
Implementation of distributed iterative algorithm for optimal control
problems on several parallel architectures

Mohamed Jarraya *, Didier El Baz

LAAS-CNRS, 7 Avenue Colonel Roche 31077, Toulouse Cedex 4, France

Received 1 March 2001

Abstract

We consider an optimal control problem without constraint. The solution of this problem leads to a large scale block linear

system. We present a two-stage method which is well suited to an asynchronous implementation with flexible communication

whereby every processor can have access at any time and without any fixed rule to the current value of the components of the

iteration vector updated by any other processor. The implementation is carried out on three types of architecture: a super computer

with distributed memory CRAY T3E, a shared memory symmetric multiprocessor (SMP) and a high speed network of

SMP. � 2002 Elsevier Science Inc. All rights reserved.

Keywords: Optimal control; Two-stage method; Asynchronous iterations with flexible communication; CRAY T3E; SMP; Network of SMP

1. Introduction

The need for optimal control of continuous complex
dynamic process subject to some disturbance can re-
quire the solution of a large scale system. Taking into
account the current development of computer archi-
tectures, it appears very useful to obtain optimal con-
trol law by iterative methods which are well adapted to
parallel computation. We present in this paper the
solution of an optimal control problem without con-
straint by a two-stage method (see Frommer and Szyld,
1994). This method is well suited to an asynchronous
implementation with flexible communication. This new
class of asynchronous iterative algorithms was pro-
posed in Miellou et al. (1998) for the solution of
boundary value problems in the M-function context. It
was applied in El Baz (1996) to the solution of non-
linear network flow problems. In this context, every
processor can have access at any time and without any
fixed rule to the current value of the components of the
iteration vector updated by any other processor; this
value can correspond to a new update or a partial
update which is not labelled explicitly by an iteration

number. Asynchronous iterations with flexible com-
munication are tightly bound to the concept of sub-
mappings and supermappings which is associated to
the generation of monotone sequence of vectors. This
is the reason that led us to consider the approach
proposed in Jacquemard (1977). This approach gener-
ates an increasing sequence of subsolutions and a de-
creasing sequence of supersolutions which converge
towards a single solution of the problem.

The implementation is carried out on three types of
architecture: a super computer with distributed mem-
ory CRAY T3E by using message-passing libraries
such as MPI or SHMEM, a shared memory symmetric
multiprocessor (SMP) by using a POSIX thread library
and a network of SMP by using a message-passing and
POSIX thread libraries. The later implementation
permits us to use all the material resources of the
distributed system. We thus considered two types of
parallelism: one between the different machines of the
local network and the other between the processors of
the SMP.

Sections 2 and 3 deal with the description and study
of the optimal control problem. An asynchronous
two-stage algorithm with flexible communication is
presented in Section 4. The implementation and the
experimental results are presented and analyzed in
Section 5.

www.elsevier.com/locate/jss
The Journal of Systems and Software 60 (2002) 141–148

*Corresponding author. Tel.: +33-5-61-33-64-50; fax: +33-5-61-33-

69-69.

E-mail address: jarraya@laas.fr (M. Jarraya).

0164-1212/02/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

PII: S0164 -1212 (01)00086 -3

2. Description of the problem

Let us consider a vertical oven with 12 heating zones
(see Spiteri, 1984). The study consists in bringing tem-
perature z raised on n points of the oven at a tempera-
ture zd within finite time ðT 0 � t0Þ which represents the
horizon of the command. It is thus necessary to obtain
the command u that corresponds to the intensity of the
currents of regulations, such that, at time T 0, tempera-
ture z of the oven is uniformly equal to zd . We consider
the following criterion:

J ¼ 1

2

Z T 0

t0

ðjCyðtÞ � zd j22 þ kjuðtÞ � ud j22Þdt: ð1Þ

y 2 R2n is the state of the system which is represented
by the temperature of n points of the bar and the tem-
perature of n points of the oven, u 2 Rm is the control
vector. The following model was obtained by studying
the evolution of the system:

dyðtÞ
dt þ AyðtÞ ¼ BuðtÞ 8t 2 ½t0; T 0�;

yðt0Þ ¼ y0;
zðtÞ ¼ CyðtÞ;

