with flexible communication. Reference is made to [3] and [27] for studies in the
case of asynchronous Schwarz alternating methods for the solution of nonlinear
systems.

3. Application to nonlinear partial differential equations

In this Section, we present our original theoretical contribution to the study
of the convergence of asynchronous iterations with flexible communication. A
general approach for building approximate block iterative methods is proposed.
Then, a monotone convergence result which is used for deriving A-supermappings
is given. An original application of the general study to the nonlinear diffusion
problem is also presented. Finally, a convergence result for asynchronous itera-
tions with flexible communication applied to the discretized nonlinear diffusion
problem is derived.

3.1. Results on monotone iterative methods

Let A be a continuous surjective M-function from R™ onto itself. Then, it
follows from Theorem 3.3 in [22] that the system of equations A(y) = 0 has a
unique solution denoted by y*. Moreover, let x be an initial point, we define the
vectors s,v,2%,2° € R" as follows
s; = min(A;(),0), v; = max(A;(x),0), Vi € {1,...,n},z" = A 1(s), 2 = A (v).
Thus, we have

A@@®) < Aly") < A(2), (3.1)

and by the inverse isotonicity of A, we have z° < y* < 2°. Moreover, assume
s

that there exists a mapping C : (md,z()) — L(R"™), such that for all z,z € R"

satisfying 20 <z <z < 2% we have

A(z) — A(z) < C(2). (2 — z), (3.2)
x <z implies C(z)<C(z), (3.3)
C~z) >0, forall ze (z°,2°). (3.4)

Remark 3.1. We note that the relation (3.4) implies the inequality (3.2) if we
have A(z) — A(z) = C(z+t(z—x)). (z —x), with ¢ €]0, 1[. The previous equality
is satisfied in particular if A is G-differentiable and C(z) = A'(z).

Let the mapping p’ from N into N such that

0<p(k)<kk=0,1,.. (3.5)
Consider the following Newton-like algorithm

A=k o R AR E=0,1,. .. (3.6)

We can state the following convergence result from [25].
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Proposition 3.2. Assume that the hypotheses (3.2) to (3.5) hold. Then, the
sequence {z*} defined by (3.6) satisfies z* | y*, k — oo, where y* is the solution
of A(y) = 0.

3.2. Ezample of A-supermapping associated with Newton’s method
We consider the following problem

[0
ZAU:E]' + ¢i(z;) =b;, for alli € {1,...,a}, (3.7)
=1
where z;,b; € E;; A = (4;j) according to the associated block decomposition
and
A is an M —matrix, (3.8)

{ ¢(y) is a diagonal, nonlinear operator with monotone increasing, (3.9)

convex and continuously differentiable components ¢;(y;).

The problem (3.7) is a problem of type (2.1) which satisfies the assumptions
of Section 2. In particular, this problem occurs in the discretization by finite

difference of the nonlinear elliptic problem (1.1) modelling a nonlinear diffusion
problem.

Remark 3.3. We note that a P;-finite element discretization of the problem (1.1)
does not lead to a monotone diagonal operator; however, the use of an appropriate
numerical integration formula leads to a discrete problem belonging to the general
framework of this study (i.e. the mapping A = A + ¢ is an M-function).

We now define a fixed point mapping F' associated with the decoupled prob-
lem (3.7), with components F; such that

2 = Fi(w), Vi € {1, e ,Oz}, (310)

where 2; satisfies A;2; + ¢i(2;) = b — X ;4 Aijwj, which corresponds to
Ai(z;;w) = 0. In the sequel, we will study A-supermappings associated with

F. A-supermappings can be defined by means of an algorithm; we note in partic-
ular that we can perform one or several iterations of the algorithm (3.6), instead
of relaxing exactly the components of each block. If w is such that

Al(w) = ZAij’wj + qbz(wl) —b; >0, (3.11)
J

then, we can define an order interval (2¥,29); by 29 = 2, = Fj(w), 2} = w;.
Thus, on the interval (z?,29);, A; is an M-function satisfying (3.1). Hence, we

can introduce the mapping C; derived from Newton’s method which is defined by
for all z; € (x?,29); G, Ci(z), where Ci(z).yi = Aiyi + ¢;(zi). yi. 1t follows

1771

clearly from assumptions (3.8) and (3.9) that the mapping C; satisfies (3.2) and
(3.3). Moreover by the convexity of the components of ¢;, it follows from (3.8)
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that C;(z;) is an M-matrix for all z; € (22, 2?);, thus (3.4) is satisfied. We consider

1771
the mapping FA from F into E, with components F* defined by F*(w) = 2¥,i €
{1,...,a}, where for all given value of k, 2% is the k-th update generated by the
algorithm (3.6) starting from z) = w;.

