
Parallel Computing 19 (1993) 1019-1028 1019
North-Holland

PARCO 782

Practical aspects and experiences

Asynchronous implementation
of Relaxation and gradient algorithms
for convex network flow problems

Didier E1 Baz *

L4AS du CNRS, 7, avenue du Colonel Roche, 31077 Toulouse Cedex, France

Received 4 November 1992
Revised 16 November 1992

Abstract

We consider the single commodity strictly convex network flow problem. The dual of this problem is
unconstrained, differentiable, and well suited for solution via parallel iterative methods. We study the
implementation of parallel asynchronous relaxation and gradient algorithms on a transputer network. We
present and analyse computational experiments.

Keywords. Network flow problem; parallel implementation; asynchronous iterative methods; multitransputer
systems.

1. Introduction

We consider the single commodity strictly convex network flow problem. This problem
occurs in many domains: electrical networks, gas or water distribution, financial models, air
traffic control. Typically, nonlinear network flow problems require intensive computations
(see [29]). As a consequence the introduction of parallelism seems to be very attractive. We
concentrate here on the dual problem which is unconstrained, differentiable and well suited
for solution via parallel iterative methods. In recent papers (see [6,15, and 16]) we have shown
that the structure of the dual problem allows the successful application of parallel asyn-
chronous relaxation and gradient algorithms. In this paper we study the implementation of
parallel asynchronous relaxation and gradient algorithms on a transputer network, we present
and analyse computational experiments. The reader is also referred to [13] for preliminary
results and to [8] for implementation of approximate relaxation algorithms on the Allient
FX/8.

Section 2 deals with the single commodity convex network flow problem. Asynchronous
relaxation and gradient algorithms are presented in Section 3. Section 4 deals with the

* Corresponding author. Email: elbaz@laas.fr

0167-8191/93/$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

1020 D. El Baz

implementation of asynchronous iterative algorithms on a transputer network. Experimental
results are given in Section 5.

2. The single commodity convex network flow problem

We consider the single commodity convex network flow problem. Let G = (N, A) be a
connected directed graph. N is referred to as the set of nodes, A c N × N is referred to as
the set of arcs, and the cardinal number of N is denoted by n. Let cij : R ~ (- 0% + oo] be the
cost function associated with each arc (i, j). cii is a function of the flow of the arc (i, j) which
is denoted by f~j. Let d be the destination node for network traffic, b i >_ 0 the supply at node
i ~ N - { d } , and b d = --E~N_td}b~ the demand at d. The problem is to minimize total cost
subject to a conservation of flow constraint at each node

min E Cij(fij), (2.1)
(i , j)Eh

subject to

f i t - Y'~ fmi=bi , V i ~ N .
(i , j) ~A (m ,i) ~ A

We assume that problem (2.1) has a feasible solution. We also make the following standing
assumptions on ci~:
(a) ci~ is strictly convex, lower semicontinuous;
(b) the conjugate convex function of cii, defined by

Ci~'(tij) = s u p { t i j ' f u - - C i j (f i j) } , (2.2)
£ij

is real valued, i.e. - 0o < C~(tij) < + ~ for all real tiy.
Assumption (b) implies that lim irijl_~ci~(fij)= +oo. Therefore the objective function of

problem (2.1) has bounded level sets (see [25], Section 8). It follows that there exists an
optimal solution for problem (2.1) which must be unique in view of the strict convexity

* is continuously assumed in (a). From the strict convexity of c#, it follows also that c~j
differentiable and its gradient denoted by Vc*(t~j) is the unique f~ attaining the supremum in
(2.2) (see [25], pp. 218, 253).

A dual problem for (2.1) is given by

min q (p) , (2.3)
p E R n

subject to no constraints on the vector p = {pi/i ~ N}, where q is the dual functional given by

q (p) = ~_~ c * (p i - p j) - Y'~ bi 'p i. (2.4)
(i , j)~A i ~ N

We refer to p as a price vector and its components as prices. The ith price, Pi, is a Lagrange
multiplier associated with the ith conservation of flow constraint.

The duality between problems (2.1) and (2.3) is explored in great detail in [26]. The
necessary and sufficient condition for optimality of a pair (f , p) is given in [25]. A feasible
flow vector f = {fij /(i , j) EA} is optimal for (2.1) and a price vector p = {pi/i E N} is optimal
for (2.3) if and only if for all arcs (i, j) c A ,

Pi - P j is a subgradient of cij at fii.

Relaxation and gradient algorithms for convex network flow problems 1021

An equivalent condition is

fij = Vc*(Pi -Pj) , V(i, j) c A .

