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Abstract 
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In this paper we propose a new approach for solving optimal routing problems in packet-switched networks, a 
particular class of multicommodity con,.ex network flow problems. The method developed here is designed to 
obtain a good rate of convergence while maintainiag algorithmic simplicity and making effective use of parallel 
computing facilities. 
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1. Introddction 

in a packet-switched communication network, messages sent by computers are segmented 
into short bit strings called packets. Packets are transmitted through the network as individual 
entities. When packets arrive at a node, they wait in queues for their turn to be transmitted 
on the next link in their path. Packets are reassembled into messages at the destination. In 
general a number of different paths are available for the flow of packets. Thus an important 
problem in packet-switched communication networks is the routing problem. This problem 
consists of obtaining an assignment of routes to the packets which is optimal according to 
some cost criterion. Minimum average message delay is the most frequently used criterion in 
the literature. 

The formulation of a mathematical model for the routing problem was given by Kleinrock 
([17.], see also [13]). The optimal routing problem belongs to the class of multicommodity flow 
problems. The development of algorithms and software for optimal routing is an area of 
active research. Schwartz and Cheung [20] and Bertsekas [3] have studied, respectively, 
gradient and Newton projected primal methods, Fratta et al., [10] and Bertsekas and Gallager 
[4] have proposed flow deviation methods. Rockafellar [19] and Stern [21] have presented 
essentially dual methods. Authie [1] has studied a primal dual method. Distributed or parallel 
a'gorithms have also been proposed to solve multicommodity network flow problems (see [4, 
7, 22 and 23]). 

In this paper we propose a new approach for solving optimal routing problems in 
packet-switched networks. The method developed here is designed to obtain good rate of 
convergence while maintaining algorithmic simplicity and making effective use of parallel 
computing facilities. Most of the methods that can be found in the literature have the 
property that they allow multicommodity network flow problems to be decomposed into a set 
of smaller optimization problems at each major iteration (see [21, 19, 4, and 7]). These smaller 
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problems correspond to single-commodity network flow problems. One of the main features 
of the method presented in this paper is that it deals simultaneously with all commodities. 
The method presented here is a parallel dual method which takes advantage of the fact that 
the Lagrangian function can be decomposed by arcs. Minimization of the elementary 
Lagrangians is made by a quasi-Newton method and the dual functional is maximized by 
means of a modified approximate Newton method. The decomposition of the Lagrangian and 
the use of an approximate Newton method based on a block iterative algorithm render the 
dual method well suited for implementation on parallel computers or distributed systems. 

The formulation of the problem is given in Section 2. Section 3 presents the dual method. 
Section 4 deals with the parallel dual method. A computational experience oa a Transputer 
based distributed memory multiprocessor T-node 16-32 is presented in Section 5. 

2, Problem formulation 

Consider a directed graph with n nodes and a arcs. The graph incidence matrix is denoted 
by A. Let D -- {d I . . . . .  d c} be the set of destination nodes for network traffic. Let b k be the 
average traffic input or output at node i associated with commodity k. Let f k be the flow on 
arc j destined for d k and Fj = E~,ffi l f f  the total flow on arc j. Throughout the paper we 
adopt the following notational conventions: 

b k ( b k , . .  k t f k  k t 
= . , b , ) ,  = ( I ~ , . .  I= 

.,r~.), (s I', .... rc') ', 

= . ,~), p=(p,,...,~o>. 
The optimal routing problem can be stated as: 

a 

min ~ gj(Fj), (1) 
. , F j f f i l  

i 

subject to A f  k - b k = O, k ffi 1 . . . .  , c,  

a n d f f > O ,  j f f i l , . . . , a ,  k - - l ,  . . . .  c. 

In the case most commonly used in the packet-switched network literature (see [13] and 
[21]) we have: 

~ • for j - -1 , . . . , . , g ; (~ )=  cj ~ +rj ~, 

if ~_<Cj and ~ k > 0 ,  k = 1 , . . . , c ,  and g~(F;) ffi + ~  elsewhere. 

