
ar
X

iv
:1

90
8.

01
08

3v
1 

 [
m

at
h.

H
O

] 
 2

 A
ug

 2
01

9

ITERATIVE METHODS FOR LINEAR SYSTEMS OF EQUATIONS: A

BRIEF HISTORICAL JOURNEY

YOUSEF SAAD ∗

Abstract. This paper presents a brief historical survey of iterative methods for solving linear
systems of equations. The journey begins with Gauss who developed the first known method that
can be termed iterative. The early 20th century saw good progress of these methods which were
initially used to solve least-squares systems, and then linear systems arising from the discretization
of partial different equations. Then iterative methods received a big impetus in the 1950s - partly
because of the development of computers. The survey does not attempt to be exaustive. Rather,
the aim is to underline the way of thinking at a specific time and to highlight the major ideas that
steered the field.

Key words. Iterative methods, Gauss-Seidel, Jacobi iteration, Preconditioners, History of
iterative methods.

1. It all started with Gauss. A big part of the contributions of Carl Friedrich
Gauss can be found in the voluminous exchanges he had with contemporary scientists.
This correspondance has been preserved in a number of books, e.g., in the twelve
‘Werke’ volumes gathered from 1863 to 1929 at the University of Göttingen1. There
are also books specialized on specific correspondances. One of these is dedicated to
the exchanges he had with Christian Ludwig Gerling [61]. Gerling was a student of
Gauss under whose supervision he earned a PhD from the university of Göttingen in
1812. Gerling later became professor of mathematics, physics, and astronomy at the
University of Marburg where he spent the rest of his life from 1817 and maintained a
relation with Gauss until Gauss’s death in 1855. We learn from [67] that there there
were 388 letters exchanged between the two from 1810 to 1854 (163 written by Gauss
and 225 by Gerling).

It is one of these letters that Gauss discusses his method of indirect elimination
which he contrasted with the method of direct elimination or Gaussian elimination in
today’s terminology. Gauss wrote this letter to Gerling on Dec. 26th, 1823. Gerling
was a specialist of geodetics and the exchange in this letter was about the application
of the method of least-squares which Gauss invented in the early 1800s to geodet-
ics. An English translation of this letter was published in 1951 by George Forsythe
[19]. The historical context of this translation is interesting in itself. In the forward,
Forsythe begins by stating that his specific aim was to find whether or not the refer-
ence in a book by Zurmühl on matrices [80] that mentioned the method of relaxation
described by Southwell [69, 70] is the same as the one given in “Dedekind’s report on
Gauss’s Lectures” (see references in [19]) “...It is believed by some computers2 how-
ever, that Gauss’s method is a different one, namely the related method given by Seidel
[63]. In the interest of giving Gauss his proper credit as a proponent of relaxation,
the following translation of a letter by Gauss is offered”. ”

Let us take a look at the content of the letter. After some manipulations of data,
Gauss arrives at a least-squares system for determining angles formed by certain
directions for 4 German cities. For this he states that he will describe an ‘indirect’
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method for solving the normal equations. The least-squares system is stated as follows:

0 = +6 + 67a− 13b− 28c − 26d (1.1)

0 = −7558 − 13a+ 69b− 50c − 6d (1.2)

0 = −14604− 28a− 50b+ 156c− 78d (1.3)

0 = +22156− 26a− 6b − 78c + 110d (1.4)

As can be observed the sum of the right-hand side is zero (the right-hand side entries
are termed ‘absolute terms’ by Gauss). In fact all columns add up to zero. The
preliminary step to produce a system of this type is a ‘trick’ which helps get a better
convergence and provides what we may call today invariant, i.e., a property that is
always satisfied and can therefore be useful in detecting calculation errors.