Any one of these equivalent relations is referred to as the complementary slackness
condition (see [25], pp. 337-338 and [6]).

Existence of an optimal solution of the dual problem can be guaranteed under the
following additional regular feasibility assumption (see [26], p. 360 and p. 329): there exists a
feasible flow vector, f = {fij/(i, j) cA}, such t ha t C'j_(fi j) < Woo and ci'j+(fi j) > - - ~ , for all
(i, j) c A , where c!,j_, respectively cij + , ' denotes the left, respectively the right, derivative of
cij. We note that the regular feasibility assumption is not overly restrictive. On the other hand
the optimal solution of the dual problem is never unique since adding the same constant to all
coordinates of a price vector p leaves the dual cost unaffected. We can remove this degree of
freedom by constraining the price of one node. We constrain the price of the destination node
Pd to be zero. Thus we consider the reduced dual optimal solution set P* defined by

P * = (p ' / q (p ') = m i n q (p) , p j = 0).
p

(2.5)

Clearly P* is nonempty. Consider n o w ~q/~Pi [p, from (2.4) it follows that

a~iPip= E ~Tc*(Pi--Pj)-- E 17c*i(Pm-Pi)-bi . (2 .6)
(i,j)EA (m,i)~A

3. Asynchronous iterative algorithms

Since the reduced dual problem is unconstrained and differentiable it is natural to consider
algorithmic solution by a descent iterative method. A relaxation method is interesting in this
respect since it admits a simple implementation. Given a price vector, p, a node i is selected
and its price Pi is changed to a value/~i such that the dual cost is minimized at/~i with respect
to the ith price, all others prices being kept constant (i.e. Oq/api = 0). The algorithm proceeds
by relaxing the prices of all nodes in cyclic order and repeating the process. We can associate
a mapping to this iterative procedure. The so-called relaxation mapping, F:R"-~ R", is
defined by F~(p)=/~i, i = 1 n. A gradient method admits also simple implementation.
Given a price vector p all prices Pi are changed to a value Pi ~-Pi- Ol. Oq/Opi[p, and this
process is repeated. We define the gradient mapping F : R n ~ R n, with components F~(p) =
Pi -- Or. ~q/~Pi] p"

Both relaxation and gradient algorithms are well suited for parallel implementation. The
prices p~, i = 1 n, can be updated concurrently by several processors. From (2.6) we
conclude that we need only local information (i.e. prices of adjacent nodes) to update a price.
Parallel relaxation and gradient algorithms are carried out according to a particular order and
need synchronization. Since synchronous operation requires some overhead and idle time due
to synchronization may be nonnegligible it is interesting to consider iterative schemes whereby
computations are carried out concurrently without any order neither synchronization, namely
asynchronous iterative methods. In brief, an asynchronous iterative algorithm relative to the
mapping F from R" onto itself is a sequence {p(k)} of vectors of R" defined as follows (see
[7], Section 6.1).

1 0 2 2 D. El Baz

We assume that there is a set of times T = {0, 1, 2 } at which one or more components
Pi of p are updated by some processor. Let T i be the set of times at which Pi is updated, we
have for i = 1 n:

_ _ i i Pi(k + 1) -F i (P l (' r l (k)) , . . . , pn (zn (k))), V k ~ T i,

p i (k + 1) =p i (k) , Vk q~ r i, (3.1)

where F i is the ith component of the mapping F, and for i = 1 n:
the set T i is infinite,

O < ~ ' j (k) < k , j = l , . . . , n , V k ~ T i,

if {k t} is a sequence of elements of T i that tends to infinity, then lim t _~®~-](k t) = + ~ for every
j.

We note that the restrictions imposed on asynchronous iterative methods are very weak: no
component of the iterate vector is abandoned forever and more and more recent values of the
components have to be used as the computation progresses. The advantages of asynchronous
iterative algorithms are implementation simplicity and computation flexibility. Since there are
no synchronization overhead, neither idle time due to synchronization, one may also hope
that asynchronous iterations converge faster than synchronous iterative methods. For further
details about asynchronous iterative algorithms the reader is referred to [3,5,7, and 21].

Convergence of asynchronous iterative algorithms has been established for many problems
(see [3-7,9,11,14-17, and 20-24]). Particular attention must be paid to the Asynchronous
Convergence Theorem of Bertsekas and Tsitsiklis (see [7], p. 431). This theorem is an original
and general result, it is also a powerful aid in showing convergence of asynchronous iterative
algorithms.

In the particular case of network flow problems the author has shown that the structure of
the dual problem allows the successful application of asynchronous relaxation methods (see
[6]) and asynchronous gradient algorithms (see [16]).

