
SOLUTION OF MULTIDIMENSIONAL KNAPSACK PROBLEM

VIA COOPERATION OF DYNAMIC PROGRAMMING AND

BRANCH AND BOUND

V. BOYER, Didier EL BAZ, Moussa ELKIHEL

LAAS-CNRS, Université de Toulouse, 7, Avenue du Colonel Roche - 31077 Toulouse Cedex 4

vboyer@laas.fr, elbaz@laas.fr, elkihel@laas.fr

ABSTRACT: This article presents an exact cooperative method for the solution of the Multidimensional
Knapsack Problem (MKP) which combines dynamic programming and branch and bound. Our method makes
cooperate a dynamic programming heuristics based on surrogate relaxation and a branch and bound procedure.
Our algorithm was tested for several randomly generated test sets and problems in the literature. Solution
values of the first step are compared with optimal values and results provided by other well known existing
heuristics. Then our exact cooperative method is compared with a classical branch and bound algorithm.

KEY WORDS: Multidimensional Knapsack Problems, Cooperative Method, Exact Method, Dynamic
Programming, Branch and Bound, Surrogate Relaxation.

1. INTRODUCTION

The NP-hard multidimensional knapsack problem
(MKP) arises in several practical contexts such
as the capital budgeting, cargo loading, cutting
stock problems and processors allocation in huge dis-
tributed systems.

The multidimensional knapsack problem can be writ-
ten as follows:

(MKP)

max
∑

j∈N

pj.xj ,

s.t.
∑

j∈N

wi,j .xj ≤ ci, ∀i ∈ M,

xj ∈ {0, 1}, ∀j ∈ N.

(1)

n items have to be placed in the knapsack, according
to its capacities (c1, ..., cm), m ∈ N. To an item j ∈
N = {1, 2, ..., n}, the following variables and vectors
are associated:

• the decision variable xj ∈ {0, 1} (xj = 1 if the
item j is placed in the knapsack, and xj = 0
otherwise),

• the profit pj ≥ 0 and

• the weights wi,j ≥ 0, i ∈ M = {1, ..., m}.

In the sequel, we shall use the following notation:
given a problem (P), its optimal value will be denoted
by v(P); v(P) and v(P) will represent, respectively,
the value of an upper and a lower bound for v(P).

To avoid any trivial solutions, we assume that:

• ∀j ∈ N and ∀ i ∈ M, wi,j ≤ ci.

• ∀i ∈ M,

n∑

j=1

wi,j > ci.

A special case of (MKP) is the classical knapsack
problem (with m=1); the Knapsack Problem (KP)
has been given a lot of attention in the literature
though it is not, in fact, as difficult as (MKP), more
precisely, it can be solved in a pseudo-polynomial time
(see [15] and [21]). Due to the intrinsic difficulty that
is NP-hardness of (MKP), we have tried to trans-
form the original (MKP) into a (KP) (see also [12]
and [13]); for this purpose, we have used a relaxation
technique, that is to say, surrogate relaxation.

In the sequel, we propose an efficient algorithm based
on dynamic programming in order to find out a good
lower bound of (MKP) by solving surrogate relax-
ation (see [5]).

The main steps of our algorithm can be presented as
follows:

Figure 1. Computational scheme.

Section 2 deals with the construction of the surrogate
constraint. In Section 3, we present the hybrid dy-
namic programming algorithm (HDP). In section 4
is presented the exact cooperative method. Finally,
in section 5, we display and analyze some computa-
tional results obtained for different problems from the
literature and randomly generated problems.

2. THE SURROGATE RELAXATION

The surrogate relaxation of (MKP) can be defined
as follows:

(S(u))

max
∑

j∈N

pj .xj ,

s.t.
∑

i∈M

ui.
∑

j∈N

wi,j .xj ≤
∑

i∈M

ui.ci,

xj ∈ {0, 1}, ∀j ∈ N,

(2)

where uT = (u1, ..., um) ≥ 0.

