
J. Parallel Distrib. Comput. 67 (2007) 581–591
www.elsevier.com/locate/jpdc

MPI implementation of parallel subdomain methods for linear and
nonlinear convection–diffusion problems

Ming Chaua, Didier El Bazb,∗, Ronan Guivarcha, Pierre Spiteria

aENSEEIHT-LIMA-IRIT, 2, rue Charles Camichel, 31071 Toulouse, France
bLAAS-CNRS, 7, avenue du Colonel Roche, 31077 Toulouse Cedex 4, France

Received 25 January 2006; received in revised form 28 December 2006; accepted 5 January 2007
Available online 31 January 2007

Abstract

The solution of linear and nonlinear convection–diffusion problems via parallel subdomain methods is considered. MPI implementation of
parallel Schwarz alternating methods on distributed memory multiprocessors is discussed. Parallel synchronous and asynchronous iterative
schemes of computation are studied. Experimental results obtained from IBM-SP series machines are displayed and analyzed. The benefits of
using parallel asynchronous Schwarz alternating methods are clearly shown.
© 2007 Elsevier Inc. All rights reserved.

Keywords: IBM-SP series machines; MPI; Parallel computing; Asynchronous iterative algorithms; Schwarz alternating method; Subdomain methods;
Convection–diffusion problems

1. Introduction

Convection–diffusion problems occur in many domains such
as finance and hydraulics. The discretization of these problems
leads to very large scale systems of algebraic equations. The
introduction of parallelism via decomposition techniques can
be very attractive and overlapping subdomain methods, as the
Schwarz alternating method, can be very efficient when they are
applied to the solution of these algebraic systems of equations
(see [18]). This last remark is particularly true in the case of
problems with nondifferentiable nonlinearities (see [3]). For
more details on additive and multiplicative Schwarz alternating
schemes, reference is made to [9–11,19,20].

The purpose of this paper is to show how we have im-
plemented parallel overlapping subdomain methods via MPI
on distributed memory multiprocessors. In particular, parallel
asynchronous iterative schemes of computation are considered.
In the case where several subdomains are assigned to each
processor, the combination of parallel asynchronous iterative

∗ Corresponding author. Fax: +33 5 61 33 69 69.
E-mail addresses: Ming.Chau@enseeiht.fr (M. Chau),

elbaz@laas.fr (D. El Baz), Ronan.Guivarch@enseeiht.fr (R. Guivarch),
Pierre.Spiteri@enseeiht.fr (P. Spiteri).

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.01.003

schemes of computation with the Schwarz alternating method
permits one to obtain a behavior similar to the one of a multi-
plicative Schwarz alternating method.

We recall that the class of asynchronous iterations is a gen-
eral class of parallel algorithms, whereby the components of the
iterate vector can be updated in parallel via several processors,
without any order nor synchronization (see [2,5,8,16,21,22]).
The class of asynchronous iterations is well known for its
practical interest (see, for example, [5,15]). This class has been
extended in [23] (see also [13]). We have proposed in the above
references a new class of parallel algorithms: asynchronous it-
erations with order intervals or with flexible communication. In
the former class of parallel algorithms, computations make use
of values of the components of the iterate vector which are gen-
erated in the end of updating phases. In the latter class, a partial
update, i.e. the current value of any component of the iterate
vector, which is not necessarily labelled by an outer iteration
number, can be used at any time in the computations. Thus,
flexible data exchange between processors are allowed. As a
consequence, the coupling between communication and com-
putation can be improved. In the partial ordering context, faster
convergence can also be expected. The theory of asynchronous
iterations with flexible communication has been considered
in [12,13,23]. Mathematical models have been proposed and
convergence results have been given in different theoretical

http://www.elsevier.com/locate/jpdc
mailto:Ming.Chau@enseeiht.fr
mailto:elbaz@laas.fr
mailto:Ronan.Guivarch@enseeiht.fr
mailto:Pierre.Spiteri@enseeiht.fr


582 M. Chau et al. / J. Parallel Distrib. Comput. 67 (2007) 581–591

contexts. Convergence detection has also been studied in this
series of papers. The convergence of asynchronous iterations
with flexible communication was shown in the context of con-
tracting operators (see [12]). Monotone convergence results for
asynchronous iterations with flexible communication have also
been given in the partial ordering framework (see [13,23]). We
have considered in [23] the solution of the algebraic system

A(U∗) = 0, (1.1)

where A is a surjective M-function according to Rheinboldt
(see [25]). It is shown in [23] that if asynchronous iterative
algorithms with flexible communication have an initial guess
U0 satisfying A(U0)�0, then under the weak assumption that
recent values of the components of the iterate vector are in-
creasingly used as the computation progresses, asynchronous
iterative algorithms with flexible communication converge
monotonically to the unique solution U∗, i.e. the algorithms
generate monotone decreasing sequences of vectors {Uk},
which start from U0 and converge to U∗,

Similarly, the solution of problem (1.1) via the Schwarz al-
ternating method leads to the solution of the system

Ã(Ũ) = 0, (1.2)

where Ã is the augmented system obtained from problem (1.1)
(see [23]). In this case, Ã is also an M-function (see [23]).
Thus, the theoretical results obtained in the case of problem
(1.1) can be extended to problem (1.2). Finally, note that for
nonlinear boundary value problems, as nonlinear convection–
diffusion problems, suitable discretization schemes can also
lead to M-function mappings.

