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Abstract: In this paper, we present a heuristic which derives a feasible
solution for the Multiple Knapsack Problem (MKP). The proposed
heuristic called RCH, is a recursive method that performs computation
on the core of knapsacks. The RCH heuristic is compared with the
MTHM heuristic of Martello and Toth. Computational results on
randomly generated instances show that the proposed approach gives
better gap and smaller restitution times.
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1 Introduction

The Multiple Knapsack Problem (MKP) is a generalisation of the standard 0-1
Knapsack Problem where instead of considering only one knapsack, one tries to fill
m knapsacks of different capacities. Let N = {1, , . . . , n} be the set of items where
each item j has a corresponding profit pj and weight wj . We consider m knapsacks
of capacity ci, i ∈ {1, . . . , m}, then the MKP consists in filling all knapsacks so
that the total profit is maximised and the sum of weights in each knapsack i does
not exceed the capacity ci.

We denote the binary decision variables by xij which take value: 1 if item j
is assigned to knapsack i and 0 otherwise. The MKP is formulated as the following
0-1 integer programming problem:

maximise :
m∑

i=1

n∑
j=1

pjxij , (1)

s.t.
n∑

j=1

wjxij ≤ ci, i ∈ {1, . . . , m}, (2)

m∑
i=1

xij ≤ 1, j ∈ {1, . . . , n}, (3)

xij ∈ {0, 1}, i ∈ {1, . . . , m}, j ∈ {1, . . . , n}; where pj , ci and wj are positive
integers and constraints (2) and (3), respectively, ensure that the filling of knapsack
i does not exceed its corresponding capacity ci and every selected item is assigned
only to one knapsack, respectively.

In order to avoid any trivial case, we make the following assumptions.
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• All items have a chance to be packed (at least in the largest knapsack):

max
j∈N

wj ≤ max
i∈{1,... ,m}

ci. (4)

• The smallest knapsack can be filled at least by the smallest item:

min
i∈{1,... ,m}

ci ≥ min
j∈N

wj . (5)

• There is no knapsack which can be filled with all items of N :

n∑
j=1

wj ≥ ci, ∀i ∈ {1, . . . , m}. (6)

We assume also that the items and the knapsacks are sorted as follows:

p1

w1
≥ p2

w2
≥ · · · ≥ pn

wn
, (7)

c1 ≤ c2 ≤ · · · ≤ cm. (8)

Cargo loading is a real world application of the MKP, see Eilon and Christofides
(1971). The problem is to choose some containers in a set of n containers to
be loaded in m vessels with different loading capacities for the shipment of the
containers. Other industrial applications are the loading of n tanks with m liquids
that cannot be mixed, see Martello and Toth (1980), vehicle loading, see Hifi (2009),
task assignment and multiprocessor scheduling, see Labbé et al. (2003).

The MKP problem is strongly NP-complete and the need for algorithms that
give a good heuristic solution is justified by the computational complexity of this
problem. Reference is made to Hung and Fisk (1978), Martello and Toth (1990)
and Kellerer et al. (2004) for contributions to this problem.

In this paper, we present a heuristic which yields a feasible solution within a
reasonable computing time, this is done by exploiting efficiently the core of each
knapsack. To the best of our knowledge, this paper is the first paper to deal with
a heuristic since Martello and Toth (1980).

Section 2 deals with principle of the Martello and Toth heuristic.
The proposed method is presented in Section 3. The Section 4 is devoted to
the presentation and analysis of computational results on randomly generated
instances. Finally, in Section 5, we give some conclusions and perspectives of
our work.

2 Martello and Toth heuristic (MTHM)

In Martello and Toth (1980), the so-called MTHM heuristic is given for the MKP.
This algorithm consists of three phases. The details are available on pages 179–181
in (Martello and Toth, 1990, pp. 179–181).

The first phase of MTHM obtains an initial feasible solution by applying the
Greedy algorithm (Procedure 1) to the first knapsack; a set of remaining items
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is obtained, then the same procedure is applied for the second knapsack; this is
continued till the mth knapsack.

The second phase tries to improve the initial solution by swapping every pairs
of items assigned to different knapsacks and trying to insert a new item so that the
total profit is increased.

The last phase tries to exclude in turn each selected item if it is possible
to replace it by one or more remaining items so that the total profit sum is
increased.

The advantage of the MTHM heuristic is that some items can be exchanged
from a knapsack to another or excluded from the solution set so that total profit
increases. This can lead to an efficient and fast solution when the solution given by
the first phase is good. The main drawback of MTHM heuristic is that it considers
only the exchanges between a pairs of items instead of combinations of items.