The criterion is proportional to the message delay in the network averaged over all 
messages. This delay is computed under Kleinrock's [12] assumptions of independent Poisson 
arrival statistics and exponential message length distributions at each node. Moreover, for 
simplicity, it is assumed here that messages for all source-destination pairs have the same 
distribution with average message length equal to one bit per message. The term 1 / ( C j  - Fj) 
represents the average queuing and processing delay in the buffer. ~ is the vropagation time 
along link j and C~ is the link capacity. In this paper we consider the following modified form 
of the cost function gj: 

1 I g~(~)-- c _ ~ + r j  .~.+r. +r"  E(f2)'~, r>0, r '>0. 
k = l  \ J ~  kffil 
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With the addition of quadratic and inverse terms gi is converted to a strictly convex a n d  
continuously differentiable function of ~ .  We note also that gi is twice continuously 
differentiable. With r and r '  sufficiently small the additional terms will not significantly alter 
the solution of problem (1). We remark that problem (1) is partially separable. 

A dual problem is given by: 

max q ( p ) ,  (2) 

where q: R n×~ ---, R is the dual functional given by 

q(p) f m i f n ( ~ g j ( f i ) -  ~ p k ' ( A f k - - b k ) ) ,  (3) 
y=l k=l 

where pk = (pk  I . . . .  , p~) is referred to as the (row) vector of Lagrange multipliers associated 
with conservation of flow constraints relative to commodity k. The vector p = (p~ . . . . .  p~), is 
also referred to as a price vector and its components pff as prices. 

Adding the same constant to all coordinates of vec tor  pk leaves the dual cost unaffected. 
We can remove these c degrees of freedom by constraining the price of c nodes. Problem (2) 
is then strictly concave, twice continuously differentiable and subject to no constraints on the 
vector p (see [18], Section 26). We have chosen to constrain prices p~, k = 1 . . . . .  c, to be zero. 

The dual of a nonlinear programming problem is generally not easier to solve than the 
primal problem. However, for the optimal routing problem, which is partially separable, a 
dual method presents many advantages as wt~ will see in the next two sections (see also the 
recent papers of Buckers [6] and Lootsma i14]). 

3. A dual method 

We first reorder the components of vectors f ,  p and b in order to facilitate the 
computations in the optimization process. Components of f,  p and b are regrouped by arcs. 
Hence the dual functional can also be written: 

q ( p ' )  = n~in ( ~  ( g i ( f j ) - P " B ( J ) ' f j ) ) + p ' . b ' ,  (4) 
]=1 

where f '  = (f~, . . . .  f t) , ,  p, __ (pl . . . .  , P,,- l), with Pi = (P/~ . . . . .  p~), b' -- (b~,. . . ,  b~_ 1)', with 

bi (b~ ct  ( B ' ( J )  I . . .  ffi , . . . .  b i ) ,  a n d B ( j )  ffi Bn-l(J) 

is a ((n - 1)" c × c) matrix with blocks Bi(j) = I, the (c x c) identiq,' matrix, if arc j is directed 
outbound from node i, Bi(j) --- -I,  if arc j is directed inbound to i, Bi(j) = O, the (c x c) null 
matrix if arc j is not incident to node i ((.)t denotes transpose). 

We use a modified approximate Newton algorithm in order to solve ;::he dual problem (see 
in particular [11,15 (p. 281), and 9]). However, let us consider first the minimization of the 
Lagrangian. We note that the Lagrangian presents the good property to be decomposable into 
elementary Lagrangians which are all relative to a particular arc. We have chosen to minimize 
elementary Lagrangians by means of the Broyden Fletcher Goldfarb Shanno (BFGS) quasi- 
Newton method (for a complete study of quasi-Newton methods, reference is made to [8]). 
The BFGS method gives f ' (p') ,  the unique value of f '  which minimizes the strictly convex 
Lagrangian, it gives also a symmetric, positive definite apl2roximation, H, of the inverse of the 
Hessian, with respect to f ' ,  of the Lagrangian at point f ' (p') .  
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Qffi. 