Asynchronous iterations with flexible communication have
been applied to the solution of several classes of nonlinear
boundary value problems. Numerical results for the obstacle
problem are displayed and analyzed in [26]. Numerical exper-
iments on a shared memory machine have been carried out for
the nonlinear diffusion problem (see [27]). Asynchronous it-
erations with flexible communication have also been applied
to a class of convex optimization problems, i.e. network flow
problems (see [13]).

In this paper, we concentrate on an efficient MPI implemen-
tation of parallel Schwarz alternating methods on distributed
memory multiprocessors. Several parallel iterative schemes
of computation are combined with the Schwarz alternating
method. Parallel asynchronous iterative schemes of compu-
tation with flexible communication and synchronous iterative
schemes of computation are compared. We consider in detail
communication management. Finally, computational results
obtained from IBM-SP series machines are reported and
analyzed.

Section 2 deals with convection–diffusion problems. The
Schwarz alternating method and parallel iterative schemes of
computation are presented in Section 3. Section 4 deals with the
implementation of parallel Schwarz alternating algorithms on
distributed memory machines. Computational results are dis-
played and analyzed in Section 5. Appendices A and B display

parallel codes. Computational results for 2D test problems are
briefly shown in Appendix C.

2. Convection–diffusion problems

In this section, we present linear and nonlinear convection–
diffusion problems. For the sake of clarity and simplicity, prob-
lem formulation is given in the 2D case.

2.1. Linear case

Consider the following linear convection–diffusion problem:⎧⎪⎨
⎪⎩

−��u + a
�u

�x
+ b

�u

�y
+ cu = f, everywhere in �,

u = 0 on ��,

(2.1)

where c�0, � > 0, � is a bounded domain, f is a given func-
tion of L2(�) and �� denotes the boundary of �. For the sake
of simplicity, we assume that the discretization grid of the do-
main � is uniform. In the sequel h denotes the discretization
step-size. We assume that the columns of the discretization
grid are numbered naturally. The discretization of the oper-
ators which occur in problem (2.1) is made according to the
following rules: the Laplacian is discretized via the classical
five point scheme and the first derivatives are discretized as
follows according to the sign of a and b

�u

�x
=

⎧⎪⎨
⎪⎩

u(x, y) − u(x − h, y)

h
+ O(h) if a > 0,

u(x + h, y) − u(x, y)

h
+ O(h) if a < 0.

(2.2)

Let A denote the discretization matrix of problem (2.1). If c is
strictly positive, then regardless the sign of a and b, it follows
from (2.2) that off-diagonal entries of matrix A are nonpositive
and diagonal entries of A are positive. Moreover, the matrix A
is strictly diagonally dominant; thus, A is an M-matrix.

If c = 0, then we can show that the matrix A is diago-
nally dominant. Moreover, by using the characterization of ir-
reducible matrices (see [24]) we can verify that the matrix A is
irreducibly diagonally dominant. Thus, A is an M-matrix.

Consider now a red-black ordering of the columns of the grid
and let Â be the corresponding discretization matrix derived
from A by a permutation which preserves the sign of the entries.
We consider the former discretization scheme; if c is strictly
positive, then the matrix Â is strictly diagonally dominant; if
c = 0, then we can show analogously that the matrix Â is
irreducibly diagonally dominant. Thus, in both cases Â is an
M-matrix.

Finally, we note that under realistic hypotheses, the finite
element discretization matrix occurring in some analogous lin-
ear partial differential equations is also an M-matrix (see [1]).

2.2. Nonlinear case

In this subsection, we consider different types of nonlinear
convection–diffusion problems where nonlinearities arise on
the boundary or in the domain (see [4]).



M. Chau et al. / J. Parallel Distrib. Comput. 67 (2007) 581–591 583

Fig. 1. Different graphs for �.

2.2.1. Nonlinearities on the boundary
The first application is a boundary temperature control prob-

lem modelled as follows:
⎧⎪⎪⎨
⎪⎪⎩

−��u + a
�u

�x
+ b

�u

�y
+ cu = f everywhere in �,

�u

�n
+ �(u) = 0 on �d and u = 0 on �� − �d ,

(2.3)

where � ⊂ R2, c�0, �d ⊂ ��, f ∈ L2(�) and � : R → R is
a continuous, nondecreasing, nonlinear function. Fig. 1 displays
some examples of graphs for function �.

In particular, the graphs (a) and (b) model saturation
phenomena and the graph (c) models a multivalued function
corresponding to the boundary condition: �u

�n
+ �(u) � 0. The

discretization techniques presented in the previous subsection
can be used for the interior points of domain �. For all points
in �d , the discretization of the Neumann condition leads to the
solution of the following discrete equations:

uj − uj−1

h
+ �(uj ) = 0. (2.4)

Thus, we have to solve the problem

A(U) = AU + �(U) − g = 0, (2.5)

where A is the discretization matrix associated with the linear
part of the equations, � is a diagonal, nondecreasing operator
and (g, U) ∈ Rdim(A) × Rdim(A). It follows from (2.4) that the
jth component of � is equal to h�(uj ) if j is the index of a
point which belongs to �d and is null if j corresponds to an
interior points of �. If c > 0, then it follows from (2.4) and
the Dirichlet condition defined on �� − �d that the matrix A
is a strictly diagonally dominant. Thus, A is an M-matrix. In
the case where c = 0, we can verify by a similar argument that
the matrix A is irreducibly diagonally dominant, regardless the
sign of a and b, thus, A is an M-matrix. Since A is an M-matrix
and � is a continuous, nondecreasing, diagonal mapping, A
is an M-function, according to Theorem 13.5.6 in [24], i.e. A
is off-diagonally monotone decreasing and inverse monotone
increasing. The results of this subsection can also be extended
to the case where a red-black ordering is considered.