Since (S(u)) is a relaxation of (MKP), we have
v(S(u)) ≥ v(MKP), and the optimal multiplier vec-
tor, u∗, satisfies:

v(S(u∗)) = min
u≥0

{v(S(u))}. (3)

Since solving (3) is a NP hard problem, several
heuristics have been proposed in order to find out
good surrogate multipliers (see in particular [7], [12]
and [13]). In practice, it is not important to obtain
the optimal multiplier vector, since in the general case
we have no guarantee that v(S(u∗)) = v(MKP). A
reasonable estimation can be computed by dropping
the integrality restrictions in x. In other words, let

(LS(u))

max
∑

j∈N

pj .xj ,

s.t.
∑

i∈M

ui

∑

j∈N

wi,j .xj ≤
∑

i∈M

ui.ci,

xj ∈ [0, 1], ∀j ∈ N.

(4)

be the continuous relaxation of (S(u)).

The optimal continuous surrogate multipliers are de-
rived from u0, such that:

v(LS(u0)) = min
u≥0

v(LS(u)). (5)

In order to compute u0, we consider the linear pro-
graming problem (LP) corresponding to (MKP):

(LP)

max
∑

j∈N

pj .xj ,

s.t.
∑

j∈N

wi,j .xj ≤ ci, ∀i ∈ M,

xj ∈ [0, 1], ∀j ∈ N.

(6)

We denote by λ0 = (λ0
1, λ

0
2, ..., λ

0
m) ≥ 0 the dual opti-

mal variables associated with the constraints

∑

j∈N

wi,j .xj ≤ ci, ∀i ∈ M. (7)

Then, the optimal continuous surrogate multipliers
can be obtained as follows using the equation (5) (see
[11] p. 132).

Theorem: The optimal continuous surrogate multi-
plier vector satisfies u0 = λ0.

Then we have the following order relation (see [12],
[11] p. 130 and [19]):

v(LP) = v(LS(u0)) ≥ v(S(u∗)) ≥ v(MKP). (8)

The reader is referred to [3], [4] and [5] for computa-
tional studies related to bounds obtained with surro-
gate relaxation.

3. HYBRID DYNAMIC PROGRAMMING
(HDP)

For simplicity of presentation, we will denote in the

sequel
∑

i∈M

u0
i .wi,j by wj and

∑

i∈M

u0
i .ci by c. Then we

have:

(S(u0))

max
∑

j∈N

pj .xj ,

s.t.
∑

j∈N

wj .xj ≤ c,

xj ∈ {0, 1}, ∀j ∈ N.

(9)

We apply the dynamic programming algorithm to

(S(u0)) and store also all feasible solutions of
(MKP). At each step, k ∈ N, we update a list which
is defined as follows:

Lk =

(w, p) | w =

k∑

j=1

wj .xj ≤ c, p =

k∑

j=1

pj.xj

(10)

It follows from the dynamic programming principle
that the use of the concept of dominated states per-
mits one to reduce drastically the size of lists Lk since
dominated states can be eliminated from the list with
no last for the solution of (S(u0)):

Dominated state: Let (w, p) be a couple of weight
and profit, i.e. a state of the problem. If ∃(w′, p′)
such that w′ ≤ w and p′ ≥ p, then (w, p) is
dominated by (w′, p′).

Note that dominated states are nevertheless saved in
a secondary list denoted by Lsec since they can give
rise to an optimal solution for (MKP). The states
are sorted in Lsec according to their associated upper
bound.

Let (w, p) be a state generated at stage k, we define
the sub-problem associated with (w, p) by:

(S(u0))(w,p)

max
n∑

j=k+1

pj .xj + p,

s.t.

n∑

j=k+1

wj .xj ≤ c − w,

xj ∈ {0, 1}, j ∈ {k + 1, ..., n}.

