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Abstract 

We consider the single commodity strictly convex network flow problem. The dual of this problem is 
unconstrained, differentiable, and well suited for solution via parallel iterative methods. We study the 
implementation of parallel asynchronous relaxation and gradient algorithms on a transputer network. We 
present and analyse computational experiments. 
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systems. 

1. Introduction 

We consider the single commodity strictly convex network flow problem. This problem 
occurs in many domains: electrical networks, gas or water distribution, financial models, air 
traffic control. Typically, nonlinear network flow problems require intensive computations 
(see [29]). As a consequence the introduction of parallelism seems to be very attractive. We 
concentrate here on the dual problem which is unconstrained, differentiable and well suited 
for solution via parallel iterative methods. In recent papers (see [6,15, and 16]) we have shown 
that the structure of the dual problem allows the successful application of parallel asyn- 
chronous relaxation and gradient algorithms. In this paper we study the implementation of 
parallel asynchronous relaxation and gradient algorithms on a transputer network, we present 
and analyse computational experiments. The reader is also referred to [13] for preliminary 
results and to [8] for implementation of approximate relaxation algorithms on the Allient 
FX/8. 

Section 2 deals with the single commodity convex network flow problem. Asynchronous 
relaxation and gradient algorithms are presented in Section 3. Section 4 deals with the 
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implementation of asynchronous iterative algorithms on a transputer network. Experimental 
results are given in Section 5. 

2. The single commodity convex network flow problem 

We consider the single commodity convex network flow problem. Let G = (N, A) be a 
connected directed graph. N is referred to as the set of nodes, A c N × N is referred to as 
the set of arcs, and the cardinal number of N is denoted by n. Let cij : R ~ ( -  0% + oo] be the 
cost function associated with each arc (i, j). cii is a function of the flow of the arc (i, j )  which 
is denoted by f~j. Let d be the destination node for network traffic, b i >_ 0 the supply at node 
i ~ N - { d } ,  and b d = --E~N_td}b~ the demand at d. The problem is to minimize total cost 
subject to a conservation of flow constraint at each node 

min E Cij(fij), (2.1) 
( i , j )Eh 

subject to 

f i t -  Y'~ fmi=bi ,  V i ~ N .  
( i , j )  ~A  (m ,i) ~ A  

We assume that problem (2.1) has a feasible solution. We also make the following standing 
assumptions on ci~: 
(a) ci~ is strictly convex, lower semicontinuous; 
(b) the conjugate convex function of cii, defined by 

Ci~'(tij ) = s u p { t i j ' f u - - C i j ( f i j ) }  , (2.2) 
£ij 

is real valued, i.e. - 0o < C~(tij ) < + ~ for all real tiy. 
Assumption (b) implies that lim irijl_~ci~(fij)= +oo. Therefore the objective function of 

problem (2.1) has bounded level sets (see [25], Section 8). It follows that there exists an 
optimal solution for problem (2.1) which must be unique in view of the strict convexity 

* is continuously assumed in (a). From the strict convexity of c#, it follows also that c~j 
differentiable and its gradient denoted by Vc*(t~j) is the unique f~ attaining the supremum in 
(2.2) (see [25], pp. 218, 253). 

A dual problem for (2.1) is given by 

min q ( p ) ,  (2.3) 
p E R  n 

subject to no constraints on the vector p = {pi/i  ~ N}, where q is the dual functional given by 

q ( p )  = ~_~ c * ( p i - p j )  - Y'~ bi 'p  i. (2.4) 
( i , j )~A i ~ N  

We refer to p as a price vector and its components as prices. The ith price, Pi, is a Lagrange 
multiplier associated with the ith conservation of flow constraint. 

The duality between problems (2.1) and (2.3) is explored in great detail in [26]. The 
necessary and sufficient condition for optimality of a pair ( f ,  p) is given in [25]. A feasible 
flow vector f =  {fij /(i ,  j) EA}  is optimal for (2.1) and a price vector p = {pi/i  E N} is optimal 
for (2.3) if and only if for all arcs (i, j)  c A ,  

Pi - P j  is a subgradient of cij at fii. 
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An equivalent condition is 

fij = Vc*(Pi -Pj ) ,  V(i, j )  c A .  

Any one of these equivalent relations is referred to as the complementary slackness 
condition (see [25], pp. 337-338 and [6]). 