BI(1)  • H 1 • BT(1) + . . .  + 

B ca) Ha BT a) 

BI(1)  • H I. BI(1) + . . .  ÷ 

Bl(a). H a . B~'(a) 

Bn. l ( .~) .  H l • BIT(l) + . . .  ÷ 

Bn.l(a) • H a • BIT(a) 

Fig. 1. Hessian dual  matrix. 

BI(1). H I . B T I ( I ) + . . . ÷  

6n.1(]) • H l • BTn40)+. . .  

+ B n l(a). H a • B T l(a) 

Let us consider now the solution of the dual problem by means of an approximate Newton 
algorithm. 

The iterative algorithm starts at an arbitrary point pO. 
The vector flow, f ' ( p ' ) ,  which minimizes the Lagrangian, is obtained by means of the 

BFGS method. Hence, we can compute the gradient of the dual functional, which is given by: 

Vp,q( p ' )  -=- ( - B  " f ' (  p ' )  + b')  t, (5) 

where B is the ((n - 1). c x a .  c) matrix with blocks Bi(j). 
We can also compute a symmetric, negative definite approximation, Q, of the Hessian of 

the dual functional, where Q is given by: Q ffi - B  . H . B  t (see [17] and [15], p. 281). 
We note that the computation of Q is very easy since the blocks Bi(j) of matrix B are 

identity, minus identity, or null matrices. Matrix Q is represented on Fig. 1 (Hi denotes the 
inverse of the Hessian of the elementary Lagrangian relative to arc j). 

Then, we can solve approximately the system: 

d .  Q ffi - Fp,q(p') ,  (6) 

by an underrelaxed block Jacobi algorithm and we can compute a new price vector: 

p ' + d .  

We note that the underrelaxed block Jacobi algorithm iterates on vector d according to 
i "d t Vp,q(p')" d t. If the block Jacobi algorithm directions which minimize the cost - ~.  d .  Q - 

is initialized with d ffi 0 and if the relaxation parameter is sufficiently small, it will converge 
(see [5], p. 154) and we will have: 

I . d  k --~ " Q ' d k t - 1 7 p , q ( p ' ) ' d k t < o ,  Yk ,  

and since - Q  is positive definite we have: 

Vp,q(p').dk'> 0, Vk, 
and d k is an ascent direction whatever k (see [5], p. 202). 
This approximate Newton algorithm will be referred to in the following as Algorithm 1. 

If we compute only the diagonal blocks of the approximation matrix Q we obtain a second 
approximation matrix, Q' of the Hessian matrix and a second algorithm referred to in the 
following as Algorithm 2. In this case the linear system: 

d " Q' ffi - Vp,q( p ' ) ,  
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Fig. 2. Network topology. 
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is constituted by n independent subsystems and we can apply directly the Cholesloy method 
instead of a block Jacobi algorithm. 

4. Parallel dual method 

The decomposition of the Lagrangian and the use of an approximate Newton method 
based on a block-Jacobi algorithm (for the solution of the dual problem) allow implementa- 
tion of the dual method on parallel computers. A degr"e of parallelism can be introduced in 
both the minimization of the Lagrangian and the linear algebra of the approximate Newton 
method. The algorithm is partitioned into tasks that can be executed by different processing 
units. We have chosen a partition of the algorithm that tends to minimize data communica- 
tions between processors. This partition results from the decomposition of the network into 
subnetworks, each subnetwork being associated with a processor. 