(11)

Given a state (w, p), an upper bound, v(w,p), is ob-
tained by solving the linear relaxation of (S(u0))(w,p),
i.e. (LS(u0))(w,p), with the Martello And Toth al-
gorithm (see [17]) and a lower bound, v(w,p) for

(S(u0))(w,p), is obtained with a greedy algorithm on
(S(u0))(w,p).

In a list, all the states are ordered according to their
decreasing upper bound. As mentioned above, our
algorithm consists in applying dynamic programming
(DP) to S(u0). At each stage of dynamic program-
ming, we check the following points at the creation of
a new state (w, p):

• Is the state feasible for (MKP) (this will permit
one to eliminate the unfeasible solutions)? Then,
we try to improve the lower bound of (MKP),
v(MKP), with the value of p.

• Is the state dominated? In this case the state is
saved in the secondary list Lsec.

• Is the upper bound of the state (w, p) smaller
than the current lower bound of S(u0)? Then
the state is saved too in the secondary list Lsec.

For each state (w, p) which has not been eliminated or
saved in the secondary list after these tests, we try to
improve the lower bound of (S(u0)), i.e. v(S(u0)), by
computing a lower bound of the state with a greedy
algorithm.

The dynamic programming algorithm is described be-
low:

Dynamic Programming Algorithm (DP):

Initialisation:

L0 = {(0, 0)}, Lsec = ∅

v(S(u0)) = v(MKP) (where v(MKP) is a lower
bound of (MKP) given by a greedy algorithm)

Computing the lists:

For j:=1 to n

L′
j−1:={(w + wj , p + pj) | (w, p) ∈ Lj−1};

Remove all states (w, p) ∈ L′
j−1 which are unfeasi-

ble for (MKP);
Lj:=MergeLists(Lj−1, L′

j−1);

For each state (w, p) ∈ Lj

Compute v(w,p) and v(w,p);
End For;

Updating the bounds:
pmax:=max {p | (w, p) ∈ Lj} and
vmax:=max {v(w,p) | (w, p) ∈ Lj};
v(MKP):=max {v(MKP), pmax};
v(S(u0)):=max {v(S(u0)), vmax};

Updating Lsec:
Dj:={(w, p) ∈ Lj | (w, p) is dominated or v(w,p)

≤ v(S(u0))};
Lsec:=Lsec ∪ Dj and Lj:=Lj −Dj;

End for.

At the end of the algorithm, we obtain a lower bound
of (MKP), i.e. v(MKP). In order to improve this
lower bound and the efficiency of DP algorithm, we
add to the algorithm a reducing variable process,
which is given as follow:

Reducing variables rule 1: Let v be a lower
bound of (MKP) and v0

j , v1
j , respectively, be the

upper bounds of (MKP) with xj = 0, xj = 1,
respectively. If v > vk

j with k = 0 or 1, then we
can definitively fix xj = 1 − k.

The upper bounds, v0
j and v1

j , j ∈ N , are obtained

via the Martello and Toth algorithm on (S(u0)). We
use this reducing variables rule whenever we improve
v(MKP) during the Dynamic Programming Phase.
When a variable is fixed, we have to update all the
states of the active list and to eliminate all the states
which do not match the fixed variables or which be-
come unfeasible.

We present now a procedure that allows us to improve
significantly the lower bound given by DP algorithm.
More precisely, we try to obtain better lower bounds
for the states saved in the secondary list. Before cal-
culating these bounds, we eliminate all the states that
have become unfeasible or are incompatible with the
variables that have been yet reduced or that have an
upper bound smaller than the current lower bound of
(MKP), i.e. v(MKP).

For a state (w, p), let J be the index of free variables.
If the state has been generated at the k-th stage of

DP Algorithm, J = {k + 1, ..., n}, w =

k∑

j=1

wj .xj and

p =
k∑

j=1

pj.xj , then we define the new subproblem:

(MKP)(w,p)

max
∑

j∈J

pj .xj + p,

s.t.
∑

j∈J

wi,j .xj ≤ ci, ∀i ∈ M,

xj ∈ {0, 1}, ∀j ∈ J,

(12)

where ci = ci −
k∑

j=1

wi,j .xj , ∀i ∈ M .

