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1. Introduction

The knapsack sharing problem (KSP) is a max–min mathemati-
cal programming problem with a knapsack constraint (see Brown,
1979, 1991, 1994). The KSP is NP-complete. The KSP occurs when
resources have to be shared or distributed fairly to several entities,
e.g. distribution of scarce resources like ammunition or gasoline
among different military units (see Brown, 1979) or budget shared
between districts of a city (see Yamada, Futakawa, & Kataoka,
1997, 1998). The KSP is composed of n items divided into m differ-
ent classes. Each class N i has a cardinality ni with

P
i2Mni ¼ n and

M¼ f1;2; . . . ;mg. Each item j 2 N i is associated with:

� a profit pij,
� a weight wij,
� a decision variable xij 2 {0,1}.

We wish to determine a subset of items to be included in the
knapsack of capacity C, so that the minimum profit associated with
the different class is maximised. The KSP can be formulated as
follows:

ðKSPÞ

max min
i2M

P
j2N i

pij � xij

( )
¼ zðKSPÞ;

s:t:
P

i2M

P
j2N i

wij � xij 6 C;

xij 2 f0;1g for i 2 M and j 2 N i;

8>>>>><
>>>>>:

ð1:1Þ
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where z(KSP) denotes the optimal value of the problem (KSP) and
for i 2M and j 2 N i;wij;pij and C are positive integers. Furthermore,
we assume that

P
i2M
P

j2N i
wij > C and maxi2M;j2N i

fwijg 6 C.
A common way to solve the KSP consists of its decomposition

into knapsack problems (see for examples Hifi & Sadfi, 2002;
Yamada et al., 1998). Indeed, for a class i 2M, we define the
following problem:

ðKPiðCiÞÞ

max
P

j2N i

pij � xij ¼ zðKPiðCiÞÞ;

s:t:
P

j2N i

wij � xij 6 Ci;

xij 2 f0;1g j 2 N i:

8>>><
>>>:

ð1:2Þ

The objective is then to find ðC�1;C
�
2; . . . ;C�mÞ such thatX

i2M
C�i 6 C;

and

min
i2M
fz KPi C�i

� �� �
g ¼ zðKSPÞ;

where for a problem P; zðPÞ represents its optimal value. An upper
bound and a lower bound of zðPÞ will be denoted, respectively, by
�zðPÞ and zðPÞ, respectively.

Hifi et al. have proposed to solve the knapsack problems
ðKPiðCiÞÞi2M via a dense dynamic programming algorithm in Hifi
and Sadfi (2002) and Hifi et al. (2005). Their method starts with
Ci ¼ 0; i 2 M, and increases regularly the capacities untilP

i2MCi > C.
In this article, we propose an algorithm for solving the KSP. Our

algorithm is based on a dynamic programming procedure with dom-
inance technique to solve the knapsack problems ðKPiðCiÞÞi2M. Our
algorithm starts by solving the problems ðKPiðCiÞÞi2M with
Ci P C�i ; i 2 M and

P
i2MCi P C. At each step, we try to decrease
ethod with lists for the knapsack sharing problem. Computers & Industrial
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the values of ðCiÞi2M, towards ðC�i Þi2M. The use of lists permits one to
reduce the memory occupancy; the expected benefit being the solu-
tion of large instances.

Without loss of generality, we consider in the sequel that the
items in a class i 2M are sorted according to decreasing ratios
pij

wij
; j 2 N i.
In Section 2, we present the dynamic programming algorithm

used to solve the problems ðKPiÞi2M. Section 3 deals with the algo-
rithm we propose for the KSP. Computational results are displayed
and analyzed in Section 4. Some conclusions and perspectives are
presented in Section 5.

2. Basic dynamic programming procedure

In order to solve the problems ðKPiðCiÞÞi2M, we use a dynamic
programming algorithm with dominance (see Bellman, 1957; Boy-
er, El Baz, & Elkihel, 2009, 2010; El Baz & Elkihel, 2005).

2.1. Lists construction

We recall that i 2 M denotes the index of the ith class of (KSP).
A list Lik is associated with each step k 2 N i:

Lik ¼ ðw;pÞjw ¼
Pk
j¼1

wij � xij 6 Ci and

(

p ¼
Pk
j¼1

pij � xij; xij 2 f0;1g; j 2 f1;2; . . . ; kg
)
:

ð2:1Þ

The algorithm begins with the lists Li0 ¼ fð0;0Þg.
At each step k 2 N i, the new list Lik is obtained as follows:

Lik ¼ Liðk�1Þ [ fðwþwik;pþ pikÞjðw; pÞ 2 Liðk�1Þ;

wþwik 6 Cig:
Notation. For simplicity of presentation the above equation will
also be written as follows in the sequel.