3 RCH, a Recursive Core Heuristic for the MKP

The aim of the proposed approach consists in packing the maximum number of
‘best’ items with regards to relation (4) in a small computation time. For that
purpose, an efficient lower bound z of the MKP is built as follows. We consider
the series of knapsack problems:

(KPi)


max

∑
j∈Ni

pjxj

∣∣ ∑
j∈Ni

wjxj ≤ ci, xj ∈ {0, 1}, j ∈ Ni


 , i = 1, . . . , m,

(9)

with N1 = N , Ni = Ni−1 − {l ∈ Ni−1 | xl = 1} and zi the lower bound of (KPi)
such that zi =

∑
j∈Ni

pjxj . Then, a lower bound of MKP is given as follows.

z =
m∑

i=1

zi.

In order to simplify notation and without loss of generality, we consider that the
elements of Ni are indexed from 1 to Card(Ni) = ni, i.e., Ni = {1, . . . , ni}.

3.1 Deriving lower bounds with the first knapsacks

The m − 1 first knapsack problems (KPi) are considered successively. At step i,
a Greedy algorithm is applied to fill the knapsack (KPi) and derives a lower bound
zi =

∑
j∈Ni

pjxj . If the knapsack is entirely filled i.e., the residual capacity c̄i =
ci −

∑
j∈Ni

wjxj = 0, then we consider the next knapsack; otherwise, we solve a
subset sum problem on the core of the considered knapsack that allows us to derive
a lower bound zi =

∑
j∈Ni

pjxj .
Finally, a dynamic programming method is used to derive a lower bound of the

last knapsack (KPm).
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3.1.1 Computing a lower bound of a knapsack with a Greedy algorithm

Assuming that the items and knapsacks, respectively, are sorted according
to equations (7) and (8), respectively, the following Greedy algorithm is applied to
knapsack (KPi), i �= m.

3.1.2 Reducing residual capacity via computation on the core

• The core of the knapsack problem (KPi)

We recall that items are sorted according to inequality (7). We denote by s the
index of the split item of (KPi) which satisfies:

s−1∑
j=1

wj ≤ ci <

s∑
j=1

wj . (10)

The core of the problem (KPi) denoted by C is defined as follows:

C = {j ∈ Ni | s − r ≤ j ≤ s + r − 1}, (11)

where 2r is a constant which denotes the size of the core. Several choices have
been proposed for r. Balas and Zemel (1980) have proposed 2r = 25 for large
instances. Martello and Toth have proposed r =

√
n in Martello and Toth (1988)

and r =
√

n/2 in Martello and Toth (1990), see also Pisinger (1995).
For the proposed heuristic, best results were obtained with r =

√
n.

• Solving the Subset Sum Problem (SSP)

The residual capacity of the knapsack problem (KPi) can be reduced by computing
the Subset Sum Problem (SSP) on the core.

In the sequel, we use the following notation c̄i = ci −
∑s−r−1

j=1 wj . We solve:

(SSP)
{

max
∑

j∈C

wjxj |
∑

j∈C

wjxj ≤ c̄i, xj ∈ {0, 1}}
, (12)

we denote by v(SSP) the optimal value of problem (SSP). Problem (SSP) is solved
via the dynamic programming method proposed by Plateau and Elkihel (1985).
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In this method, items are taken alternatively according to each direction starting
from index s. That is, we consider s, s − 1, s + 1, s − 2, . . . (see also Pisinger,
1995, Martello and Toth, 1997). More precisely, the method consists in building
iteratively the lists Lk

1 and Lq
2 as follows:

Lk
1 =


w | w =

s−1∑
j=k

wjxj ≤ c̄i, xj ∈ {0, 1}


 ,

k = s − 1, s − 2, . . . , s − r, (13)

Lq
2 =


w′ | w′ =

q∑
j=s

wjxj ≤ c̄i, xj ∈ {0, 1}


 ,

q = s, s + 1, . . . , s + r − 1. (14)

The states are sorted in the lists according to increasing weights w. Dominance
techniques are applied: when 2 states are equal, then one of them is removed.
Lists Lk

1 and Lq
2 are merged two by two after each step. The building lists

process is stopped when max w + w′ = c̄i or k = s − r and q = s + r − 1.
Thus, we take

zi =
s−r−1∑

j=1

pj +
∑
j∈C

pjx
∗
j , (15)

where the x∗
j correspond to the solution of SSP i.e.,. v(SSP) =

∑
j∈C wjx

∗
j .

