Computers & Industrial Engineering xxx (2010) XXX-XXX

Contents lists available at ScienceDirect

Computers & Industrial Engineering

g

computers 8
Induntrial anglnearing

——

journal homepage: www.elsevier.com/locate/caie e

A dynamic programming method with lists for the knapsack sharing problem

V. Boyer *, D. El Baz, M. Elkihel

CNRS, LAAS, 7 avenue du Colonel Roche, F-31077 Toulouse, France
Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France

ARTICLE INFO ABSTRACT

Article history:
Available online xxxx

Keywords:

Knapsack sharing problem
Combinatorial optimization
Max-min programming
Dynamic programming

In this paper, we propose a method to solve exactly the knapsack sharing problem (KSP) by using
dynamic programming. The original problem (KSP) is decomposed into a set of knapsack problems.
Our method is tested on correlated and uncorrelated instances from the literature. Computational results
show that our method is able to find an optimal solution of large instances within reasonable computing
time and low memory occupancy.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The knapsack sharing problem (KSP) is a max-min mathemati-
cal programming problem with a knapsack constraint (see Brown,
1979, 1991, 1994). The KSP is NP-complete. The KSP occurs when
resources have to be shared or distributed fairly to several entities,
e.g. distribution of scarce resources like ammunition or gasoline
among different military units (see Brown, 1979) or budget shared
between districts of a city (see Yamada, Futakawa, & Kataoka,
1997, 1998). The KSP is composed of n items divided into m differ-
ent classes. Each class V; has a cardinality n; with }~,_, ,n; = n and
M ={1,2,...,m}. Each item j € N is associated with:

e a profit py,
e a weight wy;,
e a decision variable x;; € {0,1}.

We wish to determine a subset of items to be included in the
knapsack of capacity C, so that the minimum profit associated with
the different class is maximised. The KSP can be formulated as
follows:

max min {Z D ~xl-j} = z(KSP),

ieM JEN;
st 33 > wy-x; <G,
ieM jeN;

xj € {0,1} forie M and j € NV,

(KSP)

* Corresponding author. Tel.: +33 6 11 23 24 75.

E-mail addresses: vboyer@laas.fr (V. Boyer), elbaz@laas.fr (D. El Baz), elkihel@
laas.fr (M. Elkihel).

0360-8352/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cie.2010.10.015

where z(KSP) denotes the optimal value of the problem (KSP) and
fori e M andj € N, wy, p; and C are positive integers. Furthermore,
we assume that 3=, > 7, Wy > C and maXicpjen, {wy} < C.

A common way to solve the KSP consists of its decomposition
into knapsack problems (see for examples Hifi & Sadfi, 2002;
Yamada et al., 1998). Indeed, for a class i € M, we define the
following problem:

max - p; - xj = Z(KPi(Cy)),
JEN;
(KP{(Ci)){ s.t. > wy-x; < G, (1.2)
JEN;

x; €{0,1} je N
The objective is then to find (C7,C5,...,C;,) such that

>.G<C

ieM
and
min{z(KP;(C;))} = z(KSP),

ieM

where for a problem P, z(P) represents its optimal value. An upper
bound and a lower bound of z(P) will be denoted, respectively, by
Z(P) and z(P), respectively.

Hifi et al. have proposed to solve the knapsack problems
(KPi(Ci))jcr, via a dense dynamic programming algorithm in Hifi
and Sadfi (2002) and Hifi et al. (2005). Their method starts with
Ci=0,ie M, and increases regularly the capacities until
ZieMci > C.

In this article, we propose an algorithm for solving the KSP. Our
algorithm is based on a dynamic programming procedure with dom-
inance technique to solve the knapsack problems (KP;(Ci));,,. Our
algorithm starts by solving the problems (KP;(C;));.,, Wwith
Ci>(j,ieMand Y ,C > C. At each step, we try to decrease

Engineering (2010), doi:10.1016/j.cie.2010.10.015

Please cite this article in press as: Boyer, V., et al. A dynamic programming method with lists for the knapsack sharing problem. Computers & Industrial



http://dx.doi.org/10.1016/j.cie.2010.10.015
mailto:vboyer@laas.fr
mailto:elbaz@laas.fr
mailto:elkihelg@laas.fr
mailto:elkihelg@laas.fr
http://dx.doi.org/10.1016/j.cie.2010.10.015
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie
http://dx.doi.org/10.1016/j.cie.2010.10.015

2 V. Boyer et al./ Computers & Industrial Engineering xxx (2010) XXx-xXX

the values of (C;);. ,, towards (C;);. .. The use of lists permits one to
reduce the memory occupancy; the expected benefit being the solu-
tion of large instances.