Note that the particular case of convection–diffusion prob-
lems with Neumann conditions defined everywhere on �� can
also be considered. Then, the above analysis still holds when
the condition c > 0 is satisfied.

2.2.2. Nonlinearities in the domain
We turn now to the case where nonlinearities are defined in

the domain �. The general model can be given as follows:⎧⎪⎨
⎪⎩

−��u + a
�u

�x
+ b

�u

�y
+ cu + �(u) = f in �,

B.C.,

(2.6)

where c�0, f ∈ L2(�), � : R → R is a continuous, non-
decreasing function and B.C. represents a classical boundary
condition, i.e. Dirichlet, Neumann, Robin or mixed. The dis-
cretization techniques quoted in the beginning of this section
give rise to the same operator as in (2.5) and we are also in
an M-function framework. The following nonlinear functions:
�(u) = e�u, with � > 0, �(u) = Log(� + �u), with � > 0 and
a suitable sign for �, can be considered.

3. Algorithms

In this section, we present some background material on the
Schwarz alternating method and parallel iterative schemes of
computation. For the sake of clarity and simplicity, domain
decomposition is presented in the 2D case.

3.1. The Schwarz alternating method

The effectiveness of domain decomposition methods is well
known for boundary value problems. These methods are also
well suited to parallel computing (see [18]). We concentrate
here on parallel Schwarz alternating methods, which are based
on overlapping subdomains.

Problem (2.1) can be decomposed into � subproblems as
follows. For i = 1, . . . , �,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−��ui+a
�ui

�x
+b

�ui

�y
+cui = fi everywhere in �i ,

ui/�i
= 0,

ui
/�1

i

= ui−1
/�1

i

for 2� i��,

ui
/�2

i

= ui+1
/�2

i

for 1� i�� − 1,

(3.1)

where ui and fi , respectively, are the restriction of u
and f , respectively, to �i , � = ⋃�

i=1 �i , �i

⋂
�i+1 �=

∅, for i ∈ {1, . . . , � − 1}, �1
i = ��i

⋂
�i−1, for i ∈ {2, . . . , �},

�2
i = ��i

⋂
�i+1, for i ∈ {1, . . . , � − 1} and �i = ��i

⋂
��,

for i ∈ {1, . . . , �} (see Fig. 2).
The decomposition (3.1) corresponds to an overlapping

subdomain decomposition, whereby ui is computed using the
restriction of ui−1 and ui+1, respectively, on �1

i and �2
i , re-

spectively. In the sequential case, the scheme of computation
corresponds exactly to a multiplicative Schwarz scheme. In the
parallel case, the Schwarz alternating method can be combined
with an asynchronous iterative scheme of computation with
flexible communication in order to be as close as possible to a
multiplicative scheme.

Consider now the most general case, i.e. the nonlinear case.
We have A(U) = AU + �(u). Assume that A is an M-matrix



584 M. Chau et al. / J. Parallel Distrib. Comput. 67 (2007) 581–591

Fig. 2. An example with three subdomains.

1 2

2

4P1

P2

Partial update communication

Update communication

3

1

Fig. 3. A simple example of asynchronous algorithm with flexible commu-
nication.

and �(u) is a monotone increasing mapping. Then, we are in a
context similar to (2.5). If we solve the nonlinear simultaneous
equations A(U) = 0, via the Schwarz alternating method, then
the augmentation process of the Schwarz alternating method
transforms the M-matrix A into an M-matrix Ã and the mono-
tone increasing mapping � into the monotone increasing map-
ping �̃ (see [14,23]). Thus, the resulting nonlinear mapping Ã
is a surjective M-function and we are in the convergence anal-
ysis framework considered in [23].

Note that any direct or iterative method can be used on each
subdomain. In the case where � = 0, the discretization ma-
trix is triangular. Thus, a relaxation method converges in only
one iteration when the scanning order of the grid matches the
triangular discretization matrix. In the case where � is small,
the discretization matrix is nearly triangular. The entries asso-
ciated with a triangular part of the matrix derived from the de-
centered discretization scheme have higher order of magnitude
than other entries. A relaxation method can then be a quasi-
direct method on each subdomain and its computational cost
can be very low.

3.2. Parallel iterative schemes of computation

The Schwarz alternating method has been combined with
two parallel iterative schemes of computation: an asynchronous
iterative scheme with flexible communication and a syn-
chronous one. We recall that parallel asynchronous iterative
algorithms with flexible communication are general iterative

methods whereby iterations are carried out in parallel by up
to � processors without any order nor synchronization, with
2���� (see [13,12,23]). The main feature of this class of
parallel iterative methods is to allow flexible data exchange
between the processors. The value of the components of the
iterate vector which is used in an updating phase may come
from updates which are in progress and which are not neces-
sarily labelled by an outer iteration number. Fig. 3 displays the
typical behavior of parallel asynchronous iterations with flex-
ible communication in the simple case where two processors,
denoted by P1 and P2, respectively, exchange data. In Fig. 3,
boxes and arrows, respectively, represent updating phases and
communications, respectively.

4. Implementation

Parallel Schwarz alternating algorithms have been carried
out on distributed memory machines via MPI. We have imple-
mented both synchronous and asynchronous iterative schemes
of computation in the 3D case.

