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Abstract
The near surface is characterized by using different numerical techniques, among 
them  seismic techniques that are non-destructive. More particularly, for a better under-
standing of acoustic and seismic measurements in unconsolidated granular media that can 
constitute the near surface, many studies have been conducted in situ and also at the labora-
tory scale where theoretical models have been developed. In this article, we want to model 
such granular media that are difficult to characterize. At the laboratory scale, dry granu-
lar media can be modelled with a homogenized power-law elastic model that depends on 
depth. In this context, we validate numerically a similar power-law elastic model for such 
media by applying it to a homogenized elastic medium or to the solid frame of a poroelas-
tic medium that consists of solid and air components. By comparing the response of both 
rheologies, we want to highlight what poroelastic media can bring to better reproduce the 
experimental data in the time and frequency domains. To achieve this objective, we revisit 
studies carried out on unconsolidated granular media at the laboratory scale and we com-
pare different models with different rheologies (elastic or poroelastic), dimensions (2D or 
3D), boundary conditions (perfectly matched layer/PML, or Dirichlet) and locations of the 
source (modelled as a vibratory stick or a point force) in order to reproduce the experimen-
tal data. We show here that a poroelastic model describes better the amplitudes of the seis-
mograms. Furthermore, we study the sensitivity of the seismic data to the source location, 
which is crucial to improve the amplitude of the signals and the detection of the different 
seismic modes.

Keywords Porous and granular media · Wave propagation · Numerical modelling · 
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• We add numerically a better source of excitation of the medium to improve and better 
reproduce amplitudes of surface waves and velocity phase dispersion curves

• Dispersion analysis gives better wave mode descriptions between numerical and experi-
mental/read data at the laboratory scale

1 Introduction

A natural medium can be composed of unconsolidated materials such as clay, silt, sand, 
gravel or materials derived from the erosion of rocks. It is thus important to characterize 
media made of these materials to better understand acoustic and seismic measurements in 
such soils and their related geological environments. This point is particularly important in 
the case of near-surface studies, which feature complex environment that can contain natu-
ral resources such as water, gas, and hydrocarbons. More generally, it is interesting to study 
the near surface because it is the place of fluid exchanges and life activities as well as the 
interface for earth–atmosphere coupling.

Many studies on elastic wave velocities in unconsolidated materials have been conducted 
in  situ and at the laboratory scale, and theoretical models have been proposed. In particu-
lar, in the case of granular media studies, new theoretical and numerical models have been 
designed those last years for acoustic characterization and response studies of meta-materials, 
porous and granular media at the laboratory scale by Palermo et al. (2018); Zaccherini et al. 
(2020); Pu et al. (2020). Among the seismic techniques used to determine the physical proper-
ties of such media, we can cite the tomography techniques that are based on minimizing the 
first arrival time residuals (Zelt and Smith 1992; Le Meur 1994; Improta et al. 2002; Ravaut 
2003) or the MASW (multiple analysis of surface waves) technique (Nazarian and Stokoe 
1984; Ganji et al. 1997; Park and Elrick 1998; Xia et al. 1999; Foti 2000; Bitri et al. 2002; Xia 
2014) which studies the surface wave dispersion. Toolboxes like SWIP (Surface-Wave Inver-
sion and Profiling method), presented in Pasquet and Bodet 2017, can be used to estimate the 
S-shear wave velocities ( Vs ) of such media. Some common resulting models proposed at the 
near-surface scale show an important increase in P and S wave velocity as a function of depth. 
Indeed, based on Hertz–Mindlin contact theory (in the context of intergrain forces modelling), 
the velocity structure of such media can be modelled as (Gassmann 1951): Vp,s = �p,s(�gz)

�p,s , 
where g is the gravity acceleration, � is the bulk density of grains or glass beads, �p,s is a depth-
independent coefficient, which mainly depends on the elastic properties of the grains, poros-
ity and coordination number of the packed structure, and �p,s is the power-law exponent. The 
parameter �p,s depends on the grain dispersion, grain disorder, grain contacts and the form 
of grains (Makse et  al. 1999; Zimmer et  al. 2007; Tournat and Gusev 2010; Schön 2015). 
In those studies, similar power-law profiles of seismic wave velocities have been investi-
gated. This power-law exponent is generally close to 1/6 for random close packing of uniform 
spheres. A similar exponent value has been proposed by Bachrach et al. (1998) for a shallow 
sand medium in situ. However, in real materials strong contact disorders between grains can 
be present due to low degrees of heterogeneity in grain sizes or sphericity, and then, this expo-
nent coefficient can be different from 1/6. This exponent is not only dependent on the disper-
sion of grain size or grain sphericity, but it depends also strongly on the confinement pressure 
of the medium. In many experiments, this exponent can be increased for lower static pressures 
applied to the medium (0.1 - 200 kPa) and can reach values from 1/6 up to 1/4.

In this context, before characterizing any (partially or fully) saturated media with fluid 
(water, gas), we want to model correctly the seismic wave propagation in unconsolidated 
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granular media in the dry regime. In particular, we revisit here the study in Bodet et  al. 
(2014) at the laboratory scale for granular media (made of glass beads) that are submitted 
to low pressures and do not contain any fluid. The physical model deduced is a power-law 
model with �p,s close to 1

3
 , which is a typical value that can be reached in the experiments in 

the case of very low pressures (less than 0.1 kPa). Besides, for this range of low pressures, 
similar exponent coefficients have been obtained in other acoustic experiments by Jacob 
et al. 2008; Tournat and Gusev 2010. However, we want here to perform a deeper acoustic 
signal analysis in this context for different numerical designs in 3D and 2D to accelerate the 
computations and to model the relevant signals without noise and without reflections con-
taminating the computational domain. More particularly, we compare different rheological 
(elastic or poroelastic) models involving our power-law and we investigate their ability to 
better reproduce the seismograms and phase dispersion diagrams for the granular medium 
under study. On the medium/long term, all the methodology used here could be applied at 
the laboratory scale and also to data collected at near-surface field (in situ) scales.