Without loss of generality, we consider in the sequel that the
items in a class i € M are sorted according to decreasing ratios
5‘/—3 JE N

In Section 2, we present the dynamic programming algorithm
used to solve the problems (KP;);_,,. Section 3 deals with the algo-
rithm we propose for the KSP. Computational results are displayed
and analyzed in Section 4. Some conclusions and perspectives are
presented in Section 5.

2. Basic dynamic programming procedure

In order to solve the problems (KP;(C;));. .., we use a dynamic
programming algorithm with dominance (see Bellman, 1957; Boy-
er, El Baz, & Elkihel, 2009, 2010; El Baz & Elkihel, 2005).

2.1. Lists construction

We recall that i € M denotes the index of the ith class of (KSP).
A list Ly is associated with each step k € N;:

k
Lix = {(w,p)w— Zw,j -xj < G and

j=1
k
p=p; XX €{0,1}, je {1,2,...,k}}.
j=1

The algorithm begins with the lists £, = {(0,0)}.
At each step k € A;, the new list £ is obtained as follows:

Lix = Lige—1) U {(W + Wi, p + D) (W, D) € Lie—1),
W+ Wy, < C,}

Notation. For simplicity of presentation the above equation will
also be written as follows in the sequel.

L = Lik-1) © {(Wik, D) }-

The states (w, p) in a list are sorted according to the decreasing va-
lue of p.

From the dynamic programming principle, dominated states,
i.e. states (w, p) such that there exists a state (w/, p') with w <w
and p’ > p, are removed from the list.

2.2. State elimination via upper bounds

In order to shrink lists £y, k € A}, an upper bound z(w, p), asso-
ciated with state (w,p) € Ly, is computed. For this purpose, we
solve exactly the following linear continuous knapsack problem
via the Martello & Toth’s algorithm (see Martello & Toth, 1977):

nj
maxp+ > Py Xij,
Jj=k+1

1
st > wy-xi <CGi—w,
J=k+1

x;€[0,1],je{k+1,...,m}.
Let z(w,p) = |z(LPM*?(Cy)) ).
If Z(w, p) < z(KSP), then the states (w, p) can be discarded.
We shall have:

Li = Lige—1) © {(Wix, D)} — Dik — Bk,

where

e Dy represents the list of dominated states in Lig_1) ® {(Wix, Py)}»
o By, represents the list of states in Lik_1) & {(wWi, py)} to be elim-
inated via upper bounds.

In the sequel, this phase is the so-called NextList phase.
2.3. Fixing variables

The following two methods are used to fix variables of the prob-
lem (KP;).

2.4. Variable reduction technique 1

Letie M,k € N; and (w,p) € Ly.

If p > Z(KSP), where z(KSP) is an upper bound of (KSP) obtained
by the solution of the linear continuous relaxation of (KSP), then all
free variables x;,j € {k + 1,...,n;}, can be fixed at O for the state (w, p).

Indeed, as z(KSP) < z(KSP), when p > z(KSP) we can stop the
exploration of this state because it will not give a better optimal
value for (KSP).

The second method to fix variables uses information provided
by the solution of (LPM"(C;)) associated to a state (w,p) € Ly,
k € N;. We use the following rule to fix the free variables of a state

(w, p).
2.5. Variable reduction technique 2 (see Nemhauser & Wolsey, 1988)

Letie M,k € N; and (w,p) € Ly.
Let d be the index of the critical variable of (LP"?(C;)), i.e.:

d-1 d
dwy<G-wand > wy>G-w.

Jj=k+1 j=k+1
Ifforje{k+1,...d—1,d+1,...,n;}, we have
{Z(U’EW‘”(G)) —|py— wi;.piJ < z(KSP),

Wiq

where z(KSP) is a lower bound of (KSP), then x; can be fixed to 1 if
j <dand to 0 otherwise. The computation of z(KSP) is detailed in the
next section.

3. An algorithm for the KSP

In this section, we show how the dynamic programming meth-
od presented in the above section can be used to find an optimal
solution of (KSP).

For simplicity of notation, z(KSP) is denoted by z in the sequel.