8<
: ð2Þ

where A; B and C are matrices with respective dimen-
sion ð2n; 2nÞ, ð2n;mÞ and ðn; 2nÞ, A is also an M-matrix,
i.e., aii > 0 for all i, aij 6 0 for all i 6¼ j, A is nonsingular
and A�1 P 0. Eq. (2) is the state equation of the model
and variable z is the observation of the system. The
Hamiltonian of the optimal control problem is given as
follows:

H ¼ 1

2
ðjCyðtÞ � zd j22 þ kjuðtÞ � ud j22Þ þ pTðtÞ½�AyðtÞ

þ BuðtÞ�; ð3Þ

where p is the costate vector. The canonical equations of
the problem to be solved are:

oH
oy ¼ � dp

dt ;
oH
ou þ oWUad

3 0;
oH
op ¼ oy

ot ;

8><
>: ð4Þ

where oWUad
is the subdifferential mapping of the indi-

cator function WUad
of the convex set Uad.

3. Study of an optimal control problem without constraint

If there is no constraint of command admissibility,
then oWUad

¼ 0. After development, simplification and
discretization in the interval of time ½0; T 0� by integrating
the state and the costate, respectively, in the direct and
reverse sense with an approximation by Euler method
we have:

yðtþhÞ�yðtÞ
h þ Ayðt þ hÞ þ 1

k BB�pðt þ hÞ ¼ Bud ;
pðtÞ�pðtþhÞ

h þ A�pðtÞ � C�CyðtÞ ¼ �C�zd ;
yð0Þ ¼ pðT 0Þ ¼ 0:

8><
>: ð5Þ

We can transform the system (5) into a linear fixed point
equation

Y
P

� �
¼ ~AA

Y
P

� �
þ ~BB;

where ~AA is an M-matrix associated with the system (5),
Y T ¼ ½y1; . . . ; yN � and PT ¼ ½p0; . . . ; pN�1� are, respec-
tively, the state and costate vectors with N blocks that
represent the number of discretization points. We pre-
sent now a splitting of the matrix ~AA in two nonnegative
matrices ~AA1 and ~AA2 such that ~AA ¼ ~AA1 � ~AA2 and
qð ~AA1 þ ~AA2Þ < 1. This splitting enables us to determine
two monotone sequences that represent, respectively, an
approximation of the solution by a subsolution and
supersolution (see Jacquemard, 1977). The choice of a
constant vector in time as subsolution or supersolution
of the system (5) is equivalent to determine these two
vectors from a reduced linear system such as:

Ayðt þ hÞ þ 1
k BB�pðt þ hÞ ¼ Bud ;

A�pðtÞ � C�CyðtÞ ¼ �C�zd :

�
ð6Þ

Let us denote by uð0Þ ¼ ð�yyð0Þ; �ppð0ÞÞT and vð0Þ ¼ ðŷyð0Þ; p̂pð0ÞÞT,
respectively, a subsolution and a supersolution of system
(6); then U ð0Þ ¼ ð�yyð0Þ; . . . ; �yyð0Þ; �ppð0Þ; . . . ; �ppð0ÞÞT and V ð0Þ ¼
ðŷyð0Þ; . . . ŷyð0Þ; p̂pð0Þ; . . . p̂pð0ÞÞT with dimension 4nN are, re-
spectively, a subsolution and a supersolution of (5). The
numerical computation of uð0Þ and vð0Þ was carried out
by a construction process suggested by Krasnosel’skii et
al. (1972). The subsolution and the supersolution verify
the following inequalities:

U ð0Þ
6 V ð0Þ;

U ð0Þ
6 ~AA1U ð0Þ � ~AA2V ð0Þ þ ~BB;

V ð0Þ P ~AA1V ð0Þ � ~AA2U ð0Þ þ ~BB:

8<
: ð7Þ

4. Parallel iterative scheme

In this paragraph, we present a parallel scheme which
relies on a two-stage iterative method as suggested in
Frommer and Szyld (1994). We show that the iterative
scheme of computation is based on a fixed point map-
ping which is a submapping. The iterative methods can
be implemented in a distributed way. We wish to im-
plement asynchronous iterations with flexible commu-
nication. Asynchronous iterations with flexible
communication are general methods whereby each
processor can have access to the current state of the
other processors. Thus, this new class of parallel algo-
rithms allows exchange of values which were not al-
lowed by the classical asynchronous iterative models

142 M. Jarraya, D. El Baz / The Journal of Systems and Software 60 (2002) 141–148

studied in Baudet (1978). Indeed, the current value of
each component of the updated vector can be read or
communicated to the various processors at any time and
without any fixed rule, whereas a communication occurs
only at the end of each updating in the standard asyn-
chronous iterative scheme.

4.1. Two-stage iterative scheme

System (5) can be written as follows:

M11 M12

M21 M�
11

� �
Y
P

� �
¼ E1

E2

� �
; ð8Þ

where

M11 ¼

ðhA þ IÞ O . . . O

�I ðhA þ IÞ ..
.

. .
.

O

O �I ðhA þ IÞ

0
BBBB@

1
CCCCA;

M12 ¼

O h
k BB�

..

. . .
.

h
k BB�

O . . . O

0
BBB@

1
CCCA;

M21 ¼

O . . . O

�hC�C ..
.

. .
.

�hC�C O

0
BBB@

1
CCCA;

M�
11 ¼

ðhA� þ IÞ �I . . . O

O ðhA� þ IÞ ..
.

. .
.

�I
O O ðhA� þ IÞ

0
BBBB@

1
CCCCA:

Let us decompose one of the two halves of the system,
the other one can be decomposed by using the same
method. The splitting of M11 in M1

11 � M2
11, where M1

11 is
a nonsingular matrix, gives the following iterative
scheme:

M1
11Y

ðrþ1Þ ¼ M2
11Y

ðrÞ � M12P ðrÞ þ E1: ð9Þ
We suppose that M1

11 is a bloc diagonal matrix such
that M1

11 ¼ diagðM11
11 ; . . . ;M

1N
11 Þ ¼ diagðhAþ I ; . . . ;hAþ IÞ.

In addition, we suppose that it is difficult to solve di-
rectly the system with the matrix ðhA þ IÞ. In this case,
we can decompose this matrix into R � S, with
R ¼ diagðha11 þ 1; ha22 þ 1; . . . ; hað2nÞð2nÞ þ 1Þ. The two-
stage iterative scheme is represented in Fig. 1.

Let i 2 f1; . . . ;Ng; ti ¼ ti�1 þ h; yðtiÞ ¼ yi and
pðtiÞ ¼ pi. The system (5) can be rewritten as follows:

ðhA þ IÞyi ¼ yi�1 � h
k BB�pi þ hBud ;

ðhA� þ IÞpi ¼ piþ1 þ hC�Cyi � hC�zd ;

�
ð10Þ

where yi and pi are, respectively, the ith block of the state
and costate vectors. We denote by yi;j the jth component

of the ith block of the state vector and we denote by pi;j

the jth component of the ith block of the costate vector.
The jth component of the ith block of the state and
costate vectors can be expressed by:

ðhajj þ 1Þyi;j þ
P2n

l¼1;l 6¼j hajlyi;l

¼ yi�1;j � h
k

P2n
l¼1ðBB�ÞjlPi;l þ hðBudÞj;

ðha�
jj þ 1Þpi;j þ

P2n
l¼1;l 6¼j ha

�
jlpi;l

¼ piþ1;j þ h
P2n

l¼1ðC�CÞjlyi;l � hðC�zdÞj:

8>>>><
>>>>:

ð11Þ

We can introduce a fixed point mapping F defined as
follows: for q 2 f1; . . . ; 2nNg, with q ¼ 2nði � 1Þ þ j,