4.1. Asynchronous algorithms with flexible communication

The SPMD code presented in Appendix A was carried out
on several IBM-SP series machines. Convergence detection
was performed via a snapshot algorithm (see [5, Section 8.2,
6]). Convergence occurs when a given predicate on a global
state is true. An usual predicate corresponds to the fact that
the iterate vector generated by the asynchronous iterative algo-
rithm is sufficiently close to a solution of the problem (see [5,
p. 580]). Several subdomains, i.e. parallepipeds, are assigned
to each processor in order to implement a strategy of relaxation
which is close to the multiplicative strategy. Each processor
updates the components of the iterate vector associated with
its subdomains and computes the residual norm corresponding
to the subdomains in order to participate to the convergence
detection.

The efficiency of parallel algorithms strongly depends on the
communication frequency within the computations. In the code
presented in Appendix A, communication frequency increases
when the number of relaxations, denoted by N, decreases.

The Fortran code displayed in Appendix B shows how we
have implemented communications. Point-to-point communi-
cations between two processes have been implemented using
persistent communication request. Communication with the
same argument list is repeatedly executed; it corresponds to
data transmission of successive values of the components of the
iterate vector associated with a subdomain frontier. That is the
reason why persistent communication request has been used.
Persistent communication request can be thought of as a com-
munication port or a half-channel. This approach permits one
to reduce the communication overhead between the process and
the communication controller. A persistent communication re-
quest is created by MPI_SSEND_INIT or MPI_RECV_INIT,
respectively, in the transmitter or the receiver, respectively. For
the sake of robustness, we have used a synchronous mode send
operation since ready mode is unsafe and buffered mode may



M. Chau et al. / J. Parallel Distrib. Comput. 67 (2007) 581–591 585

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

160

180

200

ti
m

e
 (

s
)

number of processors

Fig. 4. 3D problem, � = 0.01, 3,750,000 nodes, 256 subdomains, IBM-SP4
P690+, elapsed time of synchronous algorithms (solid) and asynchronous
algorithms (dashed).

0 20 40 60 80 100 120 140

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

number of processors

e
ff
ic

ie
n
c
y

Fig. 5. 3D problem, � = 0.01, 3,750,000 nodes, 256 subdomains, IBM-SP4
P690+, efficiency of synchronous algorithms (solid) and asynchronous algo-
rithms (dashed).

lead to overflow in the high communication frequency case.
Note that the use of a synchronous mode send operation is not
in contradiction with the implementation of asynchronous iter-
ations since the implementation of communication layers and
the type of computation scheme are independent. Persistent
communication requests are activated by MPI_START. Recep-
tion tests have been made via MPI_TEST.

If global convergence is detected, then computations can be
terminated and resources can be freed. All persistent commu-
nication requests are cancelled via the MPI_CANCEL function
and finally suppressed via the MPI_REQUEST_FREE func-
tion. Note that cancellation of send requests must occur be-
fore cancellation of receive requests; otherwise data exchange
based on rendezvous mechanism may fail. Thus, all processes

0 20 40 60 80 100 120 140

4.6

4.8

5

5.2

5.4

5.6

5.8
x 104

number of processors

n
u

m
b

e
r 

o
f 

re
la

x
a

ti
o

n
s

Fig. 6. 3D problem, � = 0.01, 3,750,000 nodes, 256 subdomains, IBM-SP4
P690+, number of relaxations of synchronous algorithms (solid) and asyn-
chronous algorithms (dashed).

0 20 40 60 80 100 120 140

0

200

400

600

800

1000

1200

1400

1600

1800

ti
m

e
 (

s
)

number of processors

Fig. 7. 3D problem, � = 0.1, 3,750,000 nodes, 256 subdomains, IBM-SP4
P690+, elapsed time of synchronous algorithms (solid) and asynchronous
algorithms (dashed).

are synchronized via the MPI_BARRIER function before the
cancellation of receive requests. For more details on the imple-
mentation of asynchronous iterative schemes of computation,
the reader is referred to [7] (see also [17]).

4.2. Synchronous algorithms

Implementation of parallel synchronous iterative schemes
of computation was based on the blocking reception of bound-
ary values. The MPI_WAITALL function was preferred to the
MPI_WAIT function since programming is easier and overhead
is reduced with the former function. The termination order of
requests is totally handled by MPI with the MPI_WAITALL



586 M. Chau et al. / J. Parallel Distrib. Comput. 67 (2007) 581–591

0 20 40 60 80 100 120 140
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

number of processors

e
ff
ic

ie
n
c
y

Fig. 8. 3D problem, � = 0.1, 3,750,000 nodes, 256 subdomains, IBM-SP4
P690+, efficiency of synchronous algorithms (solid) and asynchronous
algorithms (dashed).

0 20 40 60 80 100 120 140
3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9
x 105

number of processors

n
u
m

b
e
r 

o
f 
re

la
x
a
ti
o
n
s

Fig. 9. 3D problem, � = 0.1, 3,750,000 nodes, 256 subdomains, IBM-SP4
P690+, number of relaxations of synchronous algorithms (solid) and asyn-
chronous algorithms (dashed).

function. On the other hand, the use of MPI_WAIT would
require the programmer to handle the termination order. We do
not present here the code we have implemented, since imple-
mentation is straightforward in this case (the code is less com-
plex than the one quoted in the previous subsection devoted to
asynchronous iterations). Reference is made to [7,17] for
implementation details concerning parallel synchronous itera-
tive algorithms.