Each subnetwork contains a set of nodes cailecl main nodes. Any two different subnetworks 
do not share any main node. Each subnetwork contains also ~ set of arcs called main arcs. A 
main arc connects two main nodes of the same subnetwork. ,~cs  between two main nodes of 
different subnetworks are called border arcs. A border arc is assigned to one and only one 
subnetwork. Auxiliary nodes are created in order to assign an origin or a destination to a 
border arc. We note that each subnetwork is connected. For each network topology, we look 
for a decomposition of the network which balances the number of main nodes and the 
number of arcs in each subnetwork and which minimizes and balances the number of main 
nodes of other subnetworks which are connected to the main nodes of each subnetwork. This 
strategy will tend to balance the computation and communication loads. Figure 2 shows a 
mesh network with 16 nodes and 24 arcs. An example of decomposition of the network of Fig. 
2 is given in Fig. 3, where auxiliary nodes and border arcs are represented, respectively, by 
thick cycles, and arrows. 

Each processor implements the dual method presented in Section 3 on its own subnetwork. 
Clearly the minimizations of the elementary Lagrangians can be made independently. How- 
ever, the maximization of the dual functional requires data communication between the 
different processors and synchronization of the processors. The data transferred between 
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Fig. 3. Partition of the network for 4 processors. 

processors are relative to flows which minimize elementary Lagrangians, inverse Hessians of 
elementary Lagrangians and prices. 

Concerning the computation of the gradient of the dual functional, data communications 
are similar for Algorithms 1 and 2. Each processor sends partial calculus of the gradient 
component relative to an auxiliary node to the neighbor which possesses this node as a main 
node. This neighbor sends, in turn, complete calculus of the gradient component relative to 
this node to all neighbors which posses this node as an auxiliary node. The complete calculus 
consists of the sum of all partial calculus relative to a particular node. 

As concerns the computation of an approximation of the Hessian of the dual functional, 
data communications are different for Algorithms 1 and 2. For Algorithm 1, each processor 
T,., sends partial calculus of the block line, Q~, of matrix Q, relative to an auxiliary node j, to 
its neighbor which possesses node j as a main node. This neighbor, in turn, computes the 
complete block line of Q, relative to node j, by making the sum of all block lines relative to j. 
Figure 4 shows (for the decomposition shown in Fig. 3) the block lines of each processor and 
data communications. For Algorithm 2, block lines are replaced by blocks. 

We consider now the connected network obtained by joining up again each subnetwork 
without auxiliary nodes. This network is similar to the original network and it is constituted by 
main nodes, main arcs and border arcs. Concerning the approximate solution of linear system 
of equations (6), for Algorithm 1, each processor, T~, sends to its neighbors, Tj, at each 
iteration k, the value d~ relative to main nodes l of T/ which are connected to a node of Tj 
by a border arc. When the iteration process terminates, each processor computes the prices of 
its raain nodes and the prices of the main nodes of other processors which are connected to 
its main nodes by a border arc. 

We recall that Algorithm 2 uses a direct method for the solution of the linear system of 
equations. However, in order to minimize elementary Lagrangians relative to border arcs, 
each processor needs to receive from its neighbors the prices of its auxiliary nodes. 
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5. Computational experience 

Experiments with the dual method were carried out on a T-node 16-32 multiprocessor, 
which is a Transputer based distributed memory machine. Table 1 gives the numbers of 
iterations, computational times, speedups, and efficiencies obtained with 1, 2, 4, and 8 
processors for a mesh network with 16 nodes, 24 arcs, and 3 commodities. Tahle~ 2, 3 a,d_ .4 
give, respectively, the corresponding results for mesh networks with 16 nodes, 24 arcs, and 5 
commodities, 38 nodes, 66 arcs, and 3 commodities, and 48 nodes, 82 arcs, and 3 commodities. 
In particular network topology for problem 1 and 2 is given by Fig. 2. For each problem we 
have tried to balance the number of main nodes and the number of arcs in each subnetwork 
and to minimize the number of main nodes of other subnetworks connected to the main 
nodes of each subnetwork. The network topologies of the distributed memory multiprocessor 
for 4 and 8 processors are also mesh netwerk topologies. 