Lik ¼ Liðk�1Þ � fðwik;pikÞg:

The states (w, p) in a list are sorted according to the decreasing va-
lue of p.

From the dynamic programming principle, dominated states,
i.e. states (w, p) such that there exists a state (w0, p0) with w0 6 w
and p0 P p, are removed from the list.

2.2. State elimination via upper bounds

In order to shrink lists Lik; k 2 N i, an upper bound �zðw; pÞ, asso-
ciated with state ðw; pÞ 2 Lik, is computed. For this purpose, we
solve exactly the following linear continuous knapsack problem
via the Martello & Toth’s algorithm (see Martello & Toth, 1977):

ðLPðw;pÞi ðCiÞÞ

max pþ
Pni

j¼kþ1
pij � xij;

s:t:
Pni

j¼kþ1
wij � xij 6 Ci �w;

xij 2 ½0;1�; j 2 fkþ 1; . . . ;nig:

8>>>>>><
>>>>>>:

ð2:2Þ

Let �zðw;pÞ ¼ bzðLPðw;pÞi ðCiÞÞc.
If �zðw; pÞ 6 zðKSPÞ, then the states (w, p) can be discarded.
We shall have:

Lik :¼ Liðk�1Þ � fðwik;pikÞg � Dik � Bik;
Please cite this article in press as: Boyer, V., et al. A dynamic programming m
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where

� Dik represents the list of dominated states in Liðk�1Þ � fðwik; pikÞg,
� Bik represents the list of states in Liðk�1Þ � fðwik; pikÞg to be elim-

inated via upper bounds.

In the sequel, this phase is the so-called NextList phase.

2.3. Fixing variables

The following two methods are used to fix variables of the prob-
lem (KPi).

2.4. Variable reduction technique 1

Let i 2 M; k 2 Ni and ðw; pÞ 2 Lik.
If p > �zðKSPÞ, where �zðKSPÞ is an upper bound of (KSP) obtained

by the solution of the linear continuous relaxation of (KSP), then all
free variables xij, j 2 {k + 1, . . . ,ni}, can be fixed at 0 for the state (w, p).

Indeed, as zðKSPÞ 6 �zðKSPÞ, when p > �zðKSPÞ we can stop the
exploration of this state because it will not give a better optimal
value for (KSP).

The second method to fix variables uses information provided
by the solution of ðLPðw;pÞi ðCiÞÞ associated to a state ðw; pÞ 2 Lik;

k 2 Ni. We use the following rule to fix the free variables of a state
(w, p).

2.5. Variable reduction technique 2 (see Nemhauser & Wolsey, 1988)

Let i 2 M; k 2 Ni and ðw; pÞ 2 Lik.
Let d be the index of the critical variable of ðLPðw;pÞi ðCiÞÞ, i.e.:

Xd�1

j¼kþ1

wij 6 Ci �w and
Xd

j¼kþ1

wij > Ci �w:

If for j 2 {k + 1, . . .d � 1, d + 1, . . . ,ni}, we have

zðLPðw;pÞi ðCiÞÞ � pij �wij:
pid

wid

����
����

� �
6 zðKSPÞ;

where z(KSP) is a lower bound of (KSP), then xij can be fixed to 1 if
j < d and to 0 otherwise. The computation of z(KSP) is detailed in the
next section.

3. An algorithm for the KSP

In this section, we show how the dynamic programming meth-
od presented in the above section can be used to find an optimal
solution of (KSP).

For simplicity of notation, z(KSP) is denoted by z in the sequel.

3.1. The main procedure DPKSP

The principle of our algorithm can be presented briefly as
follows:

–A first lower bound of (KSP), z, is computed with the greedy
heuristic the so-called GreedyKSP (see Algorithm 1).

–At each step k of the dynamic programming method:
� the lists ðLikÞi2M; k6ni

are computed via the procedure NextList
presented in the above section,

� then, we try to reduce the free variables associated with each
state in ðLikÞi2M; k6ni

,
� finally, the lower bound z and the capacities ðCiÞi2M, respec-

tively, are updated via the procedures UpdateZ and UpdateC,
respectively described below.
ethod with lists for the knapsack sharing problem. Computers & Industrial
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– The dynamic programming phase is stopped when all the lists
ðLini
Þi2M have been computed. These lists are used by the proce-

dure FindOptimalValue to find an optimal solution for the (KSP).
Algorithm 1 (GreedyKSP).