Two methods are used in order to evaluate the lower
bound of a state using the subproblem defined above
according to the reduced variables:

• a greedy algorithm;

• an enumerative method when the number n′ =
n−k of variables of the subproblem is sufficiently
small (given by the parameter α with n′ ≤ α).

When all the states have been treated the process
stops. The detail of the algorithm is given in what
follows:

Procedure ILB:

Assign to v(MKP) the value of the lower bound re-
turned by DP algorithm;

For each state (w, p) ∈ Lsec

Compute v(w,p) a lower bound of (MKP)(w,p);
End For;

vmax:=max {v(w,p) | (w, p) ∈ Lsec};

v(MKP):=max {v(MKP), vmax}.

The combination of the ILB procedure with the DP
algorithm gives the so-called HDP heuristics.

4. COOPERATIVE METHOD (CM)

The goal of the cooperative method is to find out an
exact solution of (MKP). As mentioned above, the
secondary list Lsec may contain an optimal solution of
(MKP). We propose an algorithm based on a branch
and bound method in order to explore the list Lsec.

4.1. Principle

States are sorted according to their associated upper
bound. Let (w, p) be the first state of Lsec (the first
state corresponds to the largest upper bound). An
upper bound, v(w,p), is obtained by solving the linear
relaxation of (MKP)(w,p), using a simplex algorithm.
A lower bound, v(w,p), is obtained with a greedy al-
gorithm on (MKP)(w,p).
We propose the following branching strategy:

Branching rule: Let (w, p) be a state of the prob-
lem (MKP), J the index of the free variables
(the variables that have not been already fixed by

the branch and bound) and X̃J = {x̃j | j ∈ J}
an optimal solution of the linear relaxation of
(MKP)(w,p). Then, the branching variable xk,
k ∈ J , is such that k = arg min

j∈J
{|x̃j − 0.5|}.

Whenever we evaluate an upper bound, we use the
following reducing variables rule (see [18]):

Reducing variables rule 2: Let v be a lower
bound of (MKP). Let ṽ and x̃ = {x̃j | j ∈ N}
be respectively the optimal value and an opti-
mal solution of the linear relaxation of (MKP).
Then we denote by p̃ = {p̃j | j ∈ N}, the reduce
profits. For j ∈ N :

• if x̃j = 0 and ṽ − |p̃j | ≤ v then there exists
an optimal solution of (MKP) with xj = 0,

• if x̃j = 1 and ṽ − |p̃j | ≤ v then there exists
an optimal solution of (MKP) with xj = 1.

This last rule permits one to reduce significantly the
processing time by reducing the number of states to
explore.

4.2. Details of the algorithm

The branch and bound method described above is
used in order to explore the states saved in the sec-
ondary list Lsec since this list may contain an optimal
solution of (MKP).

Procedure BB:

Let v be the value of a lower bound of (MKP), and L
a list of states.

While L 6= ∅

Let (w, p) be the first state in L;

L := L− {(w, p)};

Compute v(w,p) an upper bound of (MKP)(w,p);

If v(w,p) > v

Fix variables according to reducing variables rule
2 and update the state (w, p);

Compute v(w,p) a lower bound of (MKP)(w,p);

If v(w,p) > v, v := v(w,p) Endif;

Chose the branching variable and branch on it;

Insert the two resulting states in L if they are
feasible;

Endif;

Endwhile.

The cooperation of BB with HDP permits one to look
for an exact solution; it corresponds to the so-called
cooperative method (CM).

Procedure CM:

Step 1:
Compute Lsec and v(MKP) using HDP heuris-
tics.

Step 2:
Use procedure BB with v = v(MKP) and L =
Lsec.

The last value of v returned by BB will be the optimal
value of (MKP).