Thus, we can write this algorithm as follows:

3.2 Deriving a lower bound with the last knapsack

Finally, dynamic programming is applied to the core of the last knapsack (KPC).
We solve the problem

(KPC)
{

max
∑

j∈C

pjxj |
∑

j∈C

wjxj ≤ c̄m, xj ∈ {0, 1}} , (16)
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we denote by v(KPC) the optimal value of problem (KPC). Problem (KPC)
is solved via the dynamic programming method with dominance techniques
(see Ahrens and Finke, 1975; El Baz and Elkihel, 2005; Boyer et al., 2009). In this
method, items are considered successively from s − r to s + r − 1. More precisely,
the dynamic programming method consists in building iteratively the lists Lk as
follows:

Lk =


(w, p) | w =

k∑
j=s−r

wjxj ≤ c̄m, xj ∈ {0, 1}


 ,

k = s − r, . . . , s + r − 1, (17)

where p =
∑k

j=s−r pjxj .
The states are sorted in the lists Lk according to increasing profits p. Dominance

techniques are applied: if (w, p) and (w′, p′) are two states such that w ≤ w′ and
p ≥ p′, then the state (w′, p′) is dominated and can be removed. We take

zm =
s−r−1∑

j=1

pj + v(KPC), (18)

with v(KPC) =
∑

j∈C pjx
∗
j = max{p | (w, p) ∈ Ls+r−1}. The computational

procedure is detailed in the following algorithm:

4 Computational experiences

We present now computational results for RCH and compare the obtained results
with the MTHM heuristic and CPLEX Solver 12.1. The algorithms RCH and
MTHM have been written in C. All tests have been carried out on an Intel core 2
Duo 2.2Ghz with 2GB of RAM. We have considered random generated problems.
We display average results obtained with 10 instances. We have fixed a time limit
of 600 s (10 min) for each instance.

We have considered three types of problems: uncorrelated, weakly correlated
and strongly correlated problems; this has permitted us to consider from relatively
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easy to very difficult problems. The weights wj are uniformly random distributed
over the integer interval [1, 1000] and profits pj are computed as follows:

• Uncorrelated case:

Uniformly random over [1, 1000], independent of wj .

• Weakly correlated case: Uniformly random over [wj − 100, wj + 100].

• Strongly correlated case: pj = wj + 100.

The capacities ci are uniformly random in
[
0.4

∑n
j=1 wj/m, 0.6

∑n
j=1 wj/m

]
for

i = 1, . . . , m − 1.
The capacity of the mth knapsack is set to

cm = 0.5
n∑

j=1

wj −
m−1∑
i=1

ci,

if an instance does not satisfy conditions (4)–(6), then a new instance is
generated. The MKP problems are available at:http://www.laas.fr/laas09/CDA-
EN/45-31328-MKP.php. In the sequel, the gap of a given method is computed as
follows:

gap = 100(U − z)/U,

where U is the best upper bound given by CPLEX and the surrogate relaxation of
the problem MKP, see Martello and Toth (1980).

We have considered two orderings of items in the core i.e., the natural
ordering whereby items are sorted according to decreasing ratio price over weight,
see equation (7) and a different ordering whereby items are sorted according to
the decreasing weight order i.e., ws−r ≥ ws−r+1 ≥ · · · ≥ ws−1, ws ≥ ws+1 ≥ · · · ≥
ws+r. We note that both orderings give good results in terms of gap. Nevertheless,
the latter is slightly better in terms of time; this is the ordering we have used in the
computational tests we present.

Tables 1–3 display computational results for the different types of problems
i.e., uncorrelated, weakly correlated and strongly correlated problems.
According to the results presented in Tables 1–3, RCH is in general better than
CPLEX and MTHM in terms of gap and processing time.

We remark that the processing time of RCH is not very sensitive to the number
of knapsacks and the size of problems. We recall that the size of the solved cores
is equal to 2

√
n. We can remark also that greater is n, better is the gap.

We note that for 10 and 100 knapsacks, CPLEX exceeds the time limit
of 10 min and the difference of gap between CPLEX and RCH can reach 3 orders
of magnitude, e.g., see Table 1 (m = 100, n = 5000). We note also that for problems
with 100 knapsacks and more than 50000 items, CPLEX exceeds the memory
capacity of the machine.
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The computing time of RCH method never exceeds 3 s while the computing time
of MTHM method can be 80 s. The good results we have obtained with RCH as
compared with MTHM can be explained as follows:

• The exchange of a combination of items between two adjacent knapsacks in a
recursive way as proposed in RCH is more efficient than swapping pairs of
items between different knapsacks like in MTHM.