Fq
Y
P

� �
¼ 1

hajj þ 1

"
�

X2n
l¼1;l 6¼j

hajlyi;l þ yi�1;j

�
X2n
l¼1

h
k
ððBB�ÞjlPi;l þ hðBudÞjÞ

#
;

and for q 2 f2nN þ 1; . . . ; 4nNg, with q ¼ 2nði � 1Þþ
j þ 2nN ,

Fq
Y
P

� �
¼ 1

ha�
jj þ 1

"
�

X2n
l¼1;l 6¼j

ha�
jlpi;l þ piþ1;j

þ
X2n
l¼1

hððC�CÞjlYi;l � hðC�zdÞjÞ
#
:

In the sequel we shall use the notation X ¼ ðY ; P ÞT.

4.2. Asynchronous parallel iterations with flexible com-
munication

Asynchronous iterative algorithms with flexible
communication were first proposed in Miellou et al.
(1998) for the solution of boundary value problems in

Fig. 1. Two-stage iterative scheme.

M. Jarraya, D. El Baz / The Journal of Systems and Software 60 (2002) 141–148 143

the M-function context. They were applied to the solu-
tion of convex network flow problems in El Baz (1996).

We assume that there is an infinite set of times
T ¼ f0; 1; 2; . . .g at which one component of the iterate
vector is updated by some processor. Let Tq be the in-
finite subset of times at which component Xq is updated
such that Tq \ Tl ¼ ; for all q; l 2 f1; . . . ; 4nNg, q 6¼ l.
An asynchronous iteration with flexible communication
associated with the mapping F : R4nN ! R4nN and the
starting point X ð0Þ

q 2 R4nN , is a sequence fX ðrÞ
q g of vectors

of R4nN , such that for q 2 f1; . . . ; 4nNg, we have:

X ðrþ1Þ
q ¼ Fqð ~XX ðrÞÞ 8r 2 Tq;

X ðrþ1Þ
q ¼ X ðrÞ

q 8r 62 Tq;

(
ð12Þ

where for r ¼ 0; 1; . . . ; ~XX ðrÞ is the vector of R4nN such that

~XX ð0Þ ¼ X ð0Þ and ~XX ðrÞ 2 hmaxfX ðqðrÞÞ; ~XX ðlÞgX ðrÞi; r P 1

ð13Þ
and the order interval hX 0;X 00i ¼ fX 2 R4nN jX 0

6

X 6X 00g; ~XX ðlÞ is the vector used in the last update of the
same component, and the vector X ðqðrÞÞ with components
X

ðqqðrÞÞ
q is introduced in order to model the chaotic be-

havior of the iterative scheme (we have: 06 qqðrÞ6
r; qqðrÞ ¼ r if r 2 Tq; qqðrÞ is monotonically increasing,
and limr!1 qqðrÞ ¼ þ1 for all q 2 f1; . . . ; 4nNg.

These algorithms allow the use of partial updates
arising from computations in progress. Asynchronous
iterations with flexible communication defined by (12)
and (13) describe general iterative methods whereby
computations are carried out in parallel without any
order nor synchronization. The only restrictions are that
no component of the iteration vector is abandoned
forever and old values of each component of the itera-
tion vector are abandoned as the computation pro-
gresses. The use of the current value of components
resulting from intermediary steps of updating presents a
particular interest in this context of monotone conver-
gence; intuitively, it can speed up the convergence.

4.3. Termination procedure

At the iteration ðrÞ, the solution is approximated by
1
2
ðU ðrÞ þ V ðrÞÞ with maximum error eðrÞ ¼ 1

2
ðV ðrÞ � U ðrÞÞ.

The algorithm terminates when keðrÞk1 < �, where � is
the precision of termination. The sequence fU ðrÞg in-
creases and the sequence fV ðrÞg decreases thus the resi-
due eðrÞ decreases. We propose now a termination
procedure based on the circulation of a token between
processors. We fix a relationship between processors
defined in the following way (Fig. 2).