5. Numerical experiments

Computational experiments were carried out on several
IBM-SP series machines in CINES and IDRIS computing

0 20 40 60 80 100 120 140

0

1000

2000

3000

4000

5000

6000

7000

number of processors

ti
m

e
 (

s
)

Fig. 10. 3D problem, � = 1, 3,750,000 nodes, 256 subdomains, IBM-SP4
P690+, elapsed time of synchronous algorithms (solid) and asynchronous
algorithms (dashed).

0 20 40 60 80 100 120 140
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

number of processors

e
ff
ic

ie
n
c
y

Fig. 11. 3D problem, � = 1, 3,750,000 nodes, 256 subdomains, IBM-SP4
P690+, efficiency of synchronous algorithms (solid) and asynchronous algo-
rithms (dashed).

centers. More precisely, the main support of our experiments
was an IBM-SP4 with 12 SMP nodes of 32 P690+ proces-
sors (1.3 GHz); nodes are connected via a Federation network
(1.6 Gbits per seconds). In order to improve the effectiveness
of parallel iterative algorithms, we have also used an IBM-SP4
machine with six sets of 16 nodes of four P655 processors
(1.3 GHz). In the latter architecture, nodes are also connected
via a Federation network with similar transfer rate, however
bandwidth is better used since there are less processors per
node. We have used up to 128 processors.

We present now the main computational results for 3D prob-
lems. The reader is referred to Appendix C for some test prob-
lems in the 2D case.



M. Chau et al. / J. Parallel Distrib. Comput. 67 (2007) 581–591 587

0 20 40 60 80 100 120 140

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2
x 106

number of processors

n
u
m

b
e
r 

o
f 
re

la
x
a
ti
o
n
s

Fig. 12. 3D problem, � = 1, 3,750,000 nodes, 256 subdomains, IBM-SP4
P690+, number of relaxations of synchronous algorithms (solid) and asyn-
chronous algorithms (dashed).

30 40 50 60 70 80 90 100 110 120 130

4

6

8

10

12

14

16

18

20

number of processors

ti
m

e
 (

s
)

Fig. 13. 3D problem, � = 0.01, 3,750,000 nodes, 256 subdomains, IBM-SP4
P655, elapsed time of synchronous algorithms (solid) and asynchronous
algorithms (dashed).

Figs. 4, 7 and 10, respectively, display the elapsed time of
parallel iterative algorithms for different values of the number
of processors in the case of 3D linear problems with the fol-
lowing convection parameters: 0.5, 1.5 and −0.5, c = 10, � =
0.01, � = 0.1 and � = 1, respectively, where � is the diffusion
parameter. For all experiments, we have considered 3,750,000
discretization points and 256 well balanced, cubic subdomains.
Figs. 5, 8 and 11 show the efficiency of parallel iterative al-
gorithms in function of the number of processors for different
values of the diffusion parameter. The number of relaxations is
given in Figs. 6, 9 and 12. These computational results were ob-
tained from an IBM-SP4 machine with 12 nodes of 32 P690+
processors (See Figs. 4–12).

30 40 50 60 70 80 90 100 110 120 130
4.6

4.8

5

5.2

5.4

5.6

5.8
x 104

number of processors

n
u

m
b

e
r 

o
f 

re
la

x
a

ti
o

n
s

Fig. 14. 3D problem, � = 0.01, 3,750,000 nodes, 256 subdomains, IBM-SP4
P655, number of relaxations of synchronous algorithms (solid) and asyn-
chronous algorithms (dashed).

30 40 50 60 70 80 90 100 110 120 130
20

40

60

80

100

120

140

160

number of processors

ti
m

e
 (

s
)

Fig. 15. 3D problem, � = 0.1, 3,750,000 nodes, 256 subdomains, IBM-SP4
P655, elapsed time of synchronous algorithms (solid) and asynchronous
algorithms (dashed).

We have tested several communication frequencies for data
exchange. The tuning of the number of relaxations was made
experimentally. We present here results in the case where data
exchange occurs every two relaxations on each subdomain.
All points of a subdomain are updated twice by the relaxation
procedure first forward, then backward, as in SSOR scanning.
Reception of boundary values occurs in the beginning of each
updating phase. For sake of effectiveness, a different subdo-
main is considered after a communication. The subdomains
assigned to a processor are treated cyclically according to a
red-black ordering. Experimentally, this strategy turned out to
be the most efficient one.



588 M. Chau et al. / J. Parallel Distrib. Comput. 67 (2007) 581–591

30 40 50 60 70 80 90 100 110 120 130
4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5
x 105

number of processors

n
u

m
b

e
r 

o
f 

re
la

x
a

ti
o

n
s

Fig. 16. 3D problem, � = 0.1, 3,750,000 nodes, 256 subdomains, IBM-SP4
P655, number of relaxations of synchronous algorithms (solid) and asyn-
chronous algorithms (dashed).

30 40 50 60 70 80 90 100 110 120 130
100

150

200

250

300

350

400

450

500

550

600

number of processors

ti
m

e
 (

s
)

Fig. 17. 3D problem, � = 1, 3,750,000 nodes, 256 subdomains, IBM-SP4
P655, elapsed time of synchronous algorithms (solid) and asynchronous
algorithms (dashed).