5. COMPUTATIONAL EXPERIENCES

Our algorithm was written in C and compiled with
GNU’s GCC. Computational experiences were carried
out using a Sun Blade 100 (500 MHz). We compare
first our heuristics HDP to the following heuristics of
the literature:

• AGNES of Fréville and Plateau [8];

• ADP-based heuristics approach of Bertsimas and
Demir [2];

• Simple Multistage Algorithm (SMA) of Hanafi,
Fréville and El Abdellaoui [14].

Our tests were made on the following problems:

• Various problems from the literature of Chu and
Beasley (see [1]) composed of 9 problems with
30 instances with different sizes (100x5, 250x5,
500x5, 100x10, 250x10, 500x10, 100x30, 250x30
and 500x30), numbered respectively from 1 to 9;

• Randomly generated problems with:

– uncorrelated data: the value of the prof-
its and the weights are distributed indepen-
dently and uniformly over [1, 1000],

– correlated data: the value of the weights are
distributed uniformly over [1, 1000] and the
profits are taken as follows:

∀j ∈ N, pj =

m∑

k=1

wk,j

m
+ 100.

The capacity c of the knapsack is generated as

follows: ∀i ∈ M, ci = 0.5.
∑

j∈N

wi,j .

5.1. HDP heuristics

The computational results for the HDP heuristics are
presented in:

• tables 1 and 2, for the problems of Chu &
Beasley,

• tables 3 and 4, for randomly generated problems.

Some results for the DP heuristics are presented in
tables 1 and 2.

From Tables 1 and 3, we note that the lower bound
given by HDP is better than the one obtained with
other methods. According to tables 2 and 4 we note
that the bounds provided by HDP are obtained at the
price of reasonable computational time.

p. size heuristics
nxm DP HDP SMA ADP AGNES

1 100x5 1.96 0.69 2.68 1.72 0.88
2 250x5 0.58 0.21 1.17 0.58 0.29
3 500x5 0.27 0.07 0.59 0.26 0.12
4 100x10 2.87 1.25 3.6 1.97 1.54
5 250x10 1.03 0.47 1.6 0.76 0.57
6 500x10 0.54 0.21 0.8 0.38 0.26
7 100x30 4.23 2.05 5.13 2.7 3.22
8 250x30 1.7 0.9 2.6 1.18 1.41
9 500x30 1.39 0.49 1.45 0.58 0.72

Table 1: HDP heuristics: problems of Chu and
Beasley (gap to optimal solution (%)).

p. size heuristics
nxm DP HDP SMA ADP AGNES

1 100x5 0.03 0.07 0.15 0.12 0.10
2 250x5 0.27 0.52 1.94 0.24 0.10
3 500x5 1.50 2.07 15.63 1.03 0.34
4 100x10 0.05 0.12 0.17 0.15 0.10
5 250x10 0.45 0.94 2.39 0.34 0.10
6 500x10 2.36 3.81 19.49 1.47 0.44
7 100x30 2.49 5.36 0.39 0.24 0.10
8 250x30 22.26 36.66 4.79 1.27 0.34
9 500x30 81.31 88.07 40.80 4.10 1.03

Table 2: HDP heuristics: problems of Chu and
Beasley (computational time (s)).

5.2. Exact methods

In this section, we compare computational results
obtained with CM with the one obtained by using
the classical branch and bound method (BB). Note
that if computational time exceeds 10 minutes, then

Prob. size heuristics
nxm HDP SMA ADP AGNES

UD 50x25 1.81 5.13 3.31 4.46
UD 100x50 1.19 3.29 1.53 2.86
UD 150x75 0.72 2.15 1.05 1.90
UD 200x100 0.56 1.77 0.78 1.50
UD 250x125 0.52 1.64 0.71 1.53
UD 300x150 0.50 1.48 0.55 1.34
UD 400x200 0.45 1.20 0.48 0.94
UD 500x250 0.36 1.08 0.44 0.87
CD 50x5 1.75 6.43 3.48 4.12
CD 100x10 1.07 3.51 1.50 2.55
CD 150x15 1.15 2.28 1.44 2.85
CD 200x20 0.99 2.05 1.07 2.18
CD 250x25 0.97 1.64 0.98 1.92

UD: Instance with Uncorrelated Data
CD: Instance with Correlated Data

Table 3: Heuristics: Randomly generated problems
(gap to optimal value (%)).