The node (0) is the father of the node (1) which is the
father of the node (2), etc., the node ða � 1Þ does not
have a child and the node (0) does not have a father.
Initially, the token is in the node ða � 1Þ. When the last
processor detects that its local termination condition is

satisfied ðkea�1k1 < �Þ, it sends the token to his father.
Then the father can send the token only if its local ter-
mination condition ðkea�2k1 < �Þ. This scheme pro-
gresses gradually until the token arrives to the node (0)
which sends a global termination message to all the
nodes; then the distributed algorithm finishes.

5. Implementation on a parallel architecture

5.1. Decomposition of the problem on a parallel architec-
ture

Let us consider a block decomposition of the system
(5). In this case, each processor updates a set of blocks
of components of the vector UT ¼ ðY ; P Þ and exchanges
the value of the blocks of components at the border with
the other processors. If we consider the matrix of the
system (8), the submatrice M�

11 has an upper block di-
agonal, therefore the Gauss Seidel method is like a block
Jacobi method. In order to accelerate the relaxation
method we transpose the costate block vector according
to the following integration direction ðf0; 1; . . . ;
N � 1g ! fN � 1;N � 2; . . . ; 0gÞ. Thus we obtain the
following iterative scheme:

ðhA þ IÞyðrþ1Þ
i ¼ yðrþ1Þ

i�1 � h
k BB�pðrÞ

i þ hBud ;

ðhA� þ IÞpðrþ1Þ
i ¼ pðrþ1Þ

iþ1 þ hC�Cyðrþ1Þ
i � hC�zd :

(
ð14Þ

In this case, the dependency between the block-compo-
nents of the state and the costate vectors at the iteration
ðr þ 1Þ for subsolutions is presented in Fig. 3, where the
relation a ! b implies that b is function of a.

In order to minimize the interactions between pro-
cessors, we propose that the components with the same
index are updated by the same processor. Fig. 4 shows a
decomposition of the state and costate vectors on a
parallel architecture, where �yy; ŷy; �pp and p̂p are, respec-
tively, the state subsolution, the state supersolution, the
costate subsolution and the costate supersolution.

Fig. 2. Termination procedure.

144 M. Jarraya, D. El Baz / The Journal of Systems and Software 60 (2002) 141–148

5.2. Implementation on parallel architectures

The implementation is carried out on three types of
architecture: a four processor SMP with a shared
memory, a supercomputer CRAY T3E with distributed
memory and a high speed network of SMP.

5.2.1. Implementation on a SMP
In the case of synchronous implementation, all

threads must be synchronized. We have implemented a
synchronization barrier by using a mutex and conditions
variables. At the beginning of the synchronization bar-
rier, all the treads execute a lock function to protect a
variable that counts the number of threads which are
waiting. The last thread that enters the synchronization
barrier executes a broadcast signal to the others ma-
chines.

In the case of asynchronous iterations with flexible
communication, every thread has access when needed to
the current value of the components of the iteration
vector stored in the shared memory. This access is made
before each new updating by a simple read function.
Fig. 5 shows models of synchronous and asynchronous
iterations with flexible communication on a SMP.

5.2.2. Implementation on a network of SMP
We have used MPI message-passing and Posix thread

libraries in order to implement the two-stage iterative
algorithms on this architecture. We have assigned all the
communications between SMP to only one thread of
each SMP because the driver of communications denies
concurrent access by several threads. In the case of
synchronous implementation, all threads running on a
SMP must be synchronized and distant threads must

also be synchronized. The synchronization of threads
running on a SMP is similar to the case presented in the
previous subsection. The synchronization between dis-
tant threads is accomplished by using a blocking receive
function. Fig. 6 shows a model of synchronous itera-
tions on a network of SMP.

Asynchronous iterations with flexible communication
are implemented as follows: we consider two levels. In
the first level which corresponds to a SMP, every thread
has access when needed to the current value of the
components of the iterate vector. Clearly the current
values which are read do not necessarily correspond to
the result of an updating phase and are not necessarily
labelled by an iteration number. In the second level
which corresponds to the network of SMP, partial up-
dates are exchanged via distant threads by using non
blocking send and receive functions of MPICH (c.f.
Gropp and Lusk, 1999). Each SMP sends from time to
time, the current state of each component of the iterate
vector. Only one thread of each machine sends the
partial updates. We note that the current value of each
component of the iterate vector computed by the other
threads of the same SMP are sent at the same instant.
The receive function takes into account the last values
received by the SMP.