In the iterative scheme proposed, the coordinates of the solution change and
the right-hand side, which is in fact the residual vector, is updated each time. The
mechanical nature of the procedure is at the same time simple and appealing. So for
example, all coordinates of the solution are set to zero, and in the first step, he selects
to modify the 4th coordinate because it would lead to the biggest decrease in the
residual. The letter then shows the progress of the algorithm in the following table:

d = −201 b = +92 a = −60 c = +12 a = +5 b = −2 a = −1
+6 +5232 +4036 +16 −320 +15 +41 −26

−7558 −6352 −4 +776 +176 +111 −27 −14
−14604 +1074 −3526 −1846 +26 −114 −14 +14
+22156 +46 −506 +1054 +118 −12 0 +26

The first column is just the initial residual (corresponding to the initial guess x = 0
in today’s terminology). The largest entry is the 4th, and so Gauss selects to update
d which now has the value d = −201 (obtained by making the last equation satisfied).
Note that all values are rounded ans this is one of the important attractions of this
method. The second column shows the next modification to be added this time to
b. In today’s notation we would write something like ∆b = +92. At the end of the
7 steps above, we have a = −56, b = +90, c = 12, d = −201. The new residual is
shown in the second column. The process is continued in this way. It turns out for
this example, nothing changes after the 7 steps shown above: Insofar as I carry the
calculation only to the nearest 2000-th of a second, I see that now there is nothing
more to correct... and the final solution is displayed. Gauss ends the letter with the
words: ... Almost every evening I make a new edition of the tableau, wherever there
is easy improvement. Against the monotony of the surveying business, this is always
a pleasant entertainment; one can also see immediately whether anything doubtful has
crept in, what still remains to be desired, etc. I recommend this method to you for
imitation. You will hardly ever again eliminate directly, at least not when you have
more than 2. The indirect procedure can be done while half asleep, or while thinking
about other things.

Gauss recommends this iterative scheme (indirect elimination) over Gaussian
elimination for systems of order > 2. We will contrast this with other recommen-
dations later.

This appears to be the first known reference to a use of an iterative method for
solving linear systems. Later, in 1845 Jacobi [35] developed a relaxation type method
in which the latest modification is not immediatly incorporated into the system. In
that same paper he introduces a way of modifying a linear system by using what we
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now know as ‘Jacobi rotations’ to annihilate large diagonal entries before performing
relaxations. This is in order to speed-up convergence of the iteration, and so one
can say that Jacobi introduced the first known form of preconditioning. That same
technique that uses cleverly selected rotations, was advocated in a paper that appeared
a year later [36] for solving symmetric eigenvalue problems.

Though this letter to Gerling dealt with a 4×4 linear system, Gauss solved bigger
systems with the same method. Bodewig [8, p. 145] describes the state of the art
with this method in its early stages as follows: Gauss had systems of 20—30—40
unknowns, later still higher systems were met, for instance, in the triangulation of
Saxony by NAGEL in 1890: 159 unknowns, H. BOLTZ at Potsdam 670 unknowns
and in the present triangulation of Central Europe several thousands of unknowns.

2. Solution by relaxation. The term ‘relaxation’ which is in common use to-
day to describe the general process first invented by Gauss, seems to have been intro-
duced by Southwell [69, 70]. Suppose we have a linear system of the form

Ax = b. (2.1)

which can be viewed as a collection of equations:

aix = βi, i = 1, · · · , n (2.2)

where ai ∈ R1×n is the i-th row of A and βi the i-th component of b. We will denote
by r the residual vector:

r = b −Ax. (2.3)

The relaxation process is then as follows where we set r(new) = b− Ax(new):

Modify i-th component of x into x
(new)
i := xi + δ so that: r

(new)
i = 0.

This means that we should have

ai(x+ δei) = βi −→ δ =
ri

aii

This is done in a certain order. In the original approach by Gauss, the method is to
select i to be the coordinate of the residual that has the largest entry. The newly
computed component of x is replaced into x and the new associated residual is then
computed. In the Jacobi method, all n components are updated using the same r.