3.1. The main procedure DPKSP

The principle of our algorithm can be presented briefly as
follows:

-A first lower bound of (KSP), z, is computed with the greedy
heuristic the so-called GreedyKSP (see Algorithm 1).

-At each step k of the dynamic programming method:

o thelists (Lik);c v, k<, are computed via the procedure NextList
presented in the above section,

e then, we try to reduce the free variables associated with each
state in (cik)ieM, k<n;»

o finally, the lower bound z and the capacities (C;);_,,, respec-
tively, are updated via the procedures UpdateZ and UpdateC,
respectively described below.

Engineering (2010), doi:10.1016/j.cie.2010.10.015

Please cite this article in press as: Boyer, V., et al. A dynamic programming method with lists for the knapsack sharing problem. Computers & Industrial



http://dx.doi.org/10.1016/j.cie.2010.10.015

V. Boyer et al./ Computers & Industrial Engineering xxx (2010) xXx-xXX 3

- The dynamic programming phase is stopped when all the lists
(Lin,)icp have been computed. These lists are used by the proce-
dure FindOptimalValue to find an optimal solution for the (KSP).

Algorithm 1 (GreedyKSP).

For i from 1 to m do
pi:=0,w;:=0and k; :=1
end do STOP:=0
while STOP=0 do
d := argmin{py, pa,. .
if kg < ng then
if wy + wy, < C, then
Xk, 1s fixed to 1
Dd = Pd + Dk,
Wq = Wq + Wy,
end if
kqgi=kq+1
else
STOP:=1
end if
end while

z=min{py, pa,...

-»Pm}

Pm}-

The main procedure, DPKSP, to solve the KSP is given in Algo-
rithm 2. The procedures UpdateZ, UpdateC and FindOptimalValue
are detailed in the next sub-sections.

Algorithm 2 (DPKSP).

Initialisation:

z := z(KSP) := GreedyKSP
Z(KSP) := |z(CKSP) |

For i from 1 to m do

Lip :={(0,0)}
end for
k=1

(Cidiens = UpdateC(z, (Lio)ic,)
Dynamic programming:
STOP :=0
while STOP =0 do
STOP :=1
For i from 1 to m do
Iftk <n;)
STOP :=0;
Li, = NeXtList(KP,-, ﬁi(k*]))
For each state (w,p) € £ do
Try to fix the free variables
end for
end if
end for
z:= UpdateZ(;, (Ci)ia\/l7 (Eik)ie/\/l)
(Ci)iepq = UpdateC(z, (Lik)ic )
k:=k+1
end while
Finding z:
z(KSP) := FindOptimalValue(z, (Lin, )icps)

3.2. The procedure UpdateC

In this subsection, we present how the values of (Ci);_,, are up-
dated. For this purpose, we compute the minimum values of the
capacities (C;);.,, resulting from an improvement of the current
lower bound z, of the KSP.

For i € M, and k € N;U {0}, the following linear problem is
associated with a state (w,p) € Ly:

. ni
minw+ > wj - X,
J=k+1

min W;((w,p),z "
(minWilw.P) 2 cp po S5 pyong > 241,
Jj=k+1

xj€[0,1],je{k+1,...,n}.

Let us define:

minCi(£e,2) = | min_ {zminWi(w.p).2)} .
w.p)ELj,

If we want to improve the best lower bound, z, then we must have,

forie M:

ZWijWing* Z min Gy (Lyy, 2),

JEN eM—{i}

with

x; €{0,1}, forj e NV;.

For i € M, the initial value of C; is given by

G=C— > minCi(Ly,2)

e M—{i}

At each step k of DPKSP, we try to improve the value of C; with Algo-
rithm 3.

Algorithm 3 (UpdateC).

For i from 1 to m do
Ci=C— ¥ minCy(Ly,2)
ieM—{i}
end for

3.3. The procedure UpdateZ

Rather than updating the lower bound z, with the GreedyKSP
heuristic, which is time consuming, we make use of all the lists
(Lik)icrq At step k in order to try to improve more efficiently this
bound.

Indeed, for each state in the list, a local greedy heuristic can be
used in order to select a particular state. The selected state of each
list is then combined with other states so as to try to improve z.
The details of the heuristic are given in procedure UpdateZ (see
Algorithm 4).

Algorithm 4 (UpdateZ).