For i from 1 to m do
pi := 0, wi := 0 and ki := 1

end do STOP:=0
while STOP=0 do

d := argmin{p1, p2, . . . ,pm}
if kd 6 nd then

if wd þwdkd
6 C, then

xdkd
is fixed to 1

pd :¼ pd þ pdkd

wd :¼ wd þwdkd

end if
kd := kd + 1

else
STOP:=1

end if
end while

z = min{p1, p2, . . . ,pm}.

The main procedure, DPKSP, to solve the KSP is given in Algo-
rithm 2. The procedures UpdateZ, UpdateC and FindOptimalValue
are detailed in the next sub-sections.
Algorithm 2 (DPKSP).

Initialisation:

z := z(KSP) := GreedyKSP
�zðKSPÞ :¼ bzðCKSPÞc
For i from 1 to m do
Li0 :¼ fð0; 0Þg

end for
k := 1
ðCiÞi2M :¼ UpdateCðz; ðLi0Þi2MÞ
Dynamic programming:
STOP := 0
while STOP = 0 do

STOP := 1
For i from 1 to m do

If(k 6 ni)
STOP := 0;
Lik :¼ NextListðKPi;Liðk�1ÞÞ
For each state ðw; pÞ 2 Lik do

Try to fix the free variables
end for

end if
end for
z :¼ UpdateZðz; ðCiÞi2M; ðLikÞi2MÞ
ðCiÞi2M :¼ UpdateCðz; ðLikÞi2MÞ
k := k + 1

end while
Finding z*:
zðKSPÞ :¼ FindOptimalValueðz; ðLini

Þi2MÞ
3.2. The procedure UpdateC

In this subsection, we present how the values of ðCiÞi2M are up-
dated. For this purpose, we compute the minimum values of the
capacities ðCiÞi2M resulting from an improvement of the current
lower bound z, of the KSP.
Please cite this article in press as: Boyer, V., et al. A dynamic programming m
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For i 2M, and k 2 N i [ f0g, the following linear problem is
associated with a state ðw; pÞ 2 Lik:

ðmin Wiððw;pÞ; zÞÞ

min wþ
Pni

j¼kþ1
wij � xij;

s:t: pþ
Pni

j¼kþ1
pij � xij P zþ 1;

xij 2 ½0;1�; j 2 fkþ 1; . . . ;nig:

8>>>>>><
>>>>>>:

ð3:1Þ

Let us define:

min CiðLik; zÞ ¼ min
ðw;pÞ2Lik

zðmin Wiððw;pÞ; zÞÞf g
� �

:

If we want to improve the best lower bound, z, then we must have,
for i 2M:X
j2N i

wij � xij 6 C �
X

i02M�fig

min Ci0 ðLi0k; zÞ;

with

xij 2 f0;1g; for j 2 N i:

For i 2M, the initial value of Ci is given by

Ci ¼ C �
X

i02M�fig

min Ci0 ðLi00; zÞ:

At each step k of DPKSP, we try to improve the value of Ci with Algo-
rithm 3.

Algorithm 3 (UpdateC).

For i from 1 to m do
Ci :¼ C �

P
i02M�fig

min Ci0 ðLi0k; zÞ

end for
3.3. The procedure UpdateZ

Rather than updating the lower bound z, with the GreedyKSP
heuristic, which is time consuming, we make use of all the lists
ðLikÞi2M at step k in order to try to improve more efficiently this
bound.

Indeed, for each state in the list, a local greedy heuristic can be
used in order to select a particular state. The selected state of each
list is then combined with other states so as to try to improve z.
The details of the heuristic are given in procedure UpdateZ (see
Algorithm 4).

Algorithm 4 (UpdateZ).

For i 2 M do L0ik ¼ ;
Greedy like step:

For i from 1 to m do
For ðw; pÞ 2 Lik do

W := w and P := p
For j from k + 1 to ni do

If P P z(KSP) + 1 then
exit the loop for

end if
If W + wij 6 Ci then

W := W + wij and P := P + pij

end if
end for

If P P z(KSP) + 1 then
L0ik :¼ L0ik [ fðW; PÞg

(continued on next page)
ethod with lists for the knapsack sharing problem. Computers & Industrial
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Table 1
Uncorrelated instances.