Tables 1, 2, 3 and 4 show that Algorithm 2 is faster than Algorithm 1. Clearly, Algorithm 2 
needs to approximate only the diagonal blocks of the Hessian of the dual functional. 
Moreover, in the case of Algorithm 2, Eq. (6) i.~ equivalent to n - 1 independent systems of c 
eouations, which is more easy to solve than a system of (n - 1)-c equations, as is the case for 
A;gorithm 1. 
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Fig. 4. Partial block lines of the dual Hessian and data communications. 
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Table 1 
Computational results for problem 1 

Number of processors ! 2 

A objective value 18.289 18.291 

! dine (sec) 5~6.10 355.24 

g iterations 693 669 

speed-up 1.59 

I efficiency !.0 0.79 

A objective value 18.29 18.29 

1 time (sec) 356.7 217.47 

g iterations 715 724 

speed-up 1.64 

II efficiency 1.0 0.82 

4 8 

18.29 18.291 

199.84 112.64 

685 687 

2.83 5.03 

0.70 0.63 

18.29 18.29 

131.79 77.09 

726 726 

2.71 4.63 

0.68 0.58 

We note that parallel implementation speeds up efficiently Algorithms 1 and 2. The 
efficiencies are close to 0.65. Other computational experiences ([16 and 7]) show that parallel 
algorithms for nonlinear optimization problems have in general an efficiency close to 0.65. 
This is mainly due to difficulties of load balancing for iterative nonlinear algorithms. The 
efficiency decreases as the number of processors increases, because the number of communi- 
cations and synchronizations increases. 

The speedups are in general better for Algorithm 2 than for Algorithm 1 because 
Algorithm 1 needs a higher amount of synchronization and communication than Algorithm 2. 
Exceptions may occur because of the difficulties of load balancing, in particular for the 
minimization of elementary Lagrangiar, s. 

Table 2 
Computational results for problem 2 

Number of processors 

A objective value 

1 time (sec) 

g iterations 

speed-up 

I efficiency 

A objective value 

I time (sec) 

g iterations 

speed.up 

II efficiency 

I 2 4 8 

27.497 27.497 27.497 27.497 

1250.94 842.13 443.697 267.17 

835 870 852 857 

1.49 2.82 4.68 

1.0 0.75 0.70 0.58 

27.4% 27.4% 27.498 27.49 

905.86 577.58 321.06 205.57 

896 1010 981 1010 

1.57 2.82 4.41 

!.0 0.78 0.70 0.55 
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Table 3 
Computational results for problem 3 

Number of processors 1 

A objective value 29.521 

1 time (scc) 5857.88 

g iterations 1305 

speed-up 

I efficiency 1.0 

A parallel optimal routing algorithm 

2 4 8 

]29.522 ;29.522 29,522 

$064.75 2736.31 1465.81 

1406 1404 1346 

135 2.5 4.68 

0.675 0.625 0.585 

1401 

A 
1 
g 

Ii 

objective value 29.525 29.526 29.526 29.526 

time (see) 2427.17 1700.68 849.87 437.85 

iterations 2177 2250  2209 1957 

speed-up 1.43 2.86 5.54 

efficiency 1.0 0.71 0.71 0.69 

Table 4 
Computational results for problem 4 

Number of processors 

A 
I 
g 

objective value 

time (sec) 

iterations 

SlXed-up 

I efficiency 1.0 

A objective value 35,72 

1 time (sec) 2995,S 

g iterations 2230 

sired-up 

II efficiency 1.0 

I 2 4 8 

35.71 35.71 35.71 35.71 

11275.3 8445.9 4517.5 2315.26 

1268 1410 1488 1319 

..... 1.34 25 4.87 

0.67 0.62 0.61 

35.72 35.72 35.72 

1833.75 1057.89 574.0 

2169 2274 2238 

1.63 2~83 5.22 

Oil 0.71 0.65 

We note also that  Algorithm 2 needs  more iterations than Algorithm 1 in order to 
converge. We see that  the number  of iterations varies with the number  of processors. This is 
due to the fact that  the order  in which the components  of vector d are reactualized varies 
with the number  of processors. 
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