Forie Mdo L, =10
Greedy like step:
For i from 1 to m do
For (w,p) € Lj, do
W:=wandP:=p
For j from k + 1 to n; do
If P > z(KSP) + 1 then
exit the loop for
end if
If W+w;; <G then
W:=W+wjand P:=P+p;
end if
end for

If P > z(KSP) + 1 then
Liy = Ly U{(W,P)}

(continued on next page)

Engineering (2010), doi:10.1016/j.cie.2010.10.015

Please cite this article in press as: Boyer, V., et al. A dynamic programming method with lists for the knapsack sharing problem. Computers & Industrial



http://dx.doi.org/10.1016/j.cie.2010.10.015

4 V. Boyer et al./ Computers & Industrial Engineering xxx (2010) XXx-xXX

end if
end for
end for
Selected states:
For i from 1 to m do
Choose (W;, P;) € £j, such that
Wi = miH(W.P)eﬁgk{W}
end for
Updating z(KSP):
If 3 yWi < C then
Z(KSP) := minjc »{P;i}
end if

3.4. The procedure FindOptimalValue

In the end of the dynamic programming phase, all the lists
(Lin)ierr» are available. In this section, we show how these lists
are combined in O(3}";_,, C;) in order to find the optimal value of
(KSP).

The states (w, p) in a list are sorted according to the decreasing
value of p. Due to the dominance principle, they are also sorted
according to the decreasing value of w. Thus, if we want to check
if a given bound z > z is feasible, then we have to take in each list
Lin,,1 € M, the state (W), p') which satisfies:

w =min{w | p >z, (W,p) € Lin}. (3.2)

If 3, W < C, then we have found a better feasible bound for (KSP),
i.e. Z = miniy{p'} > z > z Furthermore, all the states (w,p) € Lin,
such that p<p' can be discarded. Otherwise, all the states
(W,p) € Ly, such that p > p' (and w > w') can be removed as they will
not provide a better solution. Indeed, in this case, we have the fol-
lowing inequalities:

Z(KSP) <z<p', ie M.

Therefore, we have to decrease the value of the bound zZ and check if
this new bound is feasible.
Algorithm 5 presents the procedure FindOptimalValue.

Algorithm 5 (FindOptimalValue).

Initialization:
For i from 1 to m do
Let (W', p') be the first states in L,
end do
z:= minicu {p'}
Z(KSP) := z(KSP) Checking feasibility:
While z > z(KSP) do
For i from 1 to m do
Find (W', p’) € L, such that
wi=min{w | p >z, (W,p) € L, }

end for
If S W < C then
2(KSP) =z
Exit the procedure
Else
For i from 1 to m do
»Cini = »Cini - {(va) € ['in,v |p> pi}
end for
Z:= minieMmaX(w.p)eC,-,,i {plp<z}
end if
end while

We note that all the lists are considered only once in this
procedure.

Table 1
Uncorrelated instances.

Group n m Instances 1 <x<4

Am-x 1000 2-50  A02-x, A05-x, A10-x, A20-x, A30-x, A40-x, A50-x
Bm-x 2500 2-50  BO02-x, BO5-x, B10-x, B20-x, B30-x, B40-x, B50-x
Cm-x 5000 2-50 (02, CO5x, C10-x, C20-x, C30-x, C40-x, C50-x
Dm-x 7500 2-50  DO02-x, DO5-x, D10-x, D20-x, D30-x, D40-x, D50-x
Em-x 10,000  2-50  E02-x, E05-x, E10-x, E20-x, E30-x, E40-x, E50-x
Fm-x 20,000 2-50  F02-x, FO5-x, F10-x, F20-x, F30-x, F40-x, F50-x

4. Computational experiments

The procedure DPKSP has been written in C and computational
experiments have been carried out on an Intel Core 2 Duo T7500
(2.2 GHz).

We have used the set of problems of Hifi (see Hifi, 2005), see
also (El Baz & Boyer, 2010) with 168 uncorrelated instances and
72 strongly correlated instances; each group of problems contains
four instances. The problems are detailed in Tables 1 and 2. All the
optimal values are known for these instances.

The average processing time for the four instances of each group
of problems is given in Tables 3 and 4. The tables show that DPKSP
is able to solve large instances (up to 20,000 variables and 50 clas-
ses) within reasonable computing time. In the correlated case, an
optimal solution is obtained in less than 13 min. The processing
time is less than 1.5 min in the uncorrelated case.