The main objective of this study is to numerically validate the models considered by 
verifying whether they allow us to better interpret the data recorded in the laboratory. In 
order to do this, numerical simulations are run to fully replicate the configuration of the 
laboratory experiments. The physical problem consists in solving the seismic wave equa-
tion for different rheologies (pure elastic, poroelastic) in dry regime in order to determine 
which of them best explains the laboratory data. Besides, in a previous work (Bodet et al. 
2014) significant differences in amplitude between the experimental and simulated wave-
forms were exhibited and we thus identified two main issues to address in order to better 
model physically and numerically this kind of complex granular medium:

• Finding a more adequate rheological law (elastic or poroelastic) describing the mechan-
ical behaviour of the medium.

• Studying the impact of the type of source wavelet on the computed data by modelling 
the source as a vibratory stick, as in the experiment of Bodet et al. (2014) or as a virtual 
point source located at different depths.

Indeed, the choice of the rheological law and the source model influence the waveforms 
and the amplitudes as well as the different surface and P-modes in the dispersion diagrams. 
This will be discussed in the following sections of this study.

First, to simulate such media, 3D numerical elastic wave propagation simulations are 
performed in the case of a pure elastic medium. The calculated solutions are then com-
pared with experimental data recorded at the laboratory scale. Time and frequency (disper-
sion) analyses are done to compare, respectively, the first arrivals and the dispersion curves 
of the experimental data with the simulated ones.

Second, since the physical model considered is vertically stratified and invariant in the 
direction orthogonal to the vertical plane containing the source and the line of receivers, 
we can reduce the 3D model to a 2D one. The 2D calculated seismograms can reproduce 
the 3D ones by introducing a source–receiver distance rescaling of the real data seismo-
grams following a similar approach as in Forbriger et al. (2014). Besides, the 2D com-
putations allow us also to accelerate even more the calculations. The introduction of the 
2D calculations is relevant because the source injects the maximum of energy into the 
vertical plane it belongs to and the model is invariant in the orthogonal direction. Fur-
thermore, since the 3D waves are attenuated due to the geometrical divergence and since 
the vertical walls of the experimental box are far enough from the seismic line, the only 
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significant acoustic reflections are coming from the bottom of the box. This is another 
reason of performing 2D simulations in the vertical plane. Therefore, we study different 
configurations in 3D and 2D with a free surface on top and compare the results to the real 
data. In some cases, we apply efficient perfectly matched layer (PML) absorbing bound-
ary conditions to all vertical walls in presence or not of Dirichlet conditions at the bot-
tom. The introduction of the PMLs allows us to truncate the computational domain and 
to also reduce the computing time while reproducing the experimental data and keeping 
the relevant acoustic phases and modes we are interested in.

Third, we make the rheology more complex (porous medium using a Biot poroelastic 
model for instance) in 2D to compare it to the homogenized elastic medium and to the 
experimental results.

Comparisons between simulated and experimental data are done in two domains:

• Time domain: we detect the first travel-time arrivals of the seismic waves.
• Frequency domain: we calculate the dispersion curves using a slant–stack transform.

The choice of the numerical tools was made taking into account four main criteria: accu-
racy, performance, simplicity of the method, and the nature of the physical problem to be 
solved. A 3D finite difference code, fourth-order in space and second-order in time, called 
UNISOLVER (updated version of the 3D SEISMIC_CPML code (Komatitsch and Martin 
2007; Martin and Komatitsch 2009; Martin et al. 2010)) is used here to solve the wave 
equations in a stratified elastic medium taking into account different models and compu-
tational configurations involving strong depth gradient velocities. The fourth-order finite 
difference discretization in space is a good choice because in the case of a flat topogra-
phy, it is sufficiently accurate, easy to implement and faster than other numerical methods. 
Mirror conditions are implemented at the free surface. With this type of boundary condi-
tions, the numerical solution is sufficiently accurate at the free surface and in the inner 
computational domain. For more details, the reader is referred to the work on fourth-order 
finite differences of Graves (1996) and Moczo et al. (1997, 2010, 2001) for 3D elastic and 
viscoelastic modelling, respectively. Optimized Perfectly Matched Layer/PML absorbing 
(Komatitsch and Martin 2007; Martin et al. 2008b) and free surface conditions are imple-
mented and validated by comparing with reference codes such as SPECFEM (spectral 
finite elements, Komatitsch (1997)), which is commonly used in the geophysical commu-
nity. UNISOLVER is parallelized, and therefore, the computation time is reduced, which 
makes it very efficient for the realization of our numerical simulations. In the present 
study, we extend the discretization to the 2D and 3D poroelastic media (see also Bodet 
et al. (2014)). 2D versions of this code for both elastic and porous media are also used to 
highlight the contribution of the porous medium to the elastic medium, and also the ability 
of the poroelastic model to better reproduce the acoustic modes in the frequency domain.

The structure of this paper is summarized as follows: Section 2 deals with the experimen-
tal setup and the physical homogenized elastic model obtained by inversion of first arrivals 
and dispersion diagrams. In Sect. 3, the numerical setup for the different rheological models 
is given. In Sects. 4 and 5, qualitative (seismograms, spectrograms and dispersion images) 
and quantitative (first arrivals, dispersion curves) analyses are done on the different numeri-
cal models considered, respectively. In Sect. 6, we consider different locations of the numer-
ically modelled sources to show the influence of the choice of the source location at depth 
on the detection of the different seismic modes. Finally, the results obtained are discussed. 
In Sect. 7, conclusions, recommendations, and future work are presented.
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2  Experimental Setup and Physical Model

2.1  Experimental Setup

In this paper, we are interested in experiments on unconsolidated granular media, which 
are carried out at the laboratory scale (see Bodet et  al. (2014)). The studied physical 
medium has a length of 1 m, a height of 0.22 m and a width of 0.8 m. The box is filled with 
180–300- �m -diameter glass beads (GB1), and the bottom of the box consists of a metal-
lic sieve glued on a perforated plate (see Fig.  1). The deposition process has been done 
experimentally to ensure a homogeneous distribution of the glass beads. The bulk density 
has been measured many times during the deposition process, and it was always estimated 
in a range between 1600 and 1610 kg∕m3 . We thus make the choice to consider a density 
value of 1610 kg∕m3 for the bulk density �GB1 which is the most representative, and its cor-
responding porosity is ΦGB1 = 0.356.