Proposition 3.4. Let assumptions (3.8) and (3.9) hold. Then, F4 is an M-
continuous A-supermapping associated with F.

Proof. If assumptions (3.8) and (3.9) hold and A;(w) > 0, then according to the
above study, the mapping A; is a continuous surjective M-function which satisfies
(3.1) on (z9,2%); = (F;(w), w;); and C; satisfies the assumptions (3.2) to (3.4).
Thus, it results from Proposition 3.2 and Definition 2.3 that the mapping F4 is
an A-supermapping associated with F. We denote by F? the A-supermapping
associated with F' with components FF(w) = 2}, which is obtained by considering
only the first step of the algorithm (3.6). If A;(w) > 0, then by Proposition 3.2
and Definition 2.9, we have FA o FB. So, FB(w) = 2} = w; — C; H(w). Ai(w),
where C'(w) is a block diagonal matrix with blocks Cj(w) = A;;+ ¢} (w). It follows
from (3.9) that the mapping A(w) given by A(w) = Aw+ ¢(w) — b, is continuous.
Moreover we have (A; + ¢l(w;))™" < A;!, since A is an M-matrix and ¢' is
positive (see [21]). It follows that the spectral radius of C~!(w) is lower than or
equal to the spectral radius of the inverse of the block diagonal matrix with blocks
A;; which is an M-matrix. Thus the linear application associated with the matrix
C~Y(w) is Lipschitz continuous and C~!(w) is uniformly Lipschitz continuous.
By the continuity of A(w), C'(w) and the uniform Lipschitz continuity of C~!(w),
the mapping FB is continuous. Thus, the mapping F* is an M-continuous A-

supermapping associated with F. O

We combine now the parallel asynchronous scheme of computation with flex-
ible communication presented in Section 2 with the Newton like method presented
in the previous subsection.

Proposition 3.5. Let the assumptions of Proposition 3.4 hold and consider the
solution of problem (3.7). Then, asynchronous Newton like iterations with flexible
communication starting from an A4-supersolution converge to the solution y* of
the problem.

Proof. The result follows from Proposition 2.12 combined with Proposition
3.4. O

3.8.  Link with multisplitting methods
We consider now the solution of the following problem:

Az + ¢(z%) =0, (3.12)

where A € L(R") is an M-matrix, ¢ : R" — R" is a continuous diagonal maximal
monotone operator. Let the following regular splittings of matrix A

A=M' —-N' 1=1,...m, (3.13)
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where (M')~! >0 and N' > 0. Let F': R* — R™, | = 1,...,m be the fixed point
mappings associated with problem (3.12) and defined by:

F'(z) = y such that My = N'z — ¢(z). (3.14)

A formal multisplitting associated with problem (3.12) is defined by the collection
of fixed point problems (see [4])

= Fl(z*)=0,1=1,..,m. (3.15)

Let now E = (R™)™ and consider the following block-decomposition of E
m
E=]]E,
=1

where E; = R". Each subspace Ej is endowed with the natural (or component-
wise) partial ordering associated with the cone K; = R of vectors with nonneg-
ative components in R". Let X € E. We have the following block-decomposition
of X

m
X={Xy,....X,.... Xn} e [[ E.
=1

Definition 3.6. The extended fixed point mapping T : E — E associated with
the formal multisplitting is given as follows

m
T(X) =Y, such that Y, = F'(Z) with Z, = > Wy Xy, = 1,...,m,
k=1

{where W?k are nonnegative diagonal weighting matrices satisfying for all [ €
1,...,m

m
> Wiy =1,
k=1

I being is the identity matrix in L(E).