Table 1 Time and gap for uncorrelated problems

CPLEX MTHM RCH

m n Time (s) GAP (%) T ime (s) GAP (%) T ime (s) GAP (%) U

2 5000 4.5200 0.00000 0.1438 0.00063 0.0064 0.00005 ◦
10000 7.7600 0.00000 0.5751 0.00023 0.0079 0.00002 ◦
50000 29.010 0.00000 14.546 0.00002 0.0157 0.00000 ◦

100000 138.32 0.00000 58.530 0.00001 0.0220 0.00000 ◦
10 5000 600.00 0.01076 0.1766 0.00204 0.0110 0.00020 ◦

10000 600.00 0.00864 0.6842 0.00065 0.0125 0.00011 ◦
50000 600.00 0.00454 17.116 0.00006 0.0265 0.00001 ◦

100000 600.00 0.00850 69.091 0.00003 0.0359 0.00000 ◦
100 5000 600.00 0.12789 0.1860 0.02493 0.0657 0.00193 ◦

10000 600.00 0.69317 0.7341 0.00722 0.0828 0.00058 ◦
50000 − − 18.016 0.00051 0.0359 0.00008 •
100000 − − 71.758 0.00016 0.2704 0.00003 •

U , the best upper bound given by:
◦ CPLEX; • the surrogate relaxation of MKP.
−: CPLEX exceeds memory capacity of the machine.

Table 2 Time and gap for weakly correlated problems

CPLEX MTHM RCH

m n Time (s) GAP (%) T ime (s) GAP (%) T ime (s) GAP (%) U

2 5000 5.1100 0.00000 0.1139 0.00067 0.0093 0.00000 ◦
10000 8.9600 0.00000 0.4530 0.00025 0.0108 0.00000 ◦
50000 31.450 0.00000 11.359 0.00002 0.0157 0.00000 ◦

100000 143.27 0.00000 42.371 0.00000 0.0154 0.00000 ◦
10 5000 600.00 0.01249 0.1375 0.00541 0.0157 0.00072 ◦

10000 600.00 0.00623 0.5422 0.00174 0.0078 0.00008 ◦
50000 600.00 0.00149 13.568 0.00012 0.0375 0.00000 ◦

100000 600.00 0.00544 54.250 0.00005 0.0420 0.00000 ◦
100 5000 600.00 0.15531 0.1453 0.09919 0.0766 0.00072 ◦

10000 600.00 0.55200 0.5658 0.03841 0.0888 0.00016 ◦
50000 − − 13.879 0.00301 0.2092 0.00001 •
100000 − − 55.446 0.00088 0.3219 0.00000 •

U , the best upper bound given by:
◦ CPLEX; • the surrogate relaxation of MKP.
−: CPLEX exceeds memory capacity of the machine.
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Table 3 Time and gap for strongly correlated problems

CPLEX MTHM RCH

m n Time (s) GAP (%) T ime (s) GAP (%) T ime (s) GAP (%) U

2 5000 5.8700 0.00000 0.1609 0.00000 0.1095 0.00000 ◦
10000 9.3700 0.00000 0.6625 0.00000 0.2079 0.00000 ◦
50000 38.780 0.00000 15.995 0.00000 1.0127 0.00000 ◦

100000 146.54 0.00000 65.911 0.00000 2.0140 0.00000 ◦
10 5000 600.00 0.01924 0.1919 0.00173 0.1235 0.00087 ◦

10000 600.00 0.01755 0.7626 0.00250 0.2267 0.00171 ◦
50000 600.00 0.01000 19.185 0.00023 1.0533 0.00021 ◦

100000 600.00 0.00556 76.602 0.00010 2.0406 0.00003 ◦
100 5000 600.00 0.46629 0.2030 0.18344 0.7330 0.04310 ◦

10000 600.00 0.56466 0.8143 0.07015 1.3720 0.00457 ◦
50000 − − 20.109 0.00306 1.8797 0.00025 •
100000 − − 80.058 0.00096 2.8470 0.00013 •

U , the best upper bound given by:
◦ CPLEX; • the surrogate relaxation of MKP.
−: CPLEX exceeds memory capacity of the machine.

• The list building procedure of RCH combines items in the core with smallest
weight, i.e., at left of index s, with items with largest weight, i.e., at right of s.
This results in a better way to fill knapsacks.

5 Conclusion

In this paper, we have proposed a heuristic RCH for the MKP which consists in
solving recursively each core of the different knapsacks. For the m − 1 first cores,
a subset sum problem is solved via dynamic programming and the last core is
solved by using the classical dynamic programming. The ordering whereby items
are sorted according to the decreasing weights in the two sets {s − r, . . . , s − 1}
and {s, . . . , s + r − 1} of the m − 1 first cores and the natural ordering in the last
core are used. Computational results show that the RCH heuristic generally yields
better gaps than the MTHM heuristic of Martello and Toth and CPLEX Solver
in better computing time and that the proposed approach is able to solve large
instances in a reasonable time. In future work, we plan to test other orderings in
order to improve computing time.
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