The source consists of a metal stick connected to a waveform generator (see Fig. 2) with 
a dominant frequency f0 = 1500 Hz. The latter is injected in the vertical yOz-plane with a 
tilted angle of 20o with the vertical normal to the free surface.

For a given source location, the normal component of the particle velocity ( Vz ) is 
recorded in time at the surface of the medium as a “seismogram” using an oscilloscope. Up 
to 100 traces were recorded (using an oscilloscope) with a sampling rate of 10−5 s (0.01ms) 
over a time-series length of 50 ms in linear single-channel walkway mode along the Oy 
direction.

Fig. 1  a Physical model (PM) in Bodet et  al. (2014): a granular layer 180–300- ×10−6 m-diameter GBs 
(GB1) sieved into a ( 1000 × 800 × 220 ). 10−3 m box. The bottom of the box consisted of a metallic sieve 
(dashed lines) glued to a perforated plate. The PM HOM22 was prepared by sieving GB1 directly onto 
the metallic sieve. We consider a density value of 1610 kg∕m3 for the bulk density �GB1 which is the most 
representative. This value led to a porosity of ΦGB1 = 0.356 . ( xs, ys )= (0.4m, 0.25m) are the source location 
coordinates (marked by a red star at 25 cm from left wall), and the dashed light blue line shows the data 
recording line (50cm long from the source) and acquisition parameters. b The power-law model for the dry 
unconsolidated granular medium case (zero overpressure) using parameters �p,s and �p,s estimated by simu-
lated annealing-based inversion of the measured first arrival times for Vp and of the dispersion curve related 
to the fundamental (Rayleigh) mode for Vs extracted from the dispersion diagrams
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2.2  Experimental Data

The experimental data at our disposal have been recorded at 25 receivers placed linearly 
and equidistantly at the surface of the medium. For a given source location, the normal 
component of the particle velocity ( Vz ) is recorded in time at the surface of the medium as 
a “seismogram” using an oscilloscope at a sampling time rate of 0.01ms. From the source 
over a length of 0.5 m in the y-direction, the spacing between the receivers is 0.02 m.

We underline that here the data are not normalized data. However, if the data are nor-
malized with respect to the maximum of the signals measured over all receivers, then 
source ringing effects appear at the source location and also at near offset as observed in 
Jacob et al. (2008); Bodet et al. (2010); Bergamo et al. (2014); Bodet et al. (2014). Accord-
ing to these authors, it is very hard to remove them. A better design of the contact between 
the source and the beads should be proposed to reduce or eliminate those effects. In the 
following sections, we thus concentrate our analysis on the main relevant signal. To reduce 
the source effects and noise, we consider the receivers located 5 cm away from the source 
and we filter the data with a Butterworth band-pass filter in the 100–3000 Hz frequency 
band since the signal amplitude is maximal in this window, as shown in Fig. 3. Besides, 

Fig. 2  The force source signal is sent from a waveform generator to a low-frequency (LF) shaker exciting a 
120-mm metal stick buried in the granular material over a 15-mm length. The laser beam is set at the zero-
offset position (0.25 m in the length direction) to record the vertical component of velocity Vz of the stick 
(the red line in the right inset). a Source signal spectrum centred on 1500 Hz; b detail of vibrator source and 
source signal configuration
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in Fig. 3c the difference between non-filtered and filtered data exhibits some small noise 
effects close to the source due to the ringing effects mentioned before. In Fig. 4, we show 
the seismograms of Vz component (filtered and not filtered) at receivers 10, 15 and 20 
located at 20, 30 and 40 cm from the source, respectively. In Figs. 3 and 4, the non-filtered 
and filtered data are both showing the same acoustic phases in presence of noise or not, and 
their difference only shows some coherent noise. In the following sections, we will thus 
only compare solutions with filtered real data.

Fig. 3  Experimental data not filtered (a) and filtered (b) , as well as their difference (c). Time is given in 
seconds
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Fig. 4  Experimental traces repre-
senting the normal component of 
particle velocity (Vz) not filtered 
and filtered as well as their differ-
ence (noise) at receivers 10 (a), 
15 (b) and 20 (c), respectively
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Due to the fact that we aim at studying 2D seismograms because (1) the model is vertically 
2D and invariant according to the direction orthogonal to the vertical plane, and (2) the 2D 
cases are much faster to compute than the 3D case, it is crucial to transform the real data from 
3D to 2D and to model the source in the synthetic cases for the current model under study. In 
the close vicinity of the source, the wavefield transformation from 3D to 2D scales as 

√

rVph 
where r is the offset and Vph is the phase velocity. But for larger offsets r from the source, the 
medium is dispersive and the amplitude of the signals is scaling as r∕

√

t . In a given frequency 
band, the real data seismograms are convolved with 1∕

√

t and are scaled respect to the offset 
as previously mentioned and proposed by Schäfer et al. (2012); Groos et al. (2013, 2014a) 
and also very well synthetized in Forbriger et al. (2014). Those corrections have been applied 
efficiently in near-surface applications in the context of full-waveform inversion in presence or 
not of attenuation as in Schäfer et al. (2013, 2014); Groos et al. (2014b).

2.3  Physical Model

We are interested in a Vp∕Vs model obtained from the experiment on an unconsolidated granu-
lar medium as in Bodet et al. (2014). The latter is deduced by ray tracing-based travel-time 
inversion for the Vp model and phase velocity diagram inversion for the Vs model. Those 
inverted Vp and Vs models are given by a power-law dependent on hydrostatic pressure as pro-
posed in Gassmann (1951) (Fig. 1b): 

where � , g and h are, respectively, the density, the gravitational acceleration at Earth sur-
face ( g = 9.81 m.s−2 ) and the depth of the medium. The parameters � and � for the dry case 
are estimated by simulated annealing-based inversion of the measured first arrival times for Vp 
and of the dispersion curve related to the fundamental (Rayleigh) mode for Vs . Those inverted 
� and � parameters have the following values: �p = 0.3 , �p = 21 , �s = 0.33 and �s = 8.2 (see 
Bodet et al. (2014)).