Fig. 4. Decomposition on a parallel architecture.

Fig. 5. Synchronous and asynchronous models on a SMP.

Fig. 6. Synchronous model on a network of SMP.

Fig. 3. The dependency between the block-components of the state

and the costate vectors.

M. Jarraya, D. El Baz / The Journal of Systems and Software 60 (2002) 141–148 145

5.2.3. Implementation on CRAY T3E
On the supercomputer CRAY T3E, synchronous and

asynchronous iterations with flexible communications
are implemented by using two types of message-passing
libraries. The synchronous algorithm uses the MPI li-
brary in order to communicate data between processors.
The updating and data exchange are made sequentially.
Every processor sends the border block-components to
the others processors by using the nonblocking MPI_I-
send() function and receives data by using a blocking
MPI_Recv() function that makes the synchronization
between all processors. According to Fig. 4, the updat-
ing of the first block-component ‘‘first_block’’ needs the
value of the last block-component ‘‘last_block’’ which is
updated by his father (see the processors relationship in
Section 4.3) and the updating of the last block-compo-
nent needs the value of the first block-components
which is updated by his child. The following function
defines the synchronous protocol between processors,
where Z is the iterate vector.

FUNCTION : exchange_data_mpi(Z,j)
if (j ¼ begin_block) then
if (current_process <> process_number-1) then
MPI_Isend(Zðlast blockÞ,current_process+1)

end if

if (current_process <> 0) then
MPI_Recv(Zðbegin block�1Þ,current process-1)

end if

end if

if (j ¼ last_block) then
if (current_process <> 0) then
MPI_Isend(Zðbegin blockÞ,current_process-1)

end if

if (current_process <> process_number-1) then
MPI_Recv(Zðlast blockþ1Þ,current_process+1)

end if

end if

In the case of asynchronous iterations with flexible
communication, each processor calls the shmem_get()
function of the SHMEM library in order to receive the
current value of components updated by the other
processors. This value can be a partial updating which is
not labelled explicitly by a number of iteration. The
function exchange_data_shmem() shows how the flexi-
ble communications are implemented between proces-
sors.

FUNCTION : exchange_data_shmem(Z,j)
if (j ¼ begin_block) then
if (current_process <> 0) then
shmem_get(Zðbegin block�1Þ,current_process-1)

end if

end if

if (j ¼ last_block) then
if (current_process <> process_number-1) then
shmem_get(Zðlast blockþ1Þ,current_process+1)

end if

end if

Remarks.

• It has be shown in Jarraya et al. (1998) that the use of
shmem_get() is the most efficient for asynchronous it-
erations with flexible communication.

• We can use SHMEM functions in order to obtain
synchronization, but with MPI the implementation
is more natural.

5.3. Experimental results

We have implemented the two-stage iterative scheme
applied to a vertical oven with 12 heating zones. The
matrices A, B and C are given as follows:

A ¼

D1 S þ h �S �2S . . . �9S �10S
h D S þ h �S . . . �8S �9S
0 h D S þ h : :
0 0 h D : :
: : S þ h �S
: : h D S þ h
0 0 : : 0 h D12

0
BBBBBBBB@

1
CCCCCCCCA
;

where each block, D1; D; D12; S and h, are matrices
defined as follows:

D1 ¼ 0:38 �0:196
�0:0068 0:0629

� �
;

D ¼ 0:39 �0:196
�0:0068 0:0682

� �
;

D12 ¼
0:44 �0:196

�0:0068 0:0559

� �
;

S ¼ �0:0057 �0:012
�0:0003 �0:0008

� �
;

h ¼ �0:0651 0
0 �0:0031

� �
:

Bij ¼
d if i ¼ 2p � 1 and j ¼ i � p; p 2 N;

0 if not;

�

Cij ¼
1 if j ¼ 2i;

0 if not;

�

with � ¼ 0:67 and d ¼ 0:00195. Constant vectors ud and
ud are given by: uT

d ¼ ½1075; 825; 840; 842; 845; 850; 858;
871; 893; 930; 958; 1483� cal/min and zTd ¼ ½30; 30; 30; 30;
30; 30; 30; 30; 30; 30; 30; 30��C.

