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Abstract: In this paper, constraint rotation techniques are considered for 
preconditioning 0–1 knapsack problems. These techniques permit one to 
generate new inequalities by means of rotation of the original ones in order  
to approach the convex hull associated with the feasible integer points. The 
time and space complexities of Kianfar’s inequality rotation algorithm for 

combinatorial problems are improved. A revisited algorithm with O( )nC  and 
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where C  is smaller than the knapsack capacity. 
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1 Introduction 

We concentrate on combinatorial problems of the following form: 

{ }
= =

⎧ ⎫
⏐ ≤ = ∈ =⎨ ⎬

⎩ ⎭
∑ ∑

1 1

max , 1,... ; 0,1 , 1,...., ,
n n

j j ij j i j
j j

p x w x C i m x j n  (1) 

where iC  denotes the capacity of the i-th knapsack; m and n the number of knapsacks 

and items, respectively; jp  the profit associated with the j-th item; and ,i jw  the weight 

of the j-th item in the i-th knapsack (see Kellerer et al., 2004; Martello and Toth, 1990; 
Wolsey, 1998). Without loss of generality, we assume that all data are positive integers. 

In order to avoid trivial solutions, we assume that we have: 
=

> =∑ 1
, 1,..., ,

n

i j ij
w C i m  and 

≤ij iw C  for all i ∈{1... m} j ∈{1, ...,n}. 

Many real-world applications can be formulated as problem (1) (see Gavish and 
Pirkul, 1982; Thesen, 1973; Yang, 2001; Kacem, to appear). Problem (1) is well known 
to be NP complete. Some multi-knapsack problems may be very difficult to solve. In 
some cases, a new formulation of a problem that is intractable in reasonable time permits 
one to solve it more easily. Among the techniques that can be used to reformulate 
problems, we can quote coefficient reduction (see Bradley et al., 1975), facets (see 
Wolsey, 1976) and rotation techniques (see Kianfar, 1971). 

Constraint rotation techniques allow one to get tighter equivalent formulations of 
integer linear programming problems (see Kianfar, 1971; 1976). These techniques permit 
one to generate new inequalities by means of rotation of the original ones in order to 
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approach the convex hull associated with the feasible integer points. These methods are  
generally used as a preconditioning. The basic principle of constraint rotation techniques 
can be presented as in the following equations. For simplicity of presentation, constraints 
will be denoted in the following form in the sequel: 

=

= ≤∑
1

,
n

j j
j

wx w x C  (2) 

with ,C ∈ *,jw N  j ∈  {1, ...,n}, { } =
≤ ∑ 1

max <
n

j j jj
w C w and ∈x S  where 

{ }{ }= ∈ | ≤0,1 .
n

S x wx C  (3) 

We now introduce the following convex polyhedra related to S: 

[ ]
1

0,1 .
=

⎧ ⎫
= ∈ | ≤⎨ ⎬

⎩ ⎭
∑

n
n

j j
j

S x w x C  (4) 

The rotation of Inequality (2) consists in moving the hyperplane: 

=

= =∑
1

,
n

j j
j

wx w x C  (5) 

in such a way that the new hyperplane: 

=

= =∑
1

ˆ ˆ ,
n

j j
j

wx w x C  (6) 

passes through more integer points in the space S  than the original one, so that we obtain 
a stronger inequality if it is possible. More precisely, the problem consists in obtaining 
the largest integer ˆ iw if it exists such that >ˆ

i iw w and Si = S, where: 

{ }
= ≠

⎧ ⎫
= ∈ | + ≤⎨ ⎬

⎩ ⎭
∑
1,

ˆ0,1 .
n

n

i j j i i
j j i

S x w x w x C  (7) 

This process is repeated for all i ∈ {1,..., }n . Finally, we have: 

{ }
=

⎧ ⎫
= = ∈ | ≤⎨ ⎬

⎩ ⎭
∑

1

ˆ ˆ0,1 .
n

n

j j
j

S S x w x C  (8) 

Let us now define the following sets: 

[ ]
1

ˆ ˆ0,1 ,
=

⎧ ⎫
= ∈ | ≤⎨ ⎬

⎩ ⎭
∑

n
n

j j
j

S x w x C  (9) 

{ }{ }= ∈ | =0,1 ,
n

H x wx C  (10) 

{ }{ }= ∈ | =ˆ ˆ0,1 .
n

H x wx C  (11) 
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The sets H and ˆ ,H  denote the intersections of the set S with the hyperplanes wx = C and 

=ˆ ,wx C  respectively. Then, we have (see Kianfar, 1971; 1976): 

⊂Ŝ S and ⊂ ˆ .H H  (12) 

Thus, the first relation implies that constraint rotation will permit one to obtain a stronger 
inequality, i.e., the domain may be smaller, though it contains the same integer points. 
The second relation traduces the fact that the new constraint passes through as many 
integer points as possible. 