In 1874, Seidel [63] described a relaxation method that was again geared toward
solving normal equations. His method can be viewed as a relaxation for the system
ATAx = AT b of normal equations, and because of this specificity he was able to argue
for convergence. He also mentions that unknowns need not be processed from 1 to
n cyclically. Instead convergence is improved by making each dominant residual into
zero, which is the same scheme as the one initially proposed by Gauss. In the same
paper Seidel also developed a block method whereby a few unknowns are proccessed at
the same time. Often in the literature that followed, ‘relaxation’ became synonymous
with Seidel’s method and the method was often called Seidel’s method. It is now
called the Gauss-Seidel method in an effort to give credit to Gauss who invented
the non-cyclic variant almost 50 years before him. The fact that Seidel recommends
against processing the unknown cyclically prompted Gorge Forsythe to remark that
“the Gauss-Seidel method was not known to Gauss and not recommended by Seidel”
according to Householder, see [34, p. 115]. In the same notes, Householder also
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mentions that Nekrasov, a Russian author (see [34] for the reference) defined the
exact same method as Seidel in 1884 and that “the method is called Nekrasov’s
method in the Russian literature”. In fact, to this day the method is referred to
as the method of Seidel-Nekrasov by some Russian authors. Nekrasov analyzed the
method theoretically [49] and the paper [42] shows a convergence result.

One of the main attractions of the cyclic version of Gauss-Seidel iteration is that
it can easily programmed or ‘mechanized’ as was said in the early days of computing.
David Young recounts the following anecdote in [79]: “Not too long after I began my
work, Sir Richard Southwell visited Birkhoff at Harvard. One day when he, Birkhoff
and I were together, I told him what I was trying to do. As near as I can recall, his
words were “any attempt to mechanize relaxation methods would be a waste of time.”
This was somewhat discouraging, but my propensity of making numerical errors was
so strong that I knew that I would never be able to solve significant problems except
by machines. Thus, though discouraged, I continued to work.”

Relaxation-type methods can be written in the form of fixed point iterations
and this makes it easy to analyze their convergence. Consider the decomposition
A = D − E − F where D is a diagonal matrix having the same (diagonal) entries
as those of A, −E is the stricly lower triangular part of A and −F its stricly upper
triangular part. Then the method of Gauss-Seidel generates the iterates defined by

x(k+1) = (D − E)−1
(

Fx(k) + b
)

. (2.4)

Here one can write Ax = b as (D−E)x = F +b, using the splitting A = (D−E) − F ,
from which the above iteration follows. Similarly, the Jacobi iteration is of the form
x(k+1) = D−1[(E + F )x(k) + b] and is based on the splitting: A = D − (E + F ).

In addition to the original paper by Seidel mentioned above, convergence of the
standard Gauss-Seidel process was studied early on by several authors, see, e.g., [76].
A number of these results can found in a chapter of Bodewig’s book [8, Chap. 7] that
starts with the warning: But, first, let us note that these theorems are more or less
superfluous in practical computation. For the iteration methods will only be applied
when the convergence is evident at first sight, that is, when the diagonal dominates
strongly whereas in other cases convergence will be too slow even for modern computing
machines so that it is better to apply a direct procedure (Gauss or variants).

3. Early 20th century. The early 20th century was marked by the beginning
of the application of iterative methods to problems modeled by partial differential
equations. Up to that period, iterative methods were mainly utilized to solve lin-
ear systems that originated from normal equations. On the other hand, a method
proposed by Liebmann [40] was geared specifically toward solving discretized Poisson
equations. The method is nothing but what we term today the Gauss-Seidel method,
and for this reason the Gauss-Seidel iteration when applied to Partial Differential
Equations was often called the Liebmann method. It is known as Nekrasov’s method
in the Russian literature [48].

In a remarkable paper published in 1910, Richardson [54] put together a number
of techniques for solving simple PDEs (Laplace, Poisson, Bi-Harmonic, ..) by finite
differences. He then describes an iterative scheme for solving the linear system that
results from discretizing these equations. The PDEs addressed in the paper are all of
a homogenous type, e.g., Laplace, or ∆u = 0, with boundary conditions. This results
in a linear system that can be written as Ax+ b = 0 where A acts on interior points
only and b reflects the action of the discretized operator on the boundary points.
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Thus, for an arbitrary x, the vector Ax + b represents the residual of the system
under consideration. With this notational point in mind, the method introduced by
Richardson in this paper can be written in the form:

xj+1 = xj −
1

αj
Arj (3.1)

and results in a polynomial iteration scheme whose residual at step k satisfies

rk = (I −
A

αk
) · · · (I −

A

α2
) · · · (I −

A

α1
)r0. (3.2)