In Bodet et al. (2014), this model was partially validated numerically using a 3D elastic 
finite difference code. But there was still a problem in reproducing the amplitudes of higher 
modes. In the seismograms as well as in the velocity phase dispersion diagrams, the computed 
amplitudes were too high when compared to the real data. To mitigate this drawback, first, we 
reproduce the results of Bodet et al. (2014) with our 3D finite difference code UNISOLVER. 
Secondly, we reduce the 3D model to a 2D model to accelerate the computations, and finally, 
we integrate the Vp∕Vs model into a 2D poroelastic model according to the Biot poroelastic 
model (Biot 1956a), which makes the assumption of interconnected pores between grains and 
enables to describe and take into account medium wavelengths of the two-component porous 
medium. One of the main goals is to increase the complexity of the rheologies to better repro-
duce the amplitudes of higher modes.

3  Numerical Setup

We consider the following three models (the reader is referred to appendices A, B and C 
for elastic and poroelastic equations):

(1a)Vp = �p(�gh)
�p

(1b)Vs = �s(�gh)
�s
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• 3D elastic: we use UNISOLVER (our finite difference/FD code which is fourth-order in 
space and second-order in time) (Komatitsch and Martin 2007) to reproduce the results 
of Bodet et al. (2014).

• 2D elastic: we reduce the 3D model to the vertical plane where the metal stick is 
located. In this case, we use our FD code seismic_CPML_elastic (fourth-order in space 
and second-order in time) (Komatitsch and Martin 2007), and we compare the results 
to the experimental data.

• 2D poroelastic: poroelastic materials are most of the time modelled using the Biot the-
ory (Biot 1956a, b). In this study, we choose to remain in the context of Biot models. 
Thus, we take into account parameters such as porosity, permeability, viscosity and tor-
tuosity (measured during the experiment). The compressional P wave velocities (fast 
and slow) and the effective shear S wave velocities in the porous medium depend also 
on the P and S elastic wave velocities of the solid frame that is modelled in our present 
study using equation (1). A version of Seismic_CPML for Biot model is used (Martin 
et al. 2008b).

For each model, we consider three cases corresponding to three different types of boundary 
conditions:

• (Case 1) Dirichlet: in this case, all the boundaries except the free surface are Dirichlet 
boundary conditions (i.e., particle velocities equal to zero); Dirichlet conditions are 
defined to simulate a rigid material on the five other sides of the box in 3D, and on the 
three other sides in 2D.

• (Case 2) PMLs: in this case, we consider absorbing boundary conditions (C-PMLs) on 
all the boundaries except the free surface and the bottom boundary where a Dirichlet 
condition is applied. The PMLs allow to absorb the outgoing waves to mimic an open 
medium.

• (Case 3) Full PMLs: in this case, on all the boundaries except the free surface, absorb-
ing boundary conditions (C-PMLs) are considered.

In all cases, the free surface condition is implemented at the top of the computational 
domain using the zero normal traction assumption for the different cases.

For the different models and cases, the force source signal (see Figs. 5 and 6) is injected 
all along the metal stick. The latter is simulated numerically by injecting the time wavelet 
source signal over a series of points located along the stick.

3.1  3D/2D Elastic Models

The physical model has a width of 0.35 m, a length of 1 m and a height of 0.215 m. The 
density is given by � = 1610 kg∕m3.

In 3D, we consider a uniform mesh such that ΔX = ΔY = ΔZ = 5 . 10−4m and com-
posed of 70 × 2000 × 430 points. The total number of points of the mesh is 60,2 million 
points. The time step used is Δt = 10−6s , and the total number of time steps is 50000 
corresponding to 50 ms (time period of the experiment). In this case, the Courant–Frie-
drichs–Lewy/CFL stability number is equal to 0.6. In our simulations, the injected source 
is the real (experiment) source time wavelet (sampling rate of 10−5  s) interpolated at the 
simulation time step Δt . The spectrum of the source is centred around a dominant fre-
quency of 1500 Hz (see Fig. 2a).
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PML layers are composed of 15 points for efficient boundary absorption. The Vp and 
Vs modelled velocities are invariant in the direction orthogonal to the vertical plane and 
follow the power-law trend with depth (see Fig. 1b). The velocity profiles, continuous in 
theory, are discretized according to the spacing discretization ΔZ in depth.

The receivers are spaced every 5 10−3 m (10 grid points) at the free surface to record the 
seismograms of the normal component of the particle velocity (see Fig. 5).

We reduce the 3D model to a 2D model by considering only the vertical plane where the 
metal stick (source) is located.

In order to obtain amplitudes and waveforms of the recorded signals as close as pos-
sible to the experimental data, we simulate different configurations using the 3D parallel 
FD code UNISOLVER (we refer the reader to appendix D for code performance details): 
with Dirichlet (case 1), PMLs (case 2, just at the four vertical outer boundary walls and 
Dirichlet at the bottom) or full PMLs (case 3, PML layers everywhere) conditions except at 
the free surface. In the 2D case, we consider the same configurations mentioned above and 
we also use the 2D code seismic_CPML_elastic.

3.2  2D Poroelastic Model

In the poroelastic case (see appendix C for the Biot model used here), one considers the 
same discretization in space and time as in the elastic cases. The length and width of the 
box are also preserved.

Fig. 5  The 3D numerical model is discretized by elements of 5 × 10−4 m in each direction of space for a 
mesh of 70 × 2000 × 430 points (0.35 m × 1 m × 0.215 m). Dirichlet conditions (case 1) or absorbing PML 
layers composed of 15 points each (cases 2 and 3, i.e., PMLs or full PMLs) are applied on the outer bound-
aries except at the free surface. The free surface is defined at the top of the computational domain. The 
force source (in red) is implemented with an angle of 20o from the normal to the free surface, to meet the 
experimental configuration (see the 2D numerical setup in Fig. 6). The receivers (dashed line in green) are 
spaced every 5 × 10−3 m (10 grid points) at the free surface
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In our simulation, the solid components are glass beads and the fluid considered is the 
air. The density of the solid �s = 2500 kg∕m3 and the density of the fluid �f = 1.20 kg∕m3 
give an apparent density �w = 6, 46 kg∕m3 and a density of the saturated medium � = 1610 
kg∕m3 (using relations in the Biot model). The porosity, the permeability, the viscosity 
and the  tortuosity are given by ΦGB = 0.356 , K = 9.510−11 m2 , � = 1.907 ⋅ 10−5 Pa.s and 
a = 1.91 , respectively.