The interval of time is equal to 180 min with a step of
discretization equal to 6 s, thus the number of blocks is
1800, so the size of the problem is 86 400. The precision
required for the first stage is �1 ¼ 10�4 and for the sec-
ond stage �2 ¼ 10�9. We have chosen k ¼ 0:0012.

We have used a four processors Pentium II Per-
sonal Computer whereby every processor has a clock

146 M. Jarraya, D. El Baz / The Journal of Systems and Software 60 (2002) 141–148

frequency of 200 MHz, the CRAY T3E of IDRIS-
CNRS having 256 DIGITAL a processors and a net-
work of Personal Computer with bi-processor Pentium
II whereby every processor has a clock frequency of 233
MHz. Two types of network were considered: an
Ethernet network with a bandwidth of 100 Mbits/s and
Myrinet network with a bandwidth of 1 Gbits/s.

We have measured the speed up of synchronous and
asynchronous iterations with flexible communications
compared to the sequential execution on one processor.
Tables 1 and 2 show the execution time and the speed up
of the parallel implementations in function of the
number of threads running, respectively, on a SMP and
on network of SMP. This number is represented by an n-
uple (a; b; c; d) where n denotes the total number of
SMP and the value of each component a; b; c and d
gives, respectively, the number of threads that are car-
ried out on the corresponding SMP. Figs. 7 and 8 show,
respectively, the execution time and the speed up of the
parallel implementation on the CRAY T3E.

Table 1 shows that asynchronous iterations with
flexible communications are more efficient than syn-
chronous iterations on a SMP. The number of steps in
the second stage varies from iteration to iteration and

Table 1

Implementation on a SMP

Threads Synchronous Asynchronous with FC

Time (s) Speed up Time (s) Speed up

1 677.13 1 677.13 1

2 512.36 1.321 465.00 1.455

3 401.90 1.684 347.51 1.948

4 347.96 1.946 313.72 2.158

Table 2

Implementation on a network of SMP

Threads Synchronous Asynchronous with FC

Times (s) Speed up Time (s) Speed up

On Myrinet network of SMP using MPICH-gmm

(1,0,0) 361.94 1 361.94 1

(1,1,0) 275.24 1.314 326 1.109

(2,1,0) 220.50 1.641 242.63 1.491

(2,2,0) 191.75 1.887 205.15 1.764

(1,1,1) 213.79 1.692 259.69 1.393

(2,1,1) 183.45 1.972 212.70 1.701

(2,2,1) 171.25 2.113 185.31 1.953

(2,2,2) 159.57 2.268 160.51 2.254

On Ethernet network of SMP using MPICH

(1,1,0) 276 1.310 419.77 0.862

(2,1,0) 228.92 1.581 280.07 1.292

(2,2,0) 194.95 1.856 285.78 1.266

(1,1,1) 214.64 1.686 277.45 1.300

(2,1,1) 183.76 1.969 229.15 1.570

(2,2,1) 185.21 1.954 220.27 1.640

(2,2,2) 179.47 2.016 183.50 1.972

Fig. 7. Execution time on CRAY T3E.

sp
ee

d
up

Fig. 8. Speed up on CRAY T3E.