4. Implementation of asynchronous iterations

We have implemented a relaxation method (R), asynchronous relaxation methods (AR), a
gradient method (G), and asynchronous gradient methods (AG) on a multi transputer system.
The machine consists of a network of 5 transputers T800 with some local memory on a B008
board of Inmos. Transputer on slot 0 of the B008 board is used to begin the application and
to receive the results, the 4 other transputers are dedicated to the computations.

We have considered grid network flow problems. For each problem, there is only one
1 . 4 nonzero traffic input, say b I = 1, and the arc costs are cij(fi j) = z fij- A problem with 24

nodes and 37 arcs (called size 24) is shown in Fig. 1. We have chosen the same starting point
for the different problems: the subsolution Pi = O, Vi ~ N.

For R and AR, algorithm partitioning is made according to block red-black decomposition
of the grid. The rows are coloured alternately in red and black. Sets of adjacent rows are
assigned to the processors. In what follows, a task corresponds to the updating of the variables
of a row. So each processor has two sets of tasks, a red one and a black one. Processors
perform successively the red tasks and the black tasks.

For G and AG, sets of adjacent rows are assigned to the processors.
We have used a pipeline network of processors with bidirectional links. This topology

seems naturally well suited to grid network flow problems when few processors are available.

Relaxation and gradient algorithms for convex network flow problems 1023

b =1
1

.2

_#-~

- k . J

-k_J G
_f

_f - \

-G <

Fig. 1. Problem of size 24.

b pd=O

d

However the implementation proposed here can be extended without difficulties to other
network of processors topologies.

Asynchronous iterative methods (AR and AG), are implemented as follows. Two concur-
rent processes run simultaneously on each transputer: a low level priority process, the
so-called computation process, performs updatings and transmits the results to adjacent
processors, a high level priority process, the so-called buffer process, bufferises data sent by

1024 D. El Baz

processor 0

computation)

buffer.computation

computation .buffer

computation .buffer

buffer.computation

out

@
Fig. 2. Processes running on two transputers.

adjacent processors and transmits the data to the process computation when required. The
use of a buffer process in each processor permits to obtain asynchronous operation. The
processes running on each processor and the communication channels are shown in Fig. 2, in
the case of a network of two transputers, in that case, the implementation of asynchronous
iterative algorithms can be briefly described as follows with the Occam formalism:

P R O C asynchronous(VAL INT i, C H A N in, out)
CHAN buffer.computation, computation.buffer:
PROC buffer()

SEQ
. . . buffer.initialisation
W H I L E loop

ALT
. . . receipt.of.the.data.sent.by.a.neighbor
. . . service.of.computation.process

P R O C computation()
SEQ

. . . initialisation

. . . start
W H I L E cycle

SEQ
. . . consult.buffer.for.new.data
. . . updating
. . . transmission.of.the.updates.to.the.neighbors

Relaxation and gradient algorithms for convex network flow problems 1025

PRI PAR
buffer()
computation()

PLACED PAR i = 0 FOR 2
PROCESSOR i

asynchronous(i, in, out)

In the process computation, the process start is waiting for a keyboard character which is
transmitted via the upstream transputers. The computations are then started and the
character is transmitted to the downstream transputer. The process computation iterates on
the basis of the most recent data available in the buffer, in the beginning of each new
updating. The updated prices are transmitted to the buffer processes of adjacent processors.

In the process buffer, the process service.of.computation.process transmits the different
data received (keyboard character, results of an iteration, final results) according to the
control messages sent by the process computation. The buffer process is idle while it is waiting
for messages. All the cpu time is then allocated to the process computation, because the
scheduler of the Transputer is designed so that the idle processes do not consume cpu time
(see [19] and its references). The process buffer which has very fast elementary processes has
a higher level of priority than the process computation which consumes more time. Hence the
transmission of data from a process computation of a processor to a process buffer of a
neighbor is very fast and the transmitter is not delayed.

The reader is also referred to [10] and [18] for different types of implementation of
asynchronous iterative algorithms on transputer networks.

5. Computational experience

We present now computational experiments carried out on the transputer network. AR
and AG are implemented on 2 and 4 transputers (they are denoted by AR2, AR4, AG2 and
AG4, respectively). We have chosen a stepsize a = 10 -3 for the gradient methods and
relaxation steps are stopped when Oq/bPi < 5.10-3- Tables 2 and 5 show for the different
iterative methods the solution time in seconds for which all conservation of flow constraints
are satisfied with an error less than 10-~. The corresponding speedups are shown in Tables 3
and 6. The respective numbers of updatings for the different processors are shown in Tables 1
and 4.