Existence of an optimal solution of the dual problem can be guaranteed under the 
following additional regular feasibility assumption (see [26], p. 360 and p. 329): there exists a 
feasible flow vector, f =  {fij/(i, j) cA}, such t ha t  C'j_(fi j) < Woo and ci'j+(fi j) > - - ~ ,  for all 
(i, j)  c A ,  where c!,j_, respectively cij + , '  denotes the left, respectively the right, derivative of 
cij. We note that the regular feasibility assumption is not overly restrictive. On the other hand 
the optimal solution of the dual problem is never unique since adding the same constant to all 
coordinates of a price vector p leaves the dual cost unaffected. We can remove this degree of 
freedom by constraining the price of one node. We constrain the price of the destination node 
Pd to be zero. Thus we consider the reduced dual optimal solution set P* defined by 

P * =  ( p ' / q ( p ' ) =  m i n q ( p ) ,  p j  = 0).  
p 

(2.5) 

Clearly P* is nonempty. Consider n o w  ~q/~Pi [ p, from (2.4) it follows that 

a~iPip= E ~Tc*(Pi--Pj)-- E 17c*i(Pm-Pi)-bi .  (2 .6)  
(i,j)EA (m,i)~A 

3. Asynchronous iterative algorithms 

Since the reduced dual problem is unconstrained and differentiable it is natural to consider 
algorithmic solution by a descent iterative method. A relaxation method is interesting in this 
respect since it admits a simple implementation. Given a price vector, p, a node i is selected 
and its price Pi is changed to a value/~i such that the dual cost is minimized at/~i with respect 
to the ith price, all others prices being kept constant (i.e. Oq/api = 0). The algorithm proceeds 
by relaxing the prices of all nodes in cyclic order and repeating the process. We can associate 
a mapping to this iterative procedure. The so-called relaxation mapping, F:R"-~  R", is 
defined by F~(p)=/~i, i = 1 . . . . .  n. A gradient method admits also simple implementation. 
Given a price vector p all prices Pi are changed to a value Pi ~-Pi- Ol. Oq/Opi[p, and this 
process is repeated. We define the gradient mapping F : R n ~ R n, with components F~(p) = 
Pi -- Or. ~q/~Pi ] p" 

Both relaxation and gradient algorithms are well suited for parallel implementation. The 
prices p~, i = 1 . . . . .  n, can be updated concurrently by several processors. From (2.6) we 
conclude that we need only local information (i.e. prices of adjacent nodes) to update a price. 
Parallel relaxation and gradient algorithms are carried out according to a particular order and 
need synchronization. Since synchronous operation requires some overhead and idle time due 
to synchronization may be nonnegligible it is interesting to consider iterative schemes whereby 
computations are carried out concurrently without any order neither synchronization, namely 
asynchronous iterative methods. In brief, an asynchronous iterative algorithm relative to the 
mapping F from R" onto itself is a sequence {p(k)} of vectors of R" defined as follows (see 
[7], Section 6.1). 
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We assume that there is a set of times T = {0, 1, 2 . . . .  } at which one or more components 
Pi of p are updated by some processor. Let T i be the set of times at which Pi is updated,  we 
have for i = 1 . . . . .  n: 

_ _  i i Pi(k + 1 ) -F i (P l ( ' r l ( k ) ) , . . . , pn (zn (k ) )  ), V k ~ T  i, 

p i (k  + 1) =p i ( k ) ,  Vk q~ r i, (3.1) 

where F i is the ith component  of the mapping F, and for i = 1 . . . . .  n: 
the set T i is infinite, 

O < ~ ' j ( k ) < k ,  j = l , . . . , n ,  V k ~ T  i, 

if {k t} is a sequence of elements of T i that tends to infinity, then lim t _~®~-](k t) = + ~ for every 
j.  

We note that the restrictions imposed on asynchronous iterative methods are very weak: no 
component  of the iterate vector is abandoned forever and more and more recent values of the 
components have to be used as the computation progresses. The advantages of asynchronous 
iterative algorithms are implementation simplicity and computation flexibility. Since there are 
no synchronization overhead, neither idle time due to synchronization, one may also hope 
that asynchronous iterations converge faster than synchronous iterative methods. For further 
details about asynchronous iterative algorithms the reader is referred to [3,5,7, and 21]. 

Convergence of asynchronous iterative algorithms has been established for many problems 
(see [3-7,9,11,14-17, and 20-24]). Particular attention must be paid to the Asynchronous 
Convergence Theorem of Bertsekas and Tsitsiklis (see [7], p. 431). This theorem is an original 
and general result, it is also a powerful aid in showing convergence of asynchronous iterative 
algorithms. 

In the particular case of network flow problems the author has shown that the structure of 
the dual problem allows the successful application of asynchronous relaxation methods (see 
[6]) and asynchronous gradient algorithms (see [16]). 