M. Jarraya, D. El Baz / The Journal of Systems and Software 60 (2002) 141–148 147

the access to the current value permits us to use the best
approximation to the solution of the problem. The same
result was obtained on the CRAY T3E by using a get
function of the SHMEM library which has access to the
current value of the iterate vector. In the case of a net-
work of SMP synchronous iterations are more efficient
than asynchronous iterations with flexible communica-
tion. This is due in fact firstly to the nature of the
communication function of MPICH which cannot offer
the possibility to have an easy access to the current value
of the iterate vector updated by other SMP and secondly
to the latency time to the communication functions. On
the Myrinet network we have measured a latency equal
to 27 ls and on the Ethernet network a latency equal to
250 ls. On the CRAY T3E the latency time is about
1 ls. Table 2 shows that the parallel implementation are
more efficient on the Myrinet network which has the
highest bandwidth and the lower latency than on the
Ethernet network. We note also that the regular inter-
connection architecture of CRAY T3E permits us to
obtain better speed up when the number of processor
increases. The use of the shmem_get() function of the
SHMEM library of the CRAY T3E in the case of
asynchronous iterations with flexible communication is
quite similar to the use of a read function of a shared
memory architecture and the performance on CRAY
T3E below four processors is very close to the perfor-
mance on a SMP.

6. Conclusion

In this paper we have studied and implemented par-
allel synchronous and asynchronous iterations with
flexible communication in order to solve an optimal
control problem without constraint. The basic iterative
procedure relies on a two-stage iterative scheme of
computation. The implementation is carried out on
three types of architecture: a shared memory SMP, a
network of SMP and a supercomputer CRAY T3E with
distributed memory. We have shown that the asyn-
chronous method is faster than the synchronous method

on a SMP and on the CRAY T3E and lightly slower on
a network of SMP. This type of parallel implementation
requires shared memory or distributed memory archi-
tectures for which all processors can have an access to
the current value of the iterate vector updated by the
other processors. However we have not obtained excel-
lent speed up because the costate relaxation method
which integrates the state and the costate vectors, re-
spectively, in the direct and reverse directions is by na-
ture very sequential.

Acknowledgements

The authors wish to thank P. Spiteri and J.C. Miellou
for their advices and IDRIS-CNRS for its support.

References

Baudet, G.M., 1978. Asynchronous iterative methods for multi-

processors. J. Assoc. Comput. 2, 226–244.

El Baz, D., Spiteri, P., Miellou, J.C., Gazen, D., 1996. Asynchronous

iterative algorithms with flexible communication for nonlinear

network flow problems. J. Parallel Distrib. Comput. 38, 1–15.

Frommer, A., Szyld, D.B., 1994. Asynchronous two-stage iterative

methods. Numer. Math. 69, 141–153.

Gropp, W., Lusk, E., 1999. User’s Guide for MPICH, A Portable

Implementation of MPI Version 1.2.0. Mathematics and Computer

Science Division, MIT, Cambridge, MA, pp. 1999.

Jarraya, M., El Baz, D., Gazen, D., 1998. Mise en œuvre de m�eethodes

it�eeratives asynchrones avec communication flexible 2, Impl�eemen-

tation sur CRAY T3E, SMP et r�eeseau de stations. Calculateurs

Parall�eeles R�eeseaux et Syst�eemes r�eepartis 10 (4), 439–447.

Jacquemard, C., 1977. Contribution �aa l’�eetude d’algorithme de relax-

ation �aa convergence monotone, Th�eese de 3�eeme cycle, Universit�ee de

Besancon.

Krasnosel’skii, M.A., Vainikko, G.M., Zabreiko, P.P., Rutitskii,

Ta.B., Stetsnko, V.Ya., 1972. Approximate Solution of Operator

Equations. Wolters-Noordhoff, Groningen.

Miellou, J.C., El Baz, D., Spiteri, P., 1998. A new class of iterative

algorithms with order intervals. Math. Comput. 67, 237–255.

Spiteri, P., 1984. Contribution �aa l’�eetude de grands syst�eemes non

linaires: Comportement d’algorithme it�eeratifs, stabilit�ee de syst�eemes

continus. Th�eese de Doctorat d’�eetat, Facult�ee des sciences et des

techniques de l’universit�ee de Franche-Comt�ee.

148 M. Jarraya, D. El Baz / The Journal of Systems and Software 60 (2002) 141–148