In Section 2, we recall first the principles of the constraint rotation algorithm 
proposed by Kianfar (see Kianfar, 1971; 1976). Then, we propose a revisited algorithm 
which improves the time and space complexities. Section 3 provides a brief conclusion. 

2 Efficient inequality rotation algorithm 

In this section, we present an efficient algorithm which performs constraint rotation  
with improved time and space complexities, as compared with Kianfar’s method (see 
Kianfar, 1971; 1976, see also Elkihel, 1984). 

2.1 Constraint rotation technique 

We first present the principles of the constraint rotation algorithm proposed by Kianfar. 
The technique used consists in performing coefficient modifications of Constraint (2) 
recursively as follows, starting from the n-th component, denoted by xn, to the first one, 
denoted by x1. We concentrate first on component xn and consider the problem: 

1 1

1 1

( ) max | , {0,1}, {1,..., 1} .
n n

j j j j n j
j j

v n w x w x C w x j n
− −

= =

⎧ ⎫
= ≤ − ∈ ∈ −⎨ ⎬

⎩ ⎭
∑ ∑  (13) 

If < −( ) ,nv n C w  then constraint rotation is performed and nw  takes the new value ŵn 

such that: 

ˆ ( ( )) ( ),n n nw w C w v n C v n= + − − = −  (14) 

so that the new hyperplane contains at least one integer point with = 1.nx  Otherwise, the 

value of wn remains unchanged. For 1,= −k n − 2,...,2,n  consider now this series  
of problems: 

1 1

1 1 1 1

ˆ ˆ| ,
( ) max .

{0,1}, {1,..., 1} { 1,..., }

k n k n

j j j j j j j j k
j j k j j k

j

w x w x w x w x C w
v k

x j k k n

− −

= = + = = +

⎧ ⎫
+ + ≤ −⎪ ⎪= ⎨ ⎬

⎪ ⎪∈ ∈ − +⎩ ⎭

∑ ∑ ∑ ∑
∪

 (15) 

If < −( ) ,kv k C w  then one performs rotation of constraint and kw  takes the value ˆ ,kw  

given as follows: 

ˆ ( ( )) ( ),k k kw w C w v k C v k= + − − = −  (16) 
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in such a way that the new hyperplane contains at least one integer point with = 1.kx  

Otherwise, one does not change the value of wk This process is repeated till k = 2.  
For k = 1: 

1
2 2

ˆ ˆ(1) max | , {0,1}, {2,..., } .
n n

j j j j j
j j

v w x w x C w x j n
= =

⎧ ⎫
= ≤ − ∈ ∈⎨ ⎬

⎩ ⎭
∑ ∑  (17) 

If v(1) < C – w1, then constraint rotation is performed and w1 takes the new value ŵ1.  
such that: 

( )( ) ( )= + − − = −1 1 1
ˆ 1 1 ,w w C w v C v  (18) 

so that the hyperplane will contain at least one integer point with x1 = 1. Otherwise, in a 
way similar to the situations quoted above, the value of w1 remains unchanged. 

We recall that the Kianfar algorithm, which is based on the above technique,  
has O 2( )n C time complexity and O( )nC  space complexity (see Kianfar, 1971; 1976). 

In the next subsection, we propose a revisited constraint rotation algorithm based on 
dynamic programming with improved time and space complexities. 

2.2 Revisited constraint rotation algorithm 

The algorithm relies on the technique presented in the previous subsection. Components 
will be computed using the dynamic programming list method. The algorithm is 
decomposed into two steps. In the first step, Problem (13) is solved using the dynamic 
programming list method (see Ahrens and Finke, 1975; Plateau and Elkihel, 1985). The 
list generated by the first step is used in order to prepare computations performed during 
the second step, where series of Problems (15), 1, 2,...,2= − −k n n  and (17), for = 1,k  
are solved using the dynamic programming list method. 