Prob. size heuristics
nxm HDP SMA ADP AGNES

UD 50x25 0.03 0.07 0.10 0.02
UD 100x50 0.22 0.78 0.53 0.10
UD 150x75 0.50 3.90 1.09 0.30
UD 200x100 3.06 11.39 3.51 0.65
UD 250x125 9.77 25.45 7.35 1.33
UD 300x150 84.46 57.27 14.85 2.44
UD 400x200 227.96 171.74 41.93 5.91
UD 500x250 519.10 1110.55 80.52 12.42
CD 50x5 0.64 0.04 0.06 0.03
CD 100x10 23.26 0.36 0.41 0.18
CD 150x15 30.05 1.41 1.41 0.62
CD 200x20 42.48 3.53 3.53 1.46
CD 250x25 80.90 7.15 7.15 2.81

UD: Instance with Uncorrelated Data
CD: Instance with Correlated Data

Table 4: Heuristics: Randomly generated problems
(computational time (s)).

Prob. nxm Gap (%) t BB (s) t CM(s)
1 100x5 0,00 166,60 160,06
2 250x5 0,0038 501,61 493,56
3 500x5 -0,0146 600,00 600,00
4 100x10 0,00 533.95 600,00
5 250x10 -0,0157 600,00 600,00
6 500x10 -0,0525 600,00 600,00
7 100x30 -0,0602 600,00 600,00
8 250x30 0,0158 600,00 600,00
9 500x30 -0.0223 600,00 600,00

Gap: gap between CM & BB
t BB: BB computational time
t CM: CM computational time

Table 5: CM exact method: problems of Chu and
Beasley

the methods stop and return the best value of lower
bound they have obtained. In order to compare these
bounds, the gaps displayed is defined as follows:

Gap =
vBB − vCM

vBB

, (13)

where vBB and vCM are the value of the bound
delivered by BB and CM respectively. Of course,
when all computational times are under 10 minutes,
vBB = vCM = v(MKP), the optimal value, and
Gap = 0.

We present results for the problems considered previ-
ously.

Table 5 and Table 6 show that the computational
times for BB and CM are quite similar. Concerning
the gap, we note that it is, in most cases, negative,
that is to say, when we stop the process when it exceed
10 minutes, CM delivers a better bound than BB. Ac-
cording to these results, CM seems to converge more
rapidly toward the optimal value than BB.

6. CONCLUSION

The main advantage of the HDP heuristics is to ob-
tain a processing time similar to the one of dynamic
programming algorithm applied to a classical (KP)
while having good performance in terms of gap. HDP
seems to be a good heuristics since it gives better so-
lutions than the one obtained with other heuristics
with a quite good processing time.

Prob. nxm Gap (%) t BB (s) t CM (s)
UD 50x25 0.00 0,35 0,33
UD 100x50 0.00 0,81 0,99
UD 150x75 0.00 328,73 329,60
UD 200x100 -0.01 600,00 600,00
UD 300x150 -0.01 600,00 600,00
UD 400x200 0.00 600,00 600,00
UD 500x250 -0.01 600,00 600,00
CD 50x5 -0.02 600,00 600,00
CD 100x10 -0.10 600,00 600,00
CD 150x15 -0.05 600,00 600,00

UD: Instance with Uncorrelated Data
CD: Instance with Correlated Data
Gap: gap between CM & BB
t BB: BB computational time
t CM: CM computational time

Table 6: CM exact method: randomly generated
problems.

Cooperation of BB (Branch and Bound) with HDP
permits one to obtain an exact method. Comput-
ing experimentations on problems from the literature
shows that the combination of HDP and BB gives
a processing times similar to the one of a classical
branch and bound. However, this cooperative method
seems to improve the convergence toward the optimal
value.