The bulk modulus of air is 0.101 MPa, and the bulk modulus of the solid and saturated 
medium is computed depending on the variation of P-wave and S-wave velocities, which 
affect the effective Lamé parameters � and � of the porous medium and �s of the solid 
frame (see Fig. 7 for the different velocities computed with this model). Seismic velocities 
Vs and Vp characterize the pure elastic model, while Vs , VpFAST

 and VpSLOW
 characterize the 

porous medium. The difference between the poroelastic and elastic Vs velocities is very 
small and is thus multiplied by 103 to see it more clearly. S-wave velocity is similar for 
both the elastic and the poroelastic models because the fluid represented by the air presents 
very low shear stress compared to the solid frame or even no-shear stress (as any other 
fluid). Its contribution is thus introduced essentially through the bulk compressional stress. 
Therefore, the fluid is essentially contributing to pressure and Vp (fast and slow) velocities. 
We use seismic_CPML_poroelastic, a FD code (fourth-order in space and second-order in 
time) to resolve the 2D Biot model in the different boundary cases considered.

When we calculate the maximum frequency of the source fmax = �f0 and the cut-off 
frequency fc (see eq. (27) in appendix C), we obtain: fmax = 4710 Hz < fc = 4959.592 Hz 

Fig. 6  The 2D numerical model is discretized by elements of 5.10−4m × 5.10−4m for a mesh of 2000 × 430 
points ( 1m × 0.215m ). Absorbing PML layers composed of 15 points each one or Dirichlet conditions are 
applied to the outer boundaries except at the free surface which is defined at the top of the computational 
domain. The force source (in red) is implemented with an angle of 20o from the normal to the free surface 
and injected at every source point along the stick length, to meet the experimental configuration and the 
stick form. The receivers (dashed line in green) are spaced every 5 × 10−3m (10 grid points) at the free 
surface



Surveys in Geophysics 

1 3

which means that we can consider a Biot model without attenuation (the reader is referred 
to Morency et al. (2009) for more details).

4  Qualitative Analysis

4.1  Seismograms and Spectrograms

In Fig.  8a, the experimental seismograms are shown. The directivity of the source is 
located in the vertical plane (yz) and along the longitudinal length y. The source injects 
essentially the energy in the vertical (yz) plane containing the line of receivers. The waves 
propagating in the perpendicular direction (plane xz) have smaller amplitudes than those 
propagating in the (yz) plane, and spend more time compared to the yz-plane waves to 
reach the vertical walls located far from the source axis and to come back to the receiv-
ers as observed by Jacob et al. (2008); Bergamo et al. (2014); Bodet et  al. (2014). The 
amplitudes of these waves are thus strongly attenuated before reaching the receivers. The 
only main reflections that can be observed are coming from the bottom of the box. This is 
the reason why we apply PML absorbing layers in the 2 vertical planes (xz) parallel and 
far from the longitudinal line of receivers. This allows to reduce significantly the compu-
tational time in 3D configurations. However, it is important to study 3D different cases 
with 1) pure Dirichlet conditions (case 1) applied at all vertical walls and bottom of the 
box, 2) PMLs at all vertical walls except at the bottom (case 2) or 3) full PMLs at all walls 

Fig. 7  The different velocities computed for the elastic ( Vs and Vp ) and poroelastic ( Vseff  , VpFAST
 and VpSLOW

 ) 
models. The difference between the poroelastic and elastic shear velocities is very small and is thus multi-
plied by 103 to see it more clearly
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(case 3). This allows us to exhibit and identify the signals of interest and filter part of the 
signals reflected back from the walls, to concentrate our efforts on the relevant signals and 
to evaluate whether 2D simulations can reproduce the seismograms instead of using 3D 
simulations.

Figure 8 shows also the numerical seismograms for the different models (3D elastic, 2D 
elastic and 2D poroelastic) in the Dirichlet case. We can clearly see the P-wave followed 

Fig. 8  Comparison between experimental filtered (a), 3D elastic (b), 2D elastic (c) and 2D poroelastic (d) 
seismograms (vertical component of particle velocity) in the Dirichlet case
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by a train of guided waves of the P-SV type. The P-wave, itself guided by the gradient of 
mechanical properties of the medium, corresponds to fast modes considered as essentially 
longitudinal. We can also see the reflections of the waves on the boundaries due to the con-
sidered Dirichlet conditions (case 1). However, in the PMLs and full PMLs (cases 2 and 3 
respectively) cases, these reflections disappear (see Figs. 9 and 10). In Fig. 9 corresponding 
to case 2, the horizontal events are appearing in the 2D elastic and 2D poroelastic cases 
due to the reflection of the waves at the Dirichlet bottom boundary. However, no such hori-
zontal events are appearing in the 3D elastic case because of the attenuation of the waves 
amplitudes due to 3D geometrical divergence attenuation. To avoid such reflections in the 
2D elastic and poroelastic simulations and to be coherent with the non-reflecting waves 
of the 3D case 2, we will apply full PMLs (case 3) in the 2D simulations. In the spectro-
grams, in the case of Dirichlet conditions, the reflections contaminate the frequency signal 
(see Fig. 11). Imposing absorbing conditions (C-PML) at the outer boundaries absorbs the 
reflections and makes the spectrogram clearer (see Figs.  12 and 13). By comparing the 
PMLs and full PMLs cases, one notices that the Dirichlet conditions imposed at the bottom 
of the medium in the PMLs case (case 2) create interferences represented by horizontal 
lines.

Therefore, in the next sections, we will thus continue our analyses by considering only 
the full PMLs case in which no reflections are coming back into the computational domain.

4.2  Dispersion Images

As in Park and Elrick (1998), a slant–stack transform (an oblique summation of normalized 
signal amplitudes in the frequency domain) is applied to the experimental and simulated 
seismograms of Fig. 10 and gives us the dispersion images shown in Fig. 14. We identify 
three principal modes on the image of experimental dispersion over the source-relative fre-
quency band [0.1 − 3000Hz] . The maxima (in black in Fig. 14) correspond to four modes: 
two low-velocity P-SV modes (propagation modes) at low frequency (LF) in the 0.25-1 
kHz frequency band (mode 0 and 1) and two P-modes (one principal: mode 2) at higher 
frequencies and higher velocities in the 1.25–2.5 kHz frequency band.