We note that the elapsed time curves in Figs. 4, 7 and 10
present the same shape. We note also that the elapsed time de-
creases with the value of �. From Figs. 6, 9 and 12, we see that
the number of relaxations increases with the number of proces-
sors. In the case of parallel synchronous schemes of computa-
tion, this phenomenon is mainly due to slight modifications in
the order of treatment of the different subdomains; in the case
of asynchronous schemes of computation, this fact is mainly
due to the chaotic behavior of the algorithm. Finally, we note
that asynchronous algorithms with flexible communication are
more efficient than synchronous algorithms. It turns out that
the overhead generated by additional relaxations in the case of
asynchronous algorithms is smaller than the synchronization

30 40 50 60 70 80 90 100 110 120 130
1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05
x 106

number of processors

n
u

m
b

e
r 

o
f 

re
la

x
a

ti
o

n
s

Fig. 18. 3D problem, � = 1, 3,750,000 nodes, 256 subdomains, IBM-SP4
P655, number of relaxations of synchronous algorithms (solid) and asyn-
chronous algorithms (dashed).

overhead combined with processor idle time of parallel
synchronous schemes of computation. Moreover, the efficiency
of synchronous algorithms decreases faster than the efficiency
of asynchronous algorithms when the number of processors
increases.

Figs. 13–18 display experimental results obtained from an
IBM-SP4 machine with six sets of 16 nodes of four P655 pro-
cessors for the same problem as the one considered previously
in this section, with the same parameters, number of discretiza-
tion points and subdomains. Figs. 13, 15, and 17, respectively,
show the elapsed time of parallel iterative algorithms for differ-
ent values of the number of processors and � = 0.01, 0.1 and 1,
respectively. Figs. 14, 16 and 18 give the number of relaxations
for the different parallel iterative algorithms. Experiments with
up to 128 processors were run. Note that it was not possible to
perform experiments with less than 32 processors on the latter
architecture, due to the enforced policy in the computing cen-
ter. These results are particularly interesting in order to study
the effect of the architecture on the effectiveness of the differ-
ent parallel algorithms. In particular, we note that the elapsed
time is reduced due to a better use of the network bandwidth.

6. Conclusions

In this paper, we have studied the solution of linear and non-
linear convection–diffusion problems via parallel subdomain
methods. We have proposed efficient MPI implementations of
parallel Schwarz alternating methods on distributed memory
multiprocessors. Effective communication mechanisms that
rely on persistent communication request have been used.
Parallel synchronous and asynchronous iterative schemes of
computation have been tested. Computational results obtained
from IBM-SP series machines have clearly shown the benefits
of using parallel algorithms. Experimental results have also
shown that asynchronous iterative algorithms are more efficient



M. Chau et al. / J. Parallel Distrib. Comput. 67 (2007) 581–591 589

than synchronous algorithms and that a better use of network
bandwidth can improve efficiency. In future work, experiments
will be carried out on various parallel architectures including
networks of processors and grids.

Acknowledgments

Part of this study was made possible by a grant of CINES,
Montpellier and IDRIS-CNRS, Paris. The authors would also
like to thank the referees for their helpful comments.

Appendix A. SPMD code of asynchronous iterative
algorithms with flexible communication

do until global convergence
for each subdomain assigned to the processor do

if local convergence is not reached then
for i in 1..N do

receive the latest frontier values
relaxation

end do
send the frontier values to the neighbors

end if
end do

end do

Appendix B. Implementation of persistent communication

! SEND THE FRONTIER VALUES TO THE NEIGHBORS
! SEND SOME FRONTIERVALUES!
Some messages may not be sent at this stage. . .

do i = 1, NSEND
SND_DELAY(i) = SND_DELAY(i) + 1

end do
call MPI_TESTSOME(NSEND,sndt,nout,outarray,starray,ierr)
do i = 1, nout

mpos = outarray(i)
call MSGPK(. . . PACKING A MESSAGE . . .)
call MPI_START(sndt(mpos),ierr)
SND_DELAY(mpos) = 0

end do
! SEND THE LAST FRONTIER VALUES
! . . . however, when local convergence is reached,
! we ensure that unsent messages are sent.

do i = 1, NSEND
if(SND_DELAY(i).gt.0)then

call MPI_WAIT(sndt(i),starray(:, i),ierr)
call MSGPK(. . . PACKING A MESSAGE . . .)
call MPI_START(sndt(i),ierr)
SND_DELAY(i) = 0

end if
end do

! RECEIVE THE FRONTIER VALUES FROM THE NEIGHBORS

! RECEIVE SOME FRONTIER VALUES
call MPI_TESTSOME(NRECV,rcvt,nout,outarray,starray,ierr)
do i = 1, nout
mpos = outarray(i)
call MSGUPK(. . . UNPACKING A MESSAGE . . .)
call MPI_START(rcvt(mpos),ierr)
end do

Appendix C. Computational results: 2D case

In order to be exhaustive, we briefly present in this appendix
a series of computational results for test problems in the 2D
case. Results are given for linear and nonlinear convection–
diffusion problems presented in Section 2.

Tables C1–C3 display numerical results obtained with se-
quential and parallel Schwarz alternating algorithms for linear
problem (2.1) with 130,305 discretization points, eight subdo-
mains and different values of the diffusion parameter. We have
considered the cases where � = 1, 0.1 and 0.01, respectively.
Table C4 gives results for problem (2.1) with 92,837 discretiza-
tion points, � = 1 and 16 subdomains and Fig. C1 shows the
elapsed time of parallel algorithms for up to eight processors.
Tables C5–C7, respectively, display elapsed time and efficiency
of parallel Schwarz alternating algorithms applied to nonlinear
problem (2.3) with a = 0.5, b = 1.5 and c = 10, nonlinearity
(a) in the graph of Fig. 1, 130,305 discretization points, eight
subdomains, � = 1, 0.1 and 0.01, respectively.