We note that for a particular choice of the weighting matrices Wi, we can obtain
the Schwarz method (see [4]). This last point establish a link between the Schwarz
method and multisplitting methods. Let the following block-decomposition of the
mapping T'

m
T(X) ={T1(X),..., Ti(X),..., Tu(X)} € [] B0
=1
The extended fixed point mapping T is associated with the following extended

nonlinear problem

a(X™) =0, (3.16)
where the mapping a : £ — FE is given by
a(X) = A°X + ¢°(X),
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the function ¢¢ : £ — FE being the extended monotone perturbation operator
and for all [ € {1,...,m}

AP X =M'X; — N' S~ Wi X (3.17)
k=1

In the sequel a;(X71,..., X;—1,Y;, Xi41,. .., Xi;n) will also be denoted by a;(Y;; X).

Proposition 3.7. Let the above assumptions hold. The mapping a is a contin-
uous surjective M-function.

Proof. We recall that an M-function is off-diagonally antitone and inverse iso-
tone (see [21] and [22]). It follows from (3.17) and the definition of matrices
W that the off-diagonal entries of the matrix A® are nonpositive since A is an
M-matrix. Let U = {u,...,u} be the vector of E with block-components equal
to the eigenvector u associated with the greatest eigenvalue of the Jacobi matrix
D Y(D — A), where D denotes the diagonal part of matrix A and consider the
Jacobi matrix .J derived from the extended system (3.16). For alll € {1,...,m},
we have m
Jiu = (D) ' Dfu — (D) ' M'u + (D) 'N' Y- Wi =
k=1

(D), 1 (Df — M' + NYYu= D7 (D — A)u= p(D™H(D — A))u.

It follows from [16] that the Jacobi matrix J is contracting relative to a weighted
maximum norm and the result follows from Proposition 2.4.17 in [21]. The conti-

nuity and surjectivity of a follows from the continuity and maximal monotonicity
of ¢. O

It follows from Proposition 3.7 that we are in the theoretical framework of the
study developped in this Section. Thus, the monotone convergence of asyn-
chronous iterations with flexible communication can be derived.

It follows from Proposition 1 that

For alll € {1,...,m} and all X € E, the mapping: Y, — a;(V¥}, X),
{ is a continuous surjective M-function of E; onto Fj,
(see theorem 3.5 of [22]). Moreover it follows from Proposition 1 that
foralll € {1,...,m} and X € E, the problem: a;(Y;; X) =0,
{ has a unique solution Y;.

It follows also from the above assumptions that 7" is isotone on E (see [19]).

The reader is refered to [27] and [2] for studies related to multisplitting
methods combined with classical asynchronous iterations without any flexible
communication.
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4. Computational experiences and results

In this Section, we present and analyze computational results for parallel
asynchronous and synchronous Newton’s methods applied to the discrete solu-
tion of the nonlinear diffusion problem (1.2), where €2 is the unit square. The
computational experiments were carried out on a shared memory machine IBM
3090 with six vector processors. The parallelization uses macrotasking facilities
of parallel Fortran. The vectorisation is performed automatically. The solution
of linear systems is obtained via a band Gauss algorithm which preserves the
monotonicity. The linearizing matrix being an M-matrix, all its principal sub-
matrices are also M-matrices and all the principal minors are non zero. Then, it
is not necessary to perform row and column permutations since each pivot con-
sidered at each step is nonzero. Experimental results for parallel algorithms are
given in Table 1 for a problem with 25000 discretization points. In particular,
Table 1 displays the speedup and efficiency of parallel algorithms. We recall that
the speedup corresponds to the ratio sequential time over parallel time and the
efficiency is the ratio speedup over number of processors. The speedup and effi-
ciency are computed according to an equivalent decomposition in the sequential
and parallel cases. Indeed, the sequential time and average rate of convergence
vary as a function of the number of subdomains. We report that a limitation of
the synchronous parallel algorithms designed for the application studied in this
paper, is that one can not implement all possible decomposition strategies. In
particular, one can not implement a synchronous method with o subdomains and
« processors. An alternative solution would be to implement a different itera-
tive scheme, such as the Jacobi method; however the convergence rate would be
slower. We point out that asynchronous algorithms with flexible communication
are faster than synchronous algorithms. For medium granularity, the number of
relaxations of synchronous and asynchronous parallel algorithms is close to the
number of relaxations of sequential algorithms. For a low granularity, the num-
ber of relaxations of synchronous and asynchronous algorithms is greater than
the number of relaxations of sequential algorithms. Moreover we note that the
efficiency of synchronous algorithms decreases faster than the efficiency of asyn-
chronous algorithms when the granularity decreases.
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