The dispersion images of the numerical elastic models (2D and 3D) in Fig.  14 show 
clearly only two modes (mode 0 and 1). The mode 2 appears more clearly for the poroelas-
tic model.

5  Quantitative Analysis

5.1  First Arrivals

The first-arrival (P-mode) time of the numerical data is picked at each trace and compared 
to both the theoretical (calculated for the unconsolidated granular medium) and experimen-
tal travel times. These travel times are shown on the time versus offset curve in Fig. 15. 
Computed arrival times are matching experimental and theoretical results within a 5% error 
range. Furthermore, the experimental first-arrival times have been picked with an error 
range of 5% too. Besides, an initial triggering time of approximately 0.0045s is taken into 
account in our comparisons as can be observed in Fig. 15 close to the source at zero-offset. 
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Moreover, the Vp models obtained by inverting these arrival times have less than 5%–10 % 
errors.

5.2  Dispersion Curves

The Vs model (see equation (1-b)) is obtained by simulated annealing inversion of the fun-
damental mode curve extracted from the dispersion diagram of the vertical component 

Fig. 9  Comparison between experimental filtered (a), 3D elastic (b), 2D elastic (c) and 2D poroelastic (d) 
seismograms (vertical component of particle velocity) in the PMLs case
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of experimental recorded signals. The Vs model has an error range of 10–15% that cor-
responds to 5 % data misfit error and 15% error on �s parameter (see Bodet et al. (2014) 
for more details on error estimations). For this Vs model, we compute the solutions with 
our UNISOLVER code and the related dispersion diagrams. The dispersion curves picked 
for the P-SV modes identified on the dispersion images (Fig. 14) clearly fit experimental 

Fig. 10  Comparison between experimental filtered (a), 3D elastic (b), 2D elastic (c) and 2D poroelastic (d) 
seismograms (vertical component of particle velocity) in the full PMLs case
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and theoretical dispersion (Fig. 16). The P-SV theoretical dispersion curves are calculated 
using CPS/Computing Programs for Seismology (Herman et al 2013).

The P-mode picked on the 3D elastic and 2D elastic dispersion images appeared 
noisy due to its weak amplitude. But the P-mode picked in the 2D poroelastic case is 
better represented compared to experimental data and theoretical dispersion. The theo-
retical dispersion is computed with the CPS code that uses the Thomson–Haskell matrix 
propagator technique and includes the complex-valued roots of the dispersion equation. 
Figure 16 shows the peaks of the energy maxima corresponding to the identified modes 
on the dispersion images (see Fig. 14). This confirms that the modes identified on the 
numerical dispersion images correspond to the fundamental mode (mode 0) and to the 
second propagation mode (mode 1). The first P-mode (mode 2) is not visible enough 
on the dispersion image of the 3D/2D elastic model, but it appears more clearly in the 
poroelastic one.

Fig. 11  Comparison between experimental (a), 3D elastic (b), 2D elastic (c) and 2D poroelastic (d) spectro-
grams in the Dirichlet case
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We have been able to reproduce qualitatively the modes 0 and 1 but not the modes 2 
related to P-modes. This is mainly due to the way the source is introduced numerically. 
Indeed, the way the source is modelled is crucial to detect all the main surface and P-SV 
modes (0, 1) as well as volumic wave modes (P-modes 2 and higher) and to better repro-
duce numerically the waveforms of the experimental data. The next section is devoted to 
this aspect and tries to bring some answers about the source modelling.

Fig. 12  Comparison between experimental (a), 3D elastic (b), 2D elastic (c) and 2D poroelastic (d) spectro-
grams in the PMLs case
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6  Impact of the Numerically Modelled Source

6.1  Source Configuration

Instead of considering a source defined by a stick with vibratory displacement, we consider 
an equivalent virtual force point source at different depths with the same inclination as the 
stick and the same time signal source injected during the experiment. We have considered 

Fig. 13  Comparison between experimental (a), 3D elastic (b), 2D elastic (c) and 2D poroelastic (d) spectro-
grams in the full PMLs case
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different depths, i.e., 3.76, 4.7, 5.64, 6.58, 7.52 cm, respectively. The corresponding lengths 
of the stick are 4, 5, 6, 7, 8 cm,  respectively (see Fig. 17). The best results are obtained 
in the case of a 8-cm deep source case modelled as a point source. We choose this case 
because better waveforms and better modes description have been obtained as discussed 
hereafter. For the sake of simplicity, we are not showing the related dispersion images for 
the other virtual source depths.

Fig. 14  Comparison between experimental filtered (a), 3D elastic (b), 2D elastic (c) and 2D poroelastic (c) 
dispersion images in the full PMLs case with stick source at the surface
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6.2  Waveforms Comparison

The numerical seismograms (2D elastic and 2D poroelastic models) in the 8-cm deep 
source case are more similar to the seismograms of the experiment (see Fig. 18) than the 
pure stick case (see Fig. 10). In Fig. 19a, b, the seismograms are scaled with offset r for 
receivers reasonably far (5 cm away) from the source. Quantitatively, we can see in Fig. 19a 
that the first wave trains of the 2D elastic and 2D poroelastic models (i.e., before ≈ 0.012 s) 

Fig. 15  First-arrival times of the 
3D elastic, 2D elastic and 2D 
poroelastic models compared to 
the experimental and analytical 
first-arrival times

Fig. 16  Dispersion curves of 3D elastic (a), 2D elastic (b) and 2D poroelastic (c) seismograms compared to 
experimental and analytical dispersion curves with stick source at the surface
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are very similar to the experimental ones. However, we notice that the computed Rayleigh 
waveforms have overestimated amplitudes when compared to experimental surface wave-
forms after ≈ 0.012 s. On the contrary, in the 8-cm deep source case (Fig. 19b), the first 
wave train is almost superimposed to the experimental data waveform before ≈ 0.012 s, 
and the order of magnitude of the amplitudes of surface waves is similar to the amplitudes 
of the experimental data, which is very encouraging. The numerical modelling matches 
better the solution when the location of the source is deeper because the medium is bet-
ter illuminated from below, between the source and the receivers, which is well known, 
for instance, by geophysicists working at near-surface scales in passive seismics with local 
earthquakes located close to the surface at a reasonable depth in the crust. Indeed, great 
part of the energy of the source is transmitted from below and through the shallow lay-
ers of the medium and then excite the high-frequency (small wavelength) contents of the 
medium. More particularly, the 2D poroelastic waveforms are matching better the real data 
in amplitude and phase, and more specifically the first arrivals in time and amplitude of the 
real data than the pure elastic waves that are more delayed in time, which can be explained 
by faster poroelastic Vp velocities ( Vpfast).