Task scheduling is made according to static mode. The same number of tasks is allocated
to the different processors in the case of AR2 and AR4 except for AR4 in the special case of
problem of size 30, for which the number of tasks allocated to processors 0, 1, 2, 3, is
respectively 3, 2, 2, and 3. Tables 2 and 3 show that an asynchronous implementation can
speedup efficiently a relaxation method. When the nonlinear function cannot be minimized
analytically with respect to each price, asynchronous relaxation algorithms lead to indetermin-
istic load unbalancing. In the particular case of AR4, we note that processors which have two
neighbors, like processors 1 and 2, do less updatings than processors which have one
neighbor. A processor which has two neighbors receives more messages and has more
computation to do since the receipt of a price update moves the local optimum. The good
speedup of AR4 in the case of problem of size 30 can be explained by the fact that processors
which have two neighbors (i.e. 1 and 2) have less tasks than processors which have one
neighbor. As a comparison, when the number of tasks associated to processors 0, 1, 2, and 3 is

1026

Table 1
Numbers of updatings for R, AR2, and AR4

D. El Baz

Algorithm R AR2 AR2 AR4 AR4 AR4 AR4
processor 0 0 1 0 1 2 3

Size

24 7786 9149 7826 38 082 8698 7174 33 323
30 23 304 21531 22 967 43 215 19 344 23 312 38 071
36 46 018 35 585 48 485 119 415 36 074 42 453 107 772

Table 2
Times (s) of R, AR2, and AR4

Algorithm R AR2 AR4
Size

24 1251.88 724.74 533.20
30 6354.23 3385.68 1867.80
36 15 391.60 8441.54 5288.61

Table 3
Speedups of AR2 and AR4

Algorithm AR2 AR4
Size

24 1.72 2.35
30 1.88 3.40
36 1.82 2.91

Table 4
Numbers of updatings for G, AG2, and AG4

Algorithm G AG2 AG2 AG4 AG4 AG4 AG4
processor 0 0 1 0 1 2 3

Size

24 15710 15640 15670 17602 14396 14408 17192
36 31 153 31012 31066 32945 29362 29369 32983
48 51666 51426 51552 53 734 49 381 49 402 53 801

Table 5
Times (s) of G, AG2, and AG4

Algorithm G AG2 AG4
Size

24 241.71 120.94 62.42
36 737.70 366.46 187.03
48 1652.37 817.89 414.87

Table 6
Speedups of AG2 and AG4

Algorithm AG2 AG4
size

24 1.99 3.87
36 2.01 3.94
48 2.02 3.98

Relaxation and gradient algorithms for cont,ex network flow problems 1027

respectively 3, 3, 2 and 2, the number of updatings is respectively 49869, 16406, 30964, and
125683, the computation time is 2098,43 s and the speedup is 3.03. An equal number of tasks
for the different processors does not guarantee to obtain the best speedup. Finally we note
that the delays k - ~-j(k) may be great for AR4.

Tables 2 and 5 point out that for medium and large scale convex network flow problems, G
is faster than R and AR. We conclude that AR will not be very efficient for convex network
flow problems even with massive parallelism unless there is special structure that makes each
price relaxation particularly easy as in the quadratic case, w h e r e cij(fi j)= a "fi 2 (see [28]).
Tables 5 and 6 point out that an asynchronous implementation speeds up very efficiently G.
Task scheduling was also made according to a static mode. The same number of tasks is
allocated to the different processors in the case of AG2 and AG4. We note also that the
speedups are better for AG than for AR. There is deterministic load balancing in the
particular case of asynchronous gradient algorithms since we compute essentially a gradient at
each iteration. The speedups of AG2 and AG4 increase with the granularity of tasks since
there is deterministic load balancing and the ratio computation time over communication time
increases with the granularity of tasks, it varies from 600 to 1300 for the asynchronous
gradient algorithms implemented on 4 transputers. The ratio varies from 2000 to 20000 for
the asynchronous relaxation methods. For a given problem a transputer which implements G
stores about twice as much data in its memory as a transputer which implements AG2, so the
percentage of data stored in the fast memory of the transputer is greater for AG2 than for G.
This gives a first element to explain the speedups of AG2. AG2 is more efficient than AG4
because for a given problem the granularity of tasks is greater for AG2 than for AG4. The
delays k - ~'j(k) are small for the AG methods, as an example they do not exceed 5 during
the 20 first iterations of AG4 with problem of size 24.

References

[1] G. Authie, Contribution ?~ l'optimisation de flots dans les r6seaux, Un multiprocesseur experimental pour 1"Etude
des iterations asynchrones, Th~se de Doctorat d'Etat, UPS Toulouse, 1987.