We note that our method is efficient when the number m of
classes is relatively small (between 2 and 5 classes). This result
can be explained by the fact that in this case we have to fill a lim-
ited number of knapsacks. The comparison with the results pro-
vided by Hifi and Sadfi (2002) and Hifi et al. (2005) shows the
interest of our approach particularly in this context for both corre-
lated and uncorrelated problems; indeed, the processing times of
Hifi’s algorithm tends to be important for these instances.

The memory occupancy is presented in Tables 5 and 6. Note
that the vector x associated to each state is encoded as a bit string

Table 2
Correlated instances.

Group n m Instances 1 <x <4
AmC-x 1000 2-10 A02C-x, AO5C-x, A10C-x
BmC-x 2500 2-10 B02C-x, BO5C-x, B10C-x
CmC-x 5000 2-10 C02C-x, CO5C-x, C10C-x
DmC-x 7500 2-10 D02C-x, DO5C-x, D10C-x
EmC-x 10,000 2-10 E02C-x, EO5C-x, E10C-x
FmC-x 20,000 2-10 F02C-x, FO5C-x, F10C-x
Table 3
Uncorrelated instances: time processing (s).

Inst. t. Inst. t. Inst. t.
A02-x 0.02 C02-x 0.21 E02-x 3.02
A05-x 0.15 C05-x 1.96 E05-x 5.55
A10-x 0.14 C10x 4.02 E10-x 15.24
A20-x 0.06 C20-x 4.55 E20-x 18.38
A30-x 0.01 C30-x 2.53 E30-x 13.27
A40-x 0.00 C40-x 0.85 E40-x 13.24
A50-x 0.01 C50-x 0.66 E50-x 15.26
B02-x 0.16 D02-x 0.66 F02-x 3.00
B05-x 0.69 DO05-x 4.39 FO5-x 35.16
B10-x 1.20 D10-x 6.94 F10-x 46.31
B20-x 0.69 D20-x 10.83 F20-x 68.89
B30-x 0.01 D30-x 8.22 F30-x 67.21
B40-x 0.01 D40-x 7.02 F40-x 78.46
B50-x 0.01 D50-x 4.02 F50-x 78.86

Engineering (2010), doi:10.1016/j.cie.2010.10.015

Please cite this article in press as: Boyer, V., et al. A dynamic programming method with lists for the knapsack sharing problem. Computers & Industrial



http://dx.doi.org/10.1016/j.cie.2010.10.015

V. Boyer et al./ Computers & Industrial Engineering xxx (2010) XXx-xXX 5

Table 4
Correlated instances: time processing (s).
Inst. t. Inst. t. Inst. t.
A02Cx 1.18 C02C-x 18.48 E02Cx 59.44
A05C-x 1.32 C05C-x 26.25 E05C-x 149.29
A10Cx 1.72 C10C-x 33.28 E10Cx 164.33
B02C-x 9.61 D02C-x 53.40 F02C-x 642.84
BO5C-x 10.08 DO5C-x 53.61 FO5C-x 724.81
B10C-x 9.63 D10C-x 98.14 F10C-x 598.05
Table 5
Uncorrelated instances: memory occupancy (Mo).
Instance DPKSP ALGO (HIFI)
Am-x <0.01 1.59
Bm-x 0.05 9.95
Cm-x 0.11 38.15
Dm-x 0.33 89.4
Em-x 0.41 158.79
Fm-x 1.01 636.95
Table 6
Correlated instances: memory occupancy (Mo).
Instance DPKSP ALGO (Hifi)
AmC-x 0.10 1.60
BmCx 0.30 9.97
CmC-x 0.68 39.76
DmC-x 1.26 89.60
EmCx 1.96 159.23
FmC-x 6.21 638.42

of 32 bits. These tables compare DPKSP with the algorithm of Hifi
whose space complexity is O(n - C). We see that the approach of
Hifi needs for some instances a large amount of memory (up to
638.42 Mo) contrarily to our method (<7 Mo). Indeed, the space
complexity of the dynamic programming algorithm with lists for
a knapsack problem of n variables with the capacity C is
O(min{2""! 'nC}) (see Martello & Toth, 1990). The space complex-
ity of DPKSP is O3, min{2"""  n;-C;}). Thus it is bounded by
O(n - C). DPKSP is able to solve large problems with limited mem-
ory occupancy.

5. Conclusions and perspectives

In this paper, we have proposed a method to solve the KSP with
a dynamic programming list algorithm.