4. Implementation of asynchronous iterations 

We have implemented a relaxation method (R), asynchronous relaxation methods (AR), a 
gradient method (G), and asynchronous gradient methods (AG) on a multi transputer system. 
The machine consists of a network of 5 transputers T800 with some local memory on a B008 
board of Inmos. Transputer  on slot 0 of the B008 board is used to begin the application and 
to receive the results, the 4 other transputers are dedicated to the computations. 

We have considered grid network flow problems. For each problem, there is only one 
1 . 4 nonzero traffic input, say b I = 1, and the arc costs are cij(fi j) = z fij- A problem with 24 

nodes and 37 arcs (called size 24) is shown in Fig. 1. We have chosen the same starting point 
for the different problems: the subsolution Pi = O, Vi ~ N. 

For R and AR, algorithm partitioning is made according to block red-black decomposition 
of the grid. The rows are coloured alternately in red and black. Sets of adjacent rows are 
assigned to the processors. In what follows, a task corresponds to the updating of the variables 
of a row. So each processor has two sets of tasks, a red one and a black one. Processors 
perform successively the red tasks and the black tasks. 

For G and AG, sets of adjacent rows are assigned to the processors. 
We have used a pipeline network of processors with bidirectional links. This topology 

seems naturally well suited to grid network flow problems when few processors are available. 
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Fig. 1. Problem of size 24. 
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However the implementation proposed here can be extended without difficulties to other 
network of processors topologies. 

Asynchronous iterative methods (AR and AG), are implemented as follows. Two concur- 
rent processes run simultaneously on each transputer: a low level priority process, the 
so-called computation process, performs updatings and transmits the results to adjacent 
processors, a high level priority process, the so-called buffer process, bufferises data sent by 
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Fig. 2. Processes running on two transputers. 

adjacent processors and transmits the data to the process computation when required. The 
use of a buffer process in each processor permits to obtain asynchronous operation. The 
processes running on each processor and the communication channels are shown in Fig. 2, in 
the case of a network of two transputers, in that case, the implementation of asynchronous 
iterative algorithms can be briefly described as follows with the Occam formalism: 

P R O C  asynchronous(VAL INT i, C H A N  in, out) 
CHAN buffer.computation, computation.buffer: 
PROC buffer( ) 

SEQ 
. . .  buffer.initialisation 
W H I L E  loop 

ALT 
. . .  receipt.of.the.data.sent.by.a.neighbor 
. . .  service.of.computation.process 

P R O C  computation( ) 
SEQ 

. . .  initialisation 

. . .  start 
W H I L E  cycle 

SEQ 
. . .  consult.buffer.for.new.data 
. . .  updating 
. . .  transmission.of.the.updates.to.the.neighbors 
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PRI PAR 
buffer( ) 
computation( ) 

PLACED PAR i = 0 FOR 2 
PROCESSOR i 

asynchronous(i, in, out) 

In the process computation, the process start is waiting for a keyboard character which is 
transmitted via the upstream transputers. The computations are then started and the 
character is transmitted to the downstream transputer. The process computation iterates on 
the basis of the most recent data available in the buffer, in the beginning of each new 
updating. The updated prices are transmitted to the buffer processes of adjacent processors. 

In the process buffer, the process service.of.computation.process transmits the different 
data received (keyboard character, results of an iteration, final results) according to the 
control messages sent by the process computation. The buffer process is idle while it is waiting 
for messages. All the cpu time is then allocated to the process computation, because the 
scheduler of the Transputer  is designed so that the idle processes do not consume cpu time 
(see [19] and its references). The process buffer which has very fast elementary processes has 
a higher level of priority than the process computation which consumes more time. Hence the 
transmission of data from a process computation of a processor to a process buffer of a 
neighbor is very fast and the transmitter is not delayed. 

The reader is also referred to [10] and [18] for different types of implementation of 
asynchronous iterative algorithms on transputer networks. 

5. Computational experience 

We present now computational experiments carried out on the transputer network. AR 
and AG are implemented on 2 and 4 transputers (they are denoted by AR2, AR4, AG2 and 
AG4, respectively). We have chosen a stepsize a = 10 -3 for the gradient methods and 
relaxation steps are stopped when Oq/bPi < 5.10-3- Tables 2 and 5 show for the different 
iterative methods the solution time in seconds for which all conservation of flow constraints 
are satisfied with an error less than 10-~. The corresponding speedups are shown in Tables 3 
and 6. The respective numbers of updatings for the different processors are shown in Tables 1 
and 4. 