Step 1 

The dynamic programming list method proposed by Ahrens and Finke (see Ahrens and 
Finke, 1975) is based on the concepts of list and dominance. In Step 1, we shall 
recursively generate lists kL of pairs (w, p), 1,2,... , 1,= −k n  where w is a weight and 

≤p k is the dynamic programming stage number at which pair (w, p) was created. 

Initially, we have =0 {(0,0)}L . 

Let us define first the set Nk of new pairs generated at stage k, where new pairs result 
from the fact that a new item, i.e., the k-th item, was taken into account. We have: 

( ) ( ){ }−= + ∈ + ≤1, | , , ,k k k kN w w k w p L w w C  (19) 

where 

{ }∈
= −

1,...,
min .jj n

C C w  (20) 

Note that C  is introduced here in order to diminish the total work. According to  
the dominance principle, which is a consequence of Bellman’s optimality principle,  
all pairs −∈ 1( , ) k kw p L N∪ obtained by construction such that there exists a pair  
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1( , ) ,−∈ k kw p L N' ' ∪  which satisfies: '=w w and ' < ,p p must not belong to a list .kL  In 

this case, we usually say that the pair ' '( , )w p  dominates the pair ( , ).w p  Thus, we can 

define as follows the set kD of dominated pairs at stage k: 

( ) ( ) ( ){ 1 1, | , , ,k k k k kD w p w p L N w p L N− −= ∈ ∪ ∃ ′ ′ ∈ ∪  with (21) 

}' '= <,w w p p  

For all positive integers ,k  the dynamic programming recursive list kL is defined  

as follows: 

1 .k k k kL L N D−= −∪  (22) 

Note that the lists kL  are organised as sets of monotonically increasing ordered  

pairs by weight. From the list −1nL  we can derive the value of wn according to  

Equation (14) with: 

( ) ( ) }{ −= ≤ − ∈ 1max | , , .n nv n w w C w w p L  (23) 

Remark 1. Note that only one list is stored in the memory, i.e., the currently growing list 
.kL  Thus, at the end of Step 1, all data necessary to perform Step 2 will be contained in 

the list −1.nL  Note also that the lists kL  of pairs (w,p) can be derived easily from −1nL  as 

follows, using the index p: 

( ) }{ −= ∈ ≤1, | .k nL w p L p k  (24) 

As a consequence, the space complexity of Step 1 is O( )C . Note that the time 

complexity of computing v(n) is O( )C . Note also that each list kL  is generated with time 

complexity O( )C . Thus, the time complexity of Step 1 is O( )nC . 

Step 2 

In a way quite similar to Step 1, we can recursively generate lists ˆ
kL  of weights w, 

starting from =k n  to = 2.k Let us consider first the set +1
ˆ

nL  such that: 

{ }+ =1
ˆ 0 .nL  (25) 

We define as follows the set ˆ
kN of new weights generated at stage k, where new weights 

result from the fact that a new item, i.e., the k-th item, is taken into account at this stage: 

}{ 1
ˆ ˆˆ ˆ ˆ ˆ ˆ| , .k k k kN w w w L w w C+= + ∈ + ≤  (26) 

According to the dominance principle, all +∈ 1
ˆ ˆˆ

k kw L N∪ obtained by construction, such 

that there exists a ' +∈ 1
ˆ ˆˆ ,k kw L N∪  which satisfies: ,'=ˆ ˆw w  must not belong to a list ˆ

kL . In 

this case, we usually say that ˆ 'w  dominates the weight ˆ.w  Thus, we can define the set 
ˆ

kD of dominated weights at stage k as follows: 
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}{ 1 1
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, with .k k k k kD w w L N w L N w w+ += ∈ ∃ ∈ =⏐ ∪ ∪  ' '  

As a consequence, for all positive integers k, the dynamic programming recursive list 
ˆ

kL is denned as follows: 

1
ˆ ˆ ˆ ˆ .k k k kL L N D+= −∪  (27) 

Note that the lists ˆ
kL are organised as sets of monotonically increasing weights. 