In the stick source case (Fig. 19a), the amplitudes of the Rayleigh waves are very similar 
for both poroelastic and elastic waves, but they remain larger than the amplitudes of the 
surface waves present in the real data. For a 8-cm deep source (Fig. 19b), the amplitudes 
have decreased and are closer to those of the real data. However, the elastic waves are 
delayed in time with respect to the poroelastic waves in particular in the first wave train 
and have smaller amplitudes than poroelastic waves and real data. This can be due to faster 
poroelastic velocities.

As a future perspective, it would be thus important to model the source more properly in 
order to better reproduce the waveforms in terms of phase and amplitude. To obtain a bet-
ter source, the source signal in time and space, its spatial spreading and its location at depth 
should be inverted. In the case of comparisons between 3D real data and 2D simulated data, 
a 3D-to-2D transformation should be first applied to real data through time convolution 
corrections and rescaling corrections depending on the offset r. Then, for both 2D and 3D 
simulations, different clusters of receivers should be considered and the real data should be 

Fig. 17  Numerical setup for the 8-cm deep source case for the 2D elastic and 2D poroelastic model cases
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stacked over these clusters for signal coherency and deconvolved with the simulated data for 
the current model we are studying. Then, the spectral ratios of the experimental stacked data 
and simulated data can be used to obtain an equivalent/virtual source that explains better all 
the recorded waveforms in phase and amplitude. The details of building such source wavelet 
are well explained in Forbriger et al. (2014). The source wavelet could even be more suit-
ably corrected by applying similar procedures as those proposed by the authors mentioned 
before in the data section 2.2 (Schäfer et al. 2012, 2014; Groos et al. 2013, 2014a; Forbriger 
et al. 2014) and more particularly when 3D-to-2D transformations are used.

Fig. 18  Experimental filtered seismogram (a) compared to the 2D elastic (b) and 2D poroelastic (c) seismo-
grams in the 8-cm deep source case
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Finally, using a multi-frequency inversion process, we could invert both the source 
and the recorded waveforms progressively from low to high frequencies, and this way 
the (poro-)elastic model as well as the source wavelet will be improved. Such source and 

Fig. 19  a Comparison of the 
numerical seismograms (for the 
2D elastic and 2D poroelastic 
models) with the experimental 
filtered ones at receivers 10, 15, 
and 20 in the pure (original) 
stick case (time in seconds). b 
Same thing but in the 8-cm deep 
source case. All the seismograms 
are zoomed over the first 30 ms 
because there is no signal after 
25 ms in the numerical seismo-
grams due to the PML absorbing 
conditions
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model inversions can be performed by using procedures similar to those also developed 
by Schäfer et al. (2013, 2014); Groos et al. (2013, 2014a); Forbriger et al. (2014) for near-
surface applications and full-waveform inversions using efficient 3D–2D transformations to 
the data.

Fig. 20  Experimental dispersion image a compared to the 2D elastic b and 2D poroelastic c dispersion 
images in the 8-cm deep source case
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6.3  Dispersion Analysis

In Fig. 20, we can see the very good similarity of the numerical dispersion images with the 
experimental one. In the previous section, the P-modes (mode 2) were not clearly repro-
duced in terms of amplitude. On the contrary, we obtain here the same patterns with very 
pronounced P-modes. These modes are very well represented in both elastic and poroelas-
tic cases. In the poroelastic case, results are slightly improved. This can be clearly observed 
on the dispersion curves of Fig. 21. All these results show the crucial importance of the 
data sensitivity to the source modelling and particularly to the source location at depth. 
The deeper is the source, the more the P-modes can be recovered and moved towards lower 
frequencies. Since these P-modes are more pronounced, the P − SV  wave modes are less 
visible even if they are still existing but with less intensity. Of course, if the source loca-
tion is too deep, surface waves will not be generated. This opens new perspectives to better 
define the source: inversion of its location at depth and a better spatial spreading descrip-
tion could be done.

Fig. 21  Dispersion curves for the 
2D elastic a and 2D poroelastic b 
models in the 8-cm deep source 
case compared to experimental 
and analytical dispersion curves
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7  Conclusions

In this study, the Vp-Vs model has been well integrated in elastic and poroelastic codes. The 
results obtained from qualitative and quantitative points of view are improved compared to 
those presented in Bodet et al. (2014) in the case of zero overpressure, corresponding here 
to the dry (not fluidized) case. Numerical first arrivals and dispersion curves are very close 
to those of the experimental and theoretical ones.

The rheology considered (purely elastic or poroelastic) and the source location play 
an important role in the modelling of this kind of complex medium. Indeed, a poroelastic 
model combined with an acoustic source located at an adequate depth gives better results 
than purely elastic models and sources (a force point source or a vibratory stick) placed 
close to or at the surface. The fundamental mode as well as the higher modes (such as the 
P-modes) are better defined and are more comparable to those of the real experimental 
data.

The model has been validated for dry media. In future works, we plan to study fluid-
ized media with overpressure or media partially saturated with fluids like water and to 
improve the models by also inverting the shape and the location of the source. A more 
complete study will be considered with a 3D poroelastic model, and we will also take 
into account attenuation effects through different viscoelastic models. This will pave the 
way to study gas or fluid/water detection and also to monitor some areas for CO2 stor-
age, mitigation of flash floods, etc.

Appendix A. 3D Elastic Wave Equations

The elastodynamics equations can be formulated at the second order in displacement as:

However, the first-order formulation (velocity-stress) of the 3D elastic wave equations for a 
linear, isotropic medium submitted to external forces is given by Graves (1996):

�
�2ui

�t2
= �j�ij + si,

�ij =
1

2

(

ui,j + uj,i
)

,

�ij = ��ij�kk + 2��ij.
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In these equations, vx, vy, vz are the velocity components; �xx, �yy, �zz, �xy, �xz, �yz are the 
stress components; sx, sy, sz are the body-force components; � is the density; � and � are 
Lamé parameters.