Task scheduling is made according to static mode. The same number of tasks is allocated 
to the different processors in the case of AR2 and AR4 except for AR4 in the special case of 
problem of size 30, for which the number of tasks allocated to processors 0, 1, 2, 3, is 
respectively 3, 2, 2, and 3. Tables 2 and 3 show that an asynchronous implementation can 
speedup efficiently a relaxation method. When the nonlinear function cannot be minimized 
analytically with respect to each price, asynchronous relaxation algorithms lead to indetermin- 
istic load unbalancing. In the particular case of AR4, we note that processors which have two 
neighbors, like processors 1 and 2, do less updatings than processors which have one 
neighbor. A processor which has two neighbors receives more messages and has more 
computation to do since the receipt of a price update moves the local optimum. The good 
speedup of AR4 in the case of problem of size 30 can be explained by the fact that processors 
which have two neighbors (i.e. 1 and 2) have less tasks than processors which have one 
neighbor. As a comparison, when the number of tasks associated to processors 0, 1, 2, and 3 is 
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Table 1 
Numbers  of  updatings for R, AR2, and AR4 

D. El Baz 

Algorithm R AR2 AR2 AR4 AR4 AR4 AR4 
processor 0 0 1 0 1 2 3 

Size 

24 7786 9149 7826 38 082 8698 7174 33 323 
30 23 304 21531 22 967 43 215 19 344 23 312 38 071 
36 46 018 35 585 48 485 119 415 36 074 42 453 107 772 

Table 2 
Times (s) of  R, AR2, and AR4 

Algorithm R AR2 AR4 
Size 

24 1251.88 724.74 533.20 
30 6354.23 3385.68 1867.80 
36 15 391.60 8441.54 5288.61 

Table 3 
Speedups of AR2 and AR4 

Algorithm AR2 AR4 
Size 

24 1.72 2.35 
30 1.88 3.40 
36 1.82 2.91 

Table 4 
Numbers  of  updatings for G, AG2, and AG4 

Algorithm G AG2 AG2 AG4 AG4 AG4 AG4 
processor 0 0 1 0 1 2 3 

Size 

24 15710 15640 15670 17602 14396 14408 17192 
36 31 153 31012 31066 32945 29362 29369 32983 
48 51666 51426 51552 53 734 49 381 49 402 53 801 

Table 5 
Times (s) of  G, AG2, and AG4 

Algorithm G AG2 AG4 
Size 

24 241.71 120.94 62.42 
36 737.70 366.46 187.03 
48 1652.37 817.89 414.87 

Table 6 
Speedups of AG2 and AG4 

Algorithm AG2 AG4 
size 

24 1.99 3.87 
36 2.01 3.94 
48 2.02 3.98 
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respectively 3, 3, 2 and 2, the number of updatings is respectively 49869, 16406, 30964, and 
125683, the computation time is 2098,43 s and the speedup is 3.03. An equal number of tasks 
for the different processors does not guarantee to obtain the best speedup. Finally we note 
that the delays k - ~-j(k) may be great for AR4. 

Tables 2 and 5 point out that for medium and large scale convex network flow problems, G 
is faster than R and AR. We conclude that AR will not be very efficient for convex network 
flow problems even with massive parallelism unless there is special structure that makes each 
price relaxation particularly easy as in the quadratic case, w h e r e  cij(fi j)= a "fi 2 (see [28]). 
Tables 5 and 6 point out that an asynchronous implementation speeds up very efficiently G. 
Task scheduling was also made according to a static mode. The same number of tasks is 
allocated to the different processors in the case of AG2 and AG4. We note also that the 
speedups are better for AG than for AR. There is deterministic load balancing in the 
particular case of asynchronous gradient algorithms since we compute essentially a gradient at 
each iteration. The speedups of AG2 and AG4 increase with the granularity of tasks since 
there is deterministic load balancing and the ratio computation time over communication time 
increases with the granularity of tasks, it varies from 600 to 1300 for the asynchronous 
gradient algorithms implemented on 4 transputers. The ratio varies from 2000 to 20000 for 
the asynchronous relaxation methods. For a given problem a transputer which implements G 
stores about twice as much data in its memory as a transputer which implements AG2, so the 
percentage of data stored in the fast memory of the transputer is greater for AG2 than for G. 
This gives a first element to explain the speedups of AG2. AG2 is more efficient than AG4 
because for a given problem the granularity of tasks is greater for AG2 than for AG4. The 
delays k -  ~'j(k) are small for the AG methods, as an example they do not exceed 5 during 
the 20 first iterations of AG4 with problem of size 24. 
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