A relaxation method was used on each subdomain. In the
case of a nearly triangular discretization matrix, the mesh was
always scanned according to an order suited to the shape of
the matrix (see last paragraph of Section 3.1). We note that
the sequential solution of linear problem (2.1) with � = 0.01
takes 314.1 s when the mesh is scanned according to the above

Table C1
2D linear problem (2.1), � = 0.01, 130,305 nodes, eight subdomains

Synchronous iterations Asynchronous iterations

Processors Time (s) Efficiency Time (s) Efficiency

1 314.1 – – –
2 198.3 0.79 180.0 0.87
4 126.2 0.62 113.5 0.69

Table C2
2D linear problem (2.1), � = 0.1, 130,305 nodes, eight subdomains

Synchronous iterations Asynchronous iterations

Processors Time (s) Efficiency Time (s) Efficiency

1 2084.9 – – –
2 1245.2 0.84 1175.2 0.89
4 797.1 0.66 666.0 0.78

Table C3
2D linear problem (2.1), � = 1, 130,305 nodes, eight subdomains

Synchronous iterations Asynchronous iterations

Processors Time (s) Efficiency Time (s) Efficiency

1 1986.3 – – –
2 1136.8 0.87 1002.9 0.99
4 660.8 0.75 553.8 0.90



590 M. Chau et al. / J. Parallel Distrib. Comput. 67 (2007) 581–591

2 3 4 5 6 7 8
100

150

200

250

300

350

400

450

number of processors

ti
m

e
 (

s
)

Fig. C1. 2D linear problem (2.1): � = 0.01 130.305 nodes, eight subdomains,
elapsed time of synchronous algorithms (solid) and asynchronous algorithms
(dashed).

Table C4
2D linear problem (2.1), � = 1, 92,837 nodes, 16 subdomains

Synchronous iterations Asynchronous iterations

Processors Time (s) Efficiency Time (s) Efficiency

1 839.4 – – –
2 437.1 0.96 396.5 1.06
4 244.3 0.86 227.0 0.93
8 146.0 0.72 115.9 0.91

Table C5
2D nonlinear problem (2.3), � = 0.01, 130,305 nodes, eight subdomains

Synchronous iterations Asynchronous iterations

Processors Time (s) Efficiency Time (s) Efficiency

1 152.6 – – –
2 97.4 0.78 91.6 0.84
4 62.2 0.61 57.7 0.66

Table C6
2D nonlinear problem (2.3), � = 0.1, 130,305 nodes, eight subdomains

Synchronous iterations Asynchronous iterations

Processors Time (s) Efficiency Time (s) Efficiency

1 831.1 – – –
2 517.1 0.81 473.3 0.88
4 331.2 0.63 278.4 0.75

quoted order (see Table C1); the solution of the same problem
takes 398.3 s when the mesh is scanned according to the inverse
order.

Table C7
2D nonlinear problem (2.3), � = 0.1, 130,305 nodes, eight subdomains

Synchronous iterations Asynchronous iterations

Processors Time (s) Efficiency Time (s) Efficiency

1 2147.7 – – –
2 1247.4 0.80 1247.4 0.86
4 761.2 0.71 637.7 0.84

Tables C1–C7 show that parallel asynchronous algorithms
with flexible communication are more efficient than syn-
chronous algorithms. The lack of synchronization point and
use of the current value of the components of the iterate vector
lead to a better effectiveness for parallel Schwarz alternating
methods. Note also that the efficiency of synchronous algo-
rithms decreases faster than the efficiency of asynchronous
algorithms when the number of processors increases. More-
over parallel algorithms become more efficient if two or more
subdomains are assigned to each processor.

References

[1] O. Axelson, V. Barker, Finite Element Solution of Boundary Value
Problems, Academic Press, Orlando, 1984.

[2] G.M. Baudet, Asynchronous iterative methods for multiprocessors,
J. Appl. Comput. Math. 25 (1978) 226–244.

[3] A. Bensoussan, J.-L. Lions, Application des Inéquations Variationnelles
en Contrôle Optimal Stochastique, Dunod, Paris, 1978.

[4] A. Bernudez, Contrôle par feedback a priori de systèmes régis par des
équations aux dérivées partielles, Rapport de Recherche INRIA no. 288,
1978.

[5] D.P. Bertsekas, J. Tsitsiklis, Parallel and Distributed Computation,
Numerical Methods, Athena Scientific, Englewood Cliffs, 1997.

[6] K.M. Chandy, L. Lamport, Distributed snapshots: determining global
states of distributed systems, ACM Trans. Comput. Systems 3 (1) (1985)
63–75.

[7] M. Chau, Algorithmes Parallèles Asynchrones pour la Simulation
Numérique, Ph.D. Thesis, INP Toulouse, 2005.

[8] D. Chazan, W. Miranker, Chaotic relaxation, Linear Algebra Appl. 2
(1969) 199–222.

[9] M. Dryja, An additive Schwarz algorithm for two and three dimensional
finite element elliptic problems, in: T. Chan et al. (Eds.), Domain
Decomposition Methods, SIAM, Philadelphia, 1989, pp. 147–153.

[10] M. Dryja, O.B. Widlund, Some domain decomposition algorithms
for elliptic problems, in: L. Hager et al. (Eds.), Proceedings of the
Conference on Iterative Methods for Large Linear Systems, Academic
Press, San-Diego, CA, 1989, pp. 273–291.

[11] M. Dryja, O.B. Widlund, Toward a unified theory of domain
decomposition algorithms for elliptic problems, in: T. Chan et al. (Eds.),
Proceedings of the third international symposium on decomposition
methods for partial differential equations, SIAM, Philadelphia, 1989, pp.
3–21.