Group n m Instances 1 6 x 6 4

Am�x 1000 2–50 A02�x, A05�x, A10�x, A20�x, A30�x, A40�x, A50�x
Bm�x 2500 2–50 B02�x, B05�x, B10�x, B20�x, B30�x, B40�x, B50�x
Cm�x 5000 2–50 C02�x, C05�x, C10�x, C20�x, C30�x, C40�x, C50�x
Dm�x 7500 2–50 D02�x, D05�x, D10�x, D20�x, D30�x, D40�x, D50�x
Em�x 10,000 2–50 E02�x, E05�x, E10�x, E20�x, E30�x, E40�x, E50�x
Fm�x 20,000 2–50 F02�x, F05�x, F10�x, F20�x, F30�x, F40�x, F50�x
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end if
end for

end for
Selected states:
For i from 1 to m do

Choose ðWi; PiÞ 2 L0ik such that
Wi :¼minðW ;PÞ2L0ikfWg

end for

Updating z(KSP):
If
P

i2MWi 6 C then
zðKSPÞ :¼mini2MfPig
end if
Table 2
Correlated instances.

Group n m Instances 1 6 x 6 4

AmC�x 1000 2–10 A02C�x, A05C�x, A10C�x
BmC�x 2500 2–10 B02C�x, B05C�x, B10C�x
CmC�x 5000 2–10 C02C�x, C05C�x, C10C�x
DmC�x 7500 2–10 D02C�x, D05C�x, D10C�x
EmC�x 10,000 2–10 E02C�x, E05C�x, E10C�x
FmC�x 20,000 2–10 F02C�x, F05C�x, F10C�x

Table 3
Uncorrelated instances: time processing (s).

Inst. t. Inst. t. Inst. t.

A02�x 0.02 C02�x 0.21 E02�x 3.02
A05�x 0.15 C05�x 1.96 E05�x 5.55
A10�x 0.14 C10�x 4.02 E10�x 15.24
A20�x 0.06 C20�x 4.55 E20�x 18.38
A30�x 0.01 C30�x 2.53 E30�x 13.27
A40�x 0.00 C40�x 0.85 E40�x 13.24
A50�x 0.01 C50�x 0.66 E50�x 15.26
B02�x 0.16 D02�x 0.66 F02�x 3.00
B05�x 0.69 D05�x 4.39 F05�x 35.16
B10�x 1.20 D10�x 6.94 F10�x 46.31
B20�x 0.69 D20�x 10.83 F20�x 68.89
B30�x 0.01 D30�x 8.22 F30�x 67.21
3.4. The procedure FindOptimalValue

In the end of the dynamic programming phase, all the lists
ðLini
Þi2M, are available. In this section, we show how these lists

are combined in Oð
P

i2M CiÞ in order to find the optimal value of
(KSP).

The states (w, p) in a list are sorted according to the decreasing
value of p. Due to the dominance principle, they are also sorted
according to the decreasing value of w. Thus, if we want to check
if a given bound �z P z is feasible, then we have to take in each list
Lini

; i 2 M, the state (wi, pi) which satisfies:

wi ¼minfw j p P �z; ðw; pÞ 2 Lini
g: ð3:2Þ

If
P

i2Mwi
6 C, then we have found a better feasible bound for (KSP),

i.e. �z0 ¼mini2MfpigP �z P z. Furthermore, all the states ðw;pÞ 2 Lini

such that p < pi can be discarded. Otherwise, all the states
ðw;pÞ 2 Lini

such that p > pi (and w > wi) can be removed as they will
not provide a better solution. Indeed, in this case, we have the fol-
lowing inequalities:

zðKSPÞ < �z 6 pi; i 2 M:

Therefore, we have to decrease the value of the bound �z and check if
this new bound is feasible.

Algorithm 5 presents the procedure FindOptimalValue.

Algorithm 5 (FindOptimalValue).

Initialization:
For i from 1 to m do

Let (wi, pi) be the first states in Lini

end do
�z :¼mini2Mfpig
z(KSP) := z(KSP) Checking feasibility:
While �z > zðKSPÞ do

For i from 1 to m do
Find ðwi; piÞ 2 Lini

such that

wi :¼minfw j p P �z; ðw; pÞ 2 Lini
g

end for
If
P

i2Mwi
6 C then

zðKSPÞ :¼ �z
Exit the procedure

Else
For i from 1 to m do
Lini

:¼ Lini
� fðw; pÞ 2 Lini

j p > pig
end for
�z :¼mini2Mmaxðw;pÞ2Lini

fp j p < �zg
end if

end while

B40�x 0.01 D40�x 7.02 F40�x 78.46
B50�x 0.01 D50�x 4.02 F50�x 78.86
We note that all the lists are considered only once in this
procedure.
Please cite this article in press as: Boyer, V., et al. A dynamic programming m
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4. Computational experiments

The procedure DPKSP has been written in C and computational
experiments have been carried out on an Intel Core 2 Duo T7500
(2.2 GHz).