From the lists 1−nL and ˆ ,kL  we can derive the value 1
ˆ ,  , 1,  ...,3,kw k n n− = −  according 

to Equation (16) with: 

( )
( )

1

1

ˆˆ ˆ ˆ,
1 max .

and , ,  with 2
k k

n

w w w w C w w L
v k

w p L p k
−

−

⎧ ⎫≤ − ∈⎪ ⎪− = ⎨ ⎬
∈ ≤ − ⎪⎪ ⎭⎩

+ ⏐ +
 (28) 

From the list 2L̂ , we can compute the value of 1ŵ according to Equation (18) with: 

( ) }{ 1 2
ˆˆ ˆ ˆ1 max , .v w w C w w L= ≤ − ∈⏐  (29) 

Remark 2. Similarly to Step 1, only one list is stored in the memory during Step 2, i.e., 

the current list ˆ
kL . As a consequence, the Step 2 space complexity is ( )CO . The 

computation of ( 1)v k − is performed by merging the lists 1nL −  and ˆ
kL  with time 

comlexity ( );CO  i.e., the ordered lists 1nL − and ˆ
kL  are simultaneously examined once. 

The former list is examined in an increasing way; the latter in a decreasing way (see 
Ahrens and Finke (1975)). Note also that each list Lk is generated with time complexity 

( ).CO  Thus, the Step 2 time complexity is ( ).nCO  As a result, the time complexity of 

the global method is ( )nCO  and the space complexity is ( ).CO  We recall that the time 

and space complexities of Kianfar’s method are 2( )n CO  and ( )nCO  respectively (see 
Kianfar, 1971; Kianfar, 1976). 

In order to illustrate our algorithm, we now display a simple example. Let us consider 
the following constraint: 

1 2 3 45 11 3 6 12.x x x x+ + + ≤  (30) 

We note that the associated hyperplane passes through no point with integer components. 
We have: 12 3 9.C = − =  

Step 1 

0 {(0,0)}.L =  

( )1 {(0,0), 5,1 }.L = ( )2 {(0,0), 5,1 }.L =  

( ) ( )( )3 {(0,0), 3,3 , 5,1 8,3 }.L =  

4 12 6 6.C w− = − =  
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Using Equation (23), we have: 3(4) max{ | 6,( , ) }.v w w w p L= < ∈  Thus, (4) 5.v =  

( )4
ˆ 4 12 5 7.w C v= − = − =  

Step 2 

5
ˆ {0}.L =  

4
ˆ {0, 7}.L =  

3 12 3 9.C w− = − =  

Using Equation (28), we have: ˆ ˆ(3) max{ 9,v w w w w= + | + ≤ 4
ˆˆ  w L∈ and 3( , )w p L∈ , 

with 2}.p <  Thus, (3) 7.v =  

3
ˆ (3) 12 7 5.w C v= − = − =  

3
ˆ {0,5,7}.L =  

2 12 11 1.C w− = − =  

We can compute (2)v as shown above. We obtain: (2) 0.v =  

2
ˆ (2) 12 0 12.w C v= − = − =  

2
ˆ {0,5, 7}.L =  

1 12 5 7.C w− = − =  

Using Equation (29), we have: (1) 7.v =  

( )1
ˆ 1 12 7 5.w C v= − = − =  

Thus, after constraint rotation, we obtain the following new constraint: 

1 2 3 45 12 5 7 12;x x x x+ + + ≤  (31) 

note that the associated new hyperplane now passes through the following three points 
with integer components: (1, 0, 0, 1), (0, 1, 0, 0), (0, 0, 1, 1). 

3 Conclusion 

In this paper, we have proposed a significant improvement for constraint rotation 
algorithms. The time and space complexities of the revisited algorithm we propose  
are ( )nCO and ( ),CO  respectively, where n denotes the number of variables and C  is 

smaller than the capacity of the knapsack. 
Finally, we also note that the constraint rotation algorithm proposed in this  

paper lends itself very well to parallel computing. As a matter of fact, the  
different constraints can be treated independently via several processors. Moreover, the  
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dynamic programming lists method used in Steps 1 and 2 are also well suited to parallel 

computing (see El Baz and Elkihel (2005)); this permits one to obtain a 
nC

q

⎛ ⎞
⎜ ⎟
⎝ ⎠

O time 

complexity, where q denotes the number of processors. 
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