The original problem (KSP) is decomposed into a set of knapsack
problems. The initial value of the knapsack capacity is obtained via
an overestimation. This value is updated and decreased throughout
the solution process.

Computational results show that best results were obtained
when the number of classes is relatively small. They show also that

DPKSP is able to solve large instances within reasonable computing
time and small memory occupancy. Moreover, our method use less
memory than previous methods in the literature.

We think that very good results can be obtained with our meth-
od for instances with bigger capacities and a great number of clas-
ses (in the problems considered, capacities are generated so that
they are equal to the half sum of all item weights, as a conse-
quence, the bigger the weights, the bigger the capacity is).

In future work, it would also be interesting to consider a multi
method that combines the advantages of our approach with the
one of Hifi et al.

In order to decrease the processing time, parallel implementa-
tion of DPKSP could be considered. Indeed, the computations on
knapsack sub-problems are independent and could be done in
parallel.

Acknowledgements

The authors would like to thank the reviewers for their helpful
comments contributing to improve the presentation of the paper.

References

Bellman, R. (1957). Dynamic programming. Princeton, NJ: Princeton University Press.

Boyer, V., El Baz, D., & Elkihel, M. (2009). Heuristics for the 0-1 multidimensional
knapsack problem. European Journal of Operational Research, 199(3), 658-664.

Boyer, V., El Baz, D., & Elkihel, M. (2010). Solution of multidimensional knapsack
problems via cooperation of dynamic programming and branch and bound.
European Journal of Industrial Engineering, 4(4), 434-449.

Brown, J. R. (1979). The knapsack sharing problem. Operations Research, 27,
341-355.

Brown, J. R. (1991). Solving knapsack sharing with general tradeoff functions.
Mathematical Programming, 51, 55-73.

Brown, J. R. (1994). Bounded knapsack sharing. Mathematical Programming, 67,
343-382.

El Baz, D., Boyer, V. (2010). Library of instances for knapsack sharing problems.
<http://www.laas.fr/CDA/23-31298-Knapsack-sharing-problems.php>.

El Baz, D., & Elkihel, M. (2005). Load balancing methods and parallel dynamic
programming algorithm using dominance technique applied to the 0-1
knapsack problem. Journal of Parallel and Distributed Computing, 65, 74-84.

Hifi, M., M'Halla, H., & Sadfi, S. (2005). An exact algorithm for the knapsack sharing
problem. Computers and Operations Research, 32, 1311-1324.

Hifi, M., & Sadfi, S. (2002). The knapsack sharing problem: An exact algorithm.
Journal of Combinatorial Optimization, 6, 35-54.

Hifi, M. Library of instances. (2005) <ftp://cermsem.univ-paris1.fr/pub/CERMSEM/
hifi/KSP>.

Martello, S., & Toth, P. (1977). An upper bound for the zero-one knapsack problem
and a branch and bound algorithm. European Journal of Operations Research, 1,
69-175.

Martello, S., & Toth, P. (1990). Knapsack problems: Algorithms and computer
implementation. New York: John Wiley & Sons.

Nembhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. New
York: Wiley.

Yamada, T., Futakawa, M., & Kataoka, S. (1997). Heuristic and reduction algorithms
for the knapsack sharing problem. Computers and Operations Research, 24,
961-967.

Yamada, T., Futakawa, M., & Kataoka, S. (1998). Some exact algorithms for the
knapsack sharing problem. European Journal of Operational Research, 106,
177-183.

Engineering (2010), doi:10.1016/j.cie.2010.10.015

Please cite this article in press as: Boyer, V., et al. A dynamic programming method with lists for the knapsack sharing problem. Computers & Industrial



http://www.laas.fr/CDA/23-31298-Knapsack-sharing-problems.php
http://dx.doi.org/10.1016/j.cie.2010.10.015

	A dynamic programming method with lists for the knapsack sharing problem
	Introduction
	Basic dynamic programming procedure
	Lists construction
	State elimination via upper bounds
	Fixing variables
	Variable reduction technique 1
	Variable reduction technique 2 (see Nemhauser & Wolsey, 1988)

	An algorithm for the KSP
	The main procedure DPKSP
	The procedure UpdateC
	The procedure UpdateZ
	The procedure FindOptimalValue

	Computational experiments
	Conclusions and perspectives
	Acknowledgements
	References