[2] R.H. Barlow and D.J. Evans, Synchronous and asynchronous iterative parallel algorithms for linear systems,
Comput. J. 25 (1982) 56-60.

[3] G.M. Baudet, Asynchronous iterative methods for multiprocessors, J. Assoc. Comput. Mach. 2 (1978) 226-244.
[4] D.P. Bertsekas, Distributed dynamic programming, IEEE Trans. Auto. Contr., AC-27 (1982) 610-616.
[5] D.P. Bertsekas, Distributed asynchronous computation of fixed points, Math. Programming 27 (1983) 107-120.
[6] D.P. Bertsekas and D. El Baz, Distributed asynchronous relaxation methods for convex network flow problems,

SlAM J. Control Optimization 25 (1987) 74-85.
[7] D.P. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation, Numerical Methods (Prentice Hall,

Englewood Cliffs, NJ, 1989).
[8] E. Chajakis and S.A. Zenios, Synchronous and asynchronous implementations of relaxation algorithms for

nonlinear network optimization, Parallel Comput. 17 (1991) 873-894.
[9] D. Chazan and W. Miranker, Chaotic relaxation, Linear Algebra Appl. 2 (1969) 199-222.

[10] D. Conforti, R. Grandinetti, R. Musmano, M. Cannataro, G. Sezzano and D. Talia, A model of efficient
asynchronous parallel algorithms on multicomputers systems, Parallel Comput. 18 (1992) 31-45.

[11] R. De Leone and O.L. Mangasarian, Asynchronous parallel successive overrelaxation for the symmetric linear
complementarity problem, Math. Prog. B 42 (1988) 347-361.

[12] D. E1 Baz, Mise en oeuvre d'algorithmes it~ratifs distribu6s asynchrones sur un r6seau de Transputers, Lettre du
Transputer et des Calculateurs Distribu~s 3 (1989) 31-40.

[13] D. El Baz, A computational experience with distributed asynchronous iterative methods for convex network flow
problems, Proc. 28th IEEE Conf. on Decision and Control (Tampa, FL, 1989) 590-591.

[14] D. El Baz, M-functions, and parallel asynchronous algorithms, SIAMJ. Numerical Anal, 27 (1990) 136-140.
[15] D. El Baz, Asynchronous iterative algorithms for convex network flow problems, Proc. European Control Conf.

(Grenoble, France, 1991)2397-2402.

1028 D. El Baz

[16] D. El Baz, Distributed asynchronous gradient algorithms for convex network flow problems, to appear in Proc.
31 st IEEE Conf. on Decision and Control (Tucson, AZ, 1992) 1638-1642.

[17] M.N. El Tarazi, Some convergence results for asynchronous algorithms, Numeriseh Math. 39 (1982) 325-340.
[18] L. Giraud and P. Spiteri, R6solution parallble de probl~mes aux limites non lin6aires, MMAN 25 (1991)

579-606.
[19] C. Jesshope, Parallel processing, the transputer and the future, Microprocessors and Microsystems 13 (1989)

33-37.
[20] S. Li and T. Basar, Asymptotic agreement and convergence of asynchronous stochastic algorithms, IEEE Trans.

Auto. Contr. AC-32 (1987) 612-618.
[21] J.C. Miellou, Algorithmes de relaxation chaotique ~ retards, RAIRO R1 (1975) 55-82.
[22] J.C. Miellou, It6rations chaotiques ~ retards, 6tude de la convergence dans le eas d'espaces partiellement

ordonn6s, C.R~A.S. Paris 280 (1975) 233-236.
[23] J.C. Miellou, Asynchronous iterations and order intervals, in: M. Cosnard ed., Parallel Algorithms and Architec-

tures (North-Holland, Amsterdam, 1986) 85-96.
[24] J.C. Miellou and P. Spiteri, Un crit~re de convergence pour des m6thodes g6n6rales de point fixe, R.A.1.R.O.

MMAN 19 (1985) 645-669.
[25] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1970).
[26] R.T. Rockafellar, Network Flows and Monotropic Optimization (Wiley, New York, 1984).
[27] P. Tseng, D.P. Bertsekas and J.N. Tsitsiklis, Partially asynchronous parallel algorithms for network flow and

other problems, SIAM J. Control and Optimization 28 (1990) 678-710.
[28] S. Zenios and R. Lasken, The Connection Machines CM-1 and CM-2: Solving nonlinear network problems,

Proe. Internat. Conf. on Supereomputing (St Malo, France, 1988) 648-658.
[29] S. Zenios and J. Mulvey, A distributed algorithm for convex network optimization problems, Parallel Comput. 6

(1988) 45-56.