HDP could be combined easily with other methods,
like a Taboo search for example, in order to improve
its performances to explore the neighborhood of the
states saved in the secondary list. That solution could
be an alternative to limit the processing time.

References

[1] J E Beasley. Or-library:
http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/
mknapinfo.html, 1990.

[2] D. Bertsimas and R. Demir. An approxi-
mate dynamic-programming approach to multi-
dimensional knapsack problem. Management
Science, 4:550–565, 2002.

[3] V. Boyer. Méthodes et/ou mixte pour la pro-
grammation linéaire en variables 0-1. DEA re-
port, 2004. LAAS-CNRS Toulouse (France).

[4] V. Boyer and al. An efficient heuristics
for the multidimensional knapsack problem.
ROADEF’06, Presses Universitaires de Valenci-
ennes, pages 95–106, 2006.

[5] V. Boyer and al. Heuristics for the 0-1
multidimensional knapsack problem. Euro-
pean Journal of Operational Research, 2008.
doi:10.1016/j.ejor.2007.06.068.

[6] M. Elkihel. Programmation dynamique et
rotations de contraintes pour les problèmes
d’optimisation entière. Thèse de Doctorat, 1984.
Université des Sciences et Technologies de Lille
(France).

[7] A. Freville and G. Plateau. An exact search for
the solution of the surrogate dual of the 0-1 bidi-
mensional knapsack problem. European Journal
of Operational Research, 68:413–421, 1993.

[8] A. Freville and G. Plateau. An efficient prepro-
cessing procedure for the multidimensional 0-1
knapsack problem. Discrete Applied Mathemat-
ics, 49:189–212, 1994.

[9] A. Fréville. The multidimensional 0-1 knapsack
problem: An overview. European Journal of Op-
erational Research, 155:1–21, 2004.

[10] M. R. Garey and D. S. Jonhson. Computer
and intractability. a guide to the theory of np-
completeness. ISBN 0-7167-1044-7, 1979.

[11] S. Garfinkel and L. Nemhauser. Integer Program-
ming. Wiley Interscience, 1972.

[12] B. Gavish and H. Pirkul. Efficient algorithms for
solving multiconstraint 0-1 knapsack problems to
optimality. Mathematical Programming, 31:78–
205, 1985.

[13] F. Glover. Surrogate constraints. Operations Re-
search, 16:741–749, 1968.

[14] S. Hanafi and al. Meta-Heuristics: Theory and
Application, chapter Comparaison of heuristics
for the 0-1 multidimensional knapsack problem,
pages 446–465. Kluwer Academic, 1996.

[15] H. Kellerer and al. Knapsack Problems. Springer,
2004.

[16] S. Martello and al. New trends in exact algo-
rithms for the 0-1 knapsack problem. European
Journal of Operational Research, 123:325–332,
2000.

[17] S. Martello and P. Toth. Knapsack Problems -
Algorithms and Computer Implementations. Wi-
ley & Sons, 1990.

[18] L. Nemhauser and A. Wolsey. Integer and combi-
national optimization. Wiley Interscience, 1988.

[19] M. Osario and al. Cutting and surrogate con-
straint analysis for improved multidimensional
knapsack solutions. Annals of Operations Re-
search, 117:71–93, 2002.

[20] G. Plateau. Contribution à la résolution des
programmes mathématiques en nombres entiers.
Thèse de Doctorat, 1979. Université des Sciences
et Technologies de Lille.

[21] G. Plateau and M. Elkihel. A hybrid method
for the 0-1 knapsack problem. Methods of Oper-
ations Research, 49:277–293, 1985.

[22] V. Poirriez and R. Andonov. Unbounded knap-
sack problem: new results. In Algorithms and
Experiments, pages 103–111, 1998.

[23] D. Sherali and J. Driscoll. Evolution and
state-of-the-art in integer programing. Jour-
nal of Computationnal and Applied Mathemat-
ics, 124:319–340, 2000.