Appendix B. 2D Elastic Wave Equations

In the 2D particular case, 2D elastic wave equations for an isotropic medium submitted 
to external forces can be written using a velocity-stress formulation such as the follow-
ing linear and hyperbolic system (Dumbser and Käser 2006):

where � and � are Lamé parameters, � is the density, and sx and sz are the space-dependent 
source terms in x and z directions. The compressional stress components are given by �xx 
and �zz , and the shear stress is �xz . The components of particle velocities in direction x and 
z are denoted by vx and vz , respectively.
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Appendix C. 2D Poroelastic Wave Equations

Porous materials are made of a solid phase (called the frame) and of a fluid phase and can 
be considered as an interconnected network of pores inside the solid (Pride et al. 2004). 
When a fluid flow is able to cause the solid to deform, the material is called poroelastic. 
Unconsolidated granular media can be seen as a poroelastic material in which air or water 
can play the role of the fluid and grains the solid. Poroelastic materials are most of the 
time modelled using the Biot theory (Biot (1956a) and Biot (1956b)). The differential or 
"strong" formulation of the poroelastic wave equations can be written as (Carcione 2007), 
(Carcione 2014):

where us = (us
i
)i=1,2 , w = Φ

(

uf − us
)

 and uf = (u
f

i
)i=1,2 are, respectively, the solid, relative, 

and fluid displacement vectors; Φ is the porosity; and C is the stiffness tensor of the iso-
tropic elastic solid matrix, defined as:

where indices i and j can be here 1 or 2 in 2D and with the Einstein convention of implicit 
summation over a repeated index. Pf  is the pressure in the fluid. �s and � are, respectively, 
the stress and strain tensors of the isotropic elastic solid frame. The stress tensor of the 
fluid-filled solid matrix is � = �s − �Pf I , and � = Φ�f + (1 − Φ)�s is the density of the 
saturated medium, where �s and �f  are the solid and fluid densities, respectively. The 
apparent density is �w = a

�f

Φ
 where a denotes the tortuosity. The shear modulus is � and 

�s = � − �2M is the Lamé coefficient in the solid matrix, where � is the Lamé coefficient of 
the saturated matrix. The � and M variables are functions of the porosity and bulk moduli 
of the fluid and solid components of the porous medium and are given by the following 
expressions:

where Kfr is the incompressibility modulus of the porous frame, Ks is the incompressibility 
modulus of the solid matrix, and Kf  is the incompressibility modulus of the fluid. The vis-
cous damping coefficient is:
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where � is the permeability of the solid matrix and � is the fluid viscosity. Equations (4) to 
(7) can be written using a first-order velocity-stress formulation:

where vs = (vs
i
)i=1,2 and vf = �tw = (v

f

i
)i=1,2 are the solid and filtration velocity vectors, 

respectively. � is the effective stress tensor of the porous medium. As in Zeng and Liu 
(2001), using the trace of the strain tensor Tr(�) = �ii and an auxiliary variable � , we rewrite 
the system as:

This system of equations has seven wave eigenvalues related to seven wave velocity modes 
(instead of five for the elastic case). Those wave velocities are ±VpFAST , ±VpSLOW , ±Vs and 
0. The shear velocity Vs and the fast and slow P-wave velocities ( VpFAST and VpSLOW ) can be 
expressed as (Sidler et al. 2014):
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where
a1 = �11�22 − �2

12
,

b1 = −S�22 − R�11 + 2ga�11,

c1 = SR − ga2,

�11 = � + �fΦ(a − 2),

�12 = Φ�f (1 − a),

�22 = a�fΦ,

S = � + 2�,

R = MΦ2,

Δ = b2
1
− 4a1c1,

ga = MΦ(� − Φ).

In Table 1, a summary of the different parameters of the poroelastic model is provided.
Biot’s characteristic frequency fc defines the transition between two poroelastic regimes 

(with or without attenuation) and is given as follows (see Biot 1956b; Carcione 2007 and 
Morency and Tromp 2008):

see parameters in Table 1.
In our study, the maximum frequency range fmax of the source is such that fmax < fc . 

Therefore, in the experimental and numerical modelling of unconsolidated granular media 
under study, we choose to stay in the poroelastic regime without attenuation.

(25)VpFAST
=
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,

(26)VpSLOW
=
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Δ
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,

(27)fc = min(
�Φ

2�a�f�
),

Table 1  Parameters of the 
poroelastic model

Parameters of the poroelastic model

Φ Porosity
� Density of the saturated medium
�s Density of the solid
�f Density of the fluid
�w Apparent density
Ks Incompressibility modulus of the solid matrix
Kf Incompressibility modulus of the fluid
Kfr Incompressibility modulus of the porous frame
� Permeability of the solid matrix
� Fluid viscosity
a Tortuosity
� Lamé coefficient of the saturated matrix
�s Lamé coefficient in the solid matrix
� Shear modulus
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Appendix D. Performance of UNISOLVER Parallel Code

The fourth-order 3D UNISOLVER parallel code has been scaled over different num-
bers of processors (up to 400) of Olympe supercomputer at CALMIP computing centre 
of Toulouse (France) by using MPI (Message-Passing-Interface) library. The compu-
tational domain has been cut along the longitudinal y-axis (from 20 points down to 5 
grid points per processor along the y-axis). A buffer overlapping corresponding to two 
grid points between subdomains (one subdomain per processor) is used to communi-
cate the particle velocities and stresses and material properties between processors via 
’MPI−Send’ and ’MPI−Recv’ communication operations. As we can see in Fig. 22, the 
strong scaling obtained by measuring the CPU time versus the number of processors is 
very satisfactory, despite the use of blocking communication operations. This strategy is 
classical (see (Komatitsch and Martin 2007)).

We underline that asynchronous iterative schemes of computation which cover com-
munications by computations in the inner subdomains as depicted in Miellou et  al. 
1998; El Baz et al. 2001; Chau et al. 2007; El Baz et al. 2005; Martin et al. 2008a are 
also very efficient.
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