[12] D. El Baz, A. Frommer, P. Spiteri, Asynchronous iterations with flexible
communication contracting operators, J. Comput. Appl. Math. 176 (2005)
91–103.

[13] D. El Baz, P. Spiteri, J.C. Miellou, D. Gazen, Asynchronous iterative
algorithms with flexible communication for nonlinear network flow
problems, J. Parallel Distributed Comput. 38 (1996) 1–15.

[14] D.J. Evans, W. Deren, An asynchronous parallel algorithm for solving
a class of nonlinear simultaneous equations, Parallel Comput. 17 (1991)
165–180.

[15] A. Frommer, D. Szyld, On asynchronous iterations, J. Comput. Appl.
Math. 123 (2000) 201–216.



M. Chau et al. / J. Parallel Distrib. Comput. 67 (2007) 581–591 591

[16] L. Giraud, P. Spiteri, Résolution parallèle de problèmes aux limites non
linéaires, M.2 A.N. 25 (1991) 73–100.

[17] R. Guivarch, Résolution Parallèle de Problèmes aux Limites Couplés
par des Méthodes de Sous-Domaines Synchrones et Asynchrones, Ph.D.
Thesis, INP Toulouse, 1997.

[18] K.H. Hoffmann, J. Zou, Parallel efficiency of domain decomposition
methods, Parallel Comput. 19 (1993) 1375–1391.

[19] P.L. Lions, On the Schwarz alternating method I, in: R. Glowinski
et al. (Eds.), Domain Decomposition Methods, SIAM, Philadelphia, PA,
1988, pp. 1–42.

[20] P.L. Lions, On the Schwarz alternating method II, in: T. Chan et al.
(Eds.), Domain Decomposition Methods, SIAM, Philadelphia, PA, 1989,
pp. 47–70.

[21] J.-C. Miellou, Itérations chaotiques à retards, étude de la convergence
dans le cas d’espaces partiellement ordonnés, C.R.A.S., Paris 280 (1975)
233–236.

[22] J.-C. Miellou, Algorithmes de relaxation chaotique à retards, RAIRO
R1, (1975) 55–82.

[23] J.C. Miellou, D. El Baz, P. Spiteri, A new class of asynchronous iterative
algorithms with order interval, Math. Comput. 67 (1998) 237–255.

[24] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations
in Several Variables, Academic Press, New York, 1970.

[25] W.C. Rheinboldt, On M-functions and their application to nonlinear
Gauss–Seidel iterations and to network flows, J. Math. Anal. Appl. 32
(1970) 274–307.

[26] P. Spiteri, J.C. Miellou, D. El Baz, Asynchronous Schwarz alternating
method with flexible communication for the obstacle problem,
Calculateurs Parallèles, Réseaux et Systèmes Répartis 13 (2001) 47–66.

[27] P. Spiteri, J.C. Miellou, D. El Baz, Parallel Schwarz method for a
nonlinear diffusion problem, Numer. Algorithms 33 (2003) 461–474.

Ming Chau was born in 1977; he gradu-
ated Engineer in Computer Sciences and Ap-
plied Mathematics from ENSEEIHT Toulouse,
France in 2001 and received the Doctor degree
in Computer Sciences and Applied Mathemat-
ics from Institut National Polytechnique de
Toulouse (INPT) in 2005. Dr. Ming Chau has
carried out researches in numerical simulation
and parallel computing since 2000. He has
taught C programming language and network-
ing with Linux for four years at ENSEEIHT.
Today, he works as an engineer and is involved
in Social Economy.

Didier El Baz was born in Toulouse in 1958,
he received the Doctor Engineer degree in
Control Theory from INSA Toulouse in Jan-
uary 1984. Dr. El Baz was visiting scientist in
the Laboratory for Information and Decision
Systems, MIT, Cambridge, Massachussetts in
1984. He received the Habilitation à Diriger
des Recherches degree in Computer Sciences
from INPT in 1998. He is presently CNRS
researcher in the LAAS-CNRS laboratory of
Toulouse. His fields of interest are in parallel
and distributed computing, peer to peer and
grid computing, optimization, control theory,
robotics and numerical analysis.

Ronan Guivarch is an Assistant Professor in
the Computer Science and Applied Mathemat-
ics Laboratory of INPT. He received the Doc-
tor degree in Computer Sciences in 1997. His
thesis dealt with parallel asynchronous methods
for the solution of coupled boundary problems.
Dr. Guivarch has spent a postdoctoral year in
CERFACS where he has worked on the devel-
opment of a parallel library for Meso-NH, an
atmospheric forecast code. In 1998, Dr. Ronan
Guivarch joined INPT and he is now interested
in numerical applications to be deployed on the
Grid.

Pierre Spiteri was born in Bone, Algeria in
1943. He graduated in Mathematics at the Uni-
versity of Franche-Comté, Besançon, France in
1968. He received the Doctor degree in 1974
and the Docteur d’Etat es Sciences Mathéma-
tiques degree from the same university in 1984.
He is now a full professor at ENSEEIHT in the
Department of Applied Mathematics and Com-
puter Sciences. He teaches numerical analysis,
optimization and numerical solution of bound-
ary value problems. His fields of interest are
in numerical analysis, large scale nonlinear sys-
tems of evolution equations, optimal control,

parallel computing and more particularly, domain decomposition methods for
the solution of nonlinear boundary values problems.