We have used the set of problems of Hifi (see Hifi, 2005), see
also (El Baz & Boyer, 2010) with 168 uncorrelated instances and
72 strongly correlated instances; each group of problems contains
four instances. The problems are detailed in Tables 1 and 2. All the
optimal values are known for these instances.

The average processing time for the four instances of each group
of problems is given in Tables 3 and 4. The tables show that DPKSP
is able to solve large instances (up to 20,000 variables and 50 clas-
ses) within reasonable computing time. In the correlated case, an
optimal solution is obtained in less than 13 min. The processing
time is less than 1.5 min in the uncorrelated case.

We note that our method is efficient when the number m of
classes is relatively small (between 2 and 5 classes). This result
can be explained by the fact that in this case we have to fill a lim-
ited number of knapsacks. The comparison with the results pro-
vided by Hifi and Sadfi (2002) and Hifi et al. (2005) shows the
interest of our approach particularly in this context for both corre-
lated and uncorrelated problems; indeed, the processing times of
Hifi’s algorithm tends to be important for these instances.

The memory occupancy is presented in Tables 5 and 6. Note
that the vector x associated to each state is encoded as a bit string
ethod with lists for the knapsack sharing problem. Computers & Industrial
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Table 4
Correlated instances: time processing (s).

Inst. t. Inst. t. Inst. t.

A02C�x 1.18 C02C�x 18.48 E02C�x 59.44
A05C�x 1.32 C05C�x 26.25 E05C�x 149.29
A10C�x 1.72 C10C�x 33.28 E10C�x 164.33
B02C�x 9.61 D02C�x 53.40 F02C�x 642.84
B05C�x 10.08 D05C�x 53.61 F05C�x 724.81
B10C�x 9.63 D10C�x 98.14 F10C�x 598.05

Table 5
Uncorrelated instances: memory occupancy (Mo).

Instance DPKSP ALGO (HIFI)

Am�x <0.01 1.59
Bm�x 0.05 9.95
Cm�x 0.11 38.15
Dm�x 0.33 89.4
Em�x 0.41 158.79
Fm�x 1.01 636.95

Table 6
Correlated instances: memory occupancy (Mo).

Instance DPKSP ALGO (Hifi)

AmC�x 0.10 1.60
BmC�x 0.30 9.97
CmC�x 0.68 39.76
DmC�x 1.26 89.60
EmC�x 1.96 159.23
FmC�x 6.21 638.42
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of 32 bits. These tables compare DPKSP with the algorithm of Hifi
whose space complexity is Oðn � CÞ. We see that the approach of
Hifi needs for some instances a large amount of memory (up to
638.42 Mo) contrarily to our method (<7 Mo). Indeed, the space
complexity of the dynamic programming algorithm with lists for
a knapsack problem of n variables with the capacity C is
Oðminf2nþ1; nCgÞ (see Martello & Toth, 1990). The space complex-
ity of DPKSP is O

Pm
i¼1minf2niþ1; ni � Cig

� �
. Thus it is bounded by

Oðn � CÞ. DPKSP is able to solve large problems with limited mem-
ory occupancy.

5. Conclusions and perspectives

In this paper, we have proposed a method to solve the KSP with
a dynamic programming list algorithm.

The original problem (KSP) is decomposed into a set of knapsack
problems. The initial value of the knapsack capacity is obtained via
an overestimation. This value is updated and decreased throughout
the solution process.

Computational results show that best results were obtained
when the number of classes is relatively small. They show also that
Please cite this article in press as: Boyer, V., et al. A dynamic programming m
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DPKSP is able to solve large instances within reasonable computing
time and small memory occupancy. Moreover, our method use less
memory than previous methods in the literature.

We think that very good results can be obtained with our meth-
od for instances with bigger capacities and a great number of clas-
ses (in the problems considered, capacities are generated so that
they are equal to the half sum of all item weights, as a conse-
quence, the bigger the weights, the bigger the capacity is).

In future work, it would also be interesting to consider a multi
method that combines the advantages of our approach with the
one of Hifi et al.

In order to decrease the processing time, parallel implementa-
tion of DPKSP could be considered. Indeed, the computations on
knapsack sub-problems are independent and could be done in
parallel.
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