Thus, rk is of the form:

rk = pk(A)r0 (3.3)

where pk is a polynomial of degree k satisfying the constraint pk(0) = 1 that depends
on the free coefficients α1, · · ·αk. This is what we would call a polynomial iteration
today. What comes as a surprise is that Richardson identifies exactly the problem he
has to solve in order to get a small residual, namely to find a set of αi’s for which pk(t)
deviates the least from zero, but then does not invoke Chebysheff’s work to find the
solution. He arrives at a certain solution ‘by trial’ for a polynomial of degree 7. The
best solution given knowing that the eigenvalues are in an interval [a, b] with a > 0
can be expressed in terms of a Chebyshev polynomial of the first kind, see, e.g., [59,
Sec. 12.3]. Chebyshev introduced his polynomials in 1854, [72], or 56 years prior to
Richardson’s article, but his paper addressed completely different issues from those
with which we are familiar today when analyzing convergence of certain algorithms or
when defining iterative schemes such as the Chebyshev iteration. Equally surprising
is the fact that Richardson does not seem to be aware of the work by Gauss [19]
and Seidel [63] on iterative schemes. His work is truly original in that it defines a
completely new method, the method of polynomial iteration, but misses Chebyshev
acceleration as we know it today.

It was much later that the missing part was completed in the work of Shortley [65],
Sheldon [64], and finally Golub and Varga [32]. This work also lead to a second-order
Richardson iteration to accelerate the ‘basic’ iteration u(k+1) = Gu(k)+f which takes
the following form:

u(k+1) = ρ
[

γ(Gu(k) + f) + (1− γ)u(k)
]

+ (1− ρ)u(k−1)

where, at the difference with the Chebyshev method, the parameters ρ and γ are fixed
throughout the iteration.

4. 1930s-1940s: Southwell. Iterative methods were popularized by a series
of papers, e.g., [33, 22, 1, 13, 69], and books [70, 71] by Richard Southwell and
co-workers who put these methods to use for solving a wide range of problems in
mechanical engineering and phsyics. A good survey of developments with relaxation
methods with a summary of the problems successfully solved by these methods up to
the late 1940s is given by Fox [21]. Southwell defined various refinement techniques
to standard relaxation, including block-relaxation (called group relaxation [69]) for
example. However, his biggest contribution was to put these techniques in perspective
and to show their effectiveness for handling a large variety of realistic engineering and
physical problems, thus avoiding the use of direct solution methods. Many of the
problems tackled were challenging for that period.
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5. The SOR era. Later toward the mid-20th century the observation was made
that the convergence of a relaxation procedure could be significantly accelerated by
including an over-relaxation parameter. In the language of the iteration (2.4) Over-
relaxation (Young and others) is based on the splitting

ωA = (D − ωE)− (ωF + (1− ω)D),

resulting in a scheme known as the Successive Over-Relaxation (SOR) method. The
1950s and early 1960s marked a productive era for iterative methods that saw an in-
depth study of this class of techniques initiated by David Young and Stanley Frankel.
In a 1950 article, Frankel [23] described the ‘Liebmann’ method, which was just the
cyclic relaxation process described by Seidel, along with an ‘extrapolated Liebmann
method’ which is nothing but the SOR scheme. He discusses the parameter ω (called α

in his paper) and obtains an optimal value for standard finite difference discretizations
of the Laplacean. This particular topic received a rather comprehensive treatment by
David Young in his PhD thesis [77] who generalized Frankel’s work to matrices other
than those narrowly targetted by Frankel’s paper. The SOR method and its variants,
became quite successful, especially with the advent of digital computing and they
enjoyed a popularity that lasted until the 1980s when Preconditioner Krylov methods
started replacing them. Here is what Varga [75] said about the capabilities of these
methods in the year 1960: “As an example of the magnitude of problems that have been
successfully solved by cyclic iterative methods, the Bettis Atomic Power Laboratory
of the Westinghouse Electric Corporation had in daily use in 1960 a 2-dimensional
program which would treat as a special case Laplacean-type matrix equations of order
20,000.”

He then adds in a footnote: (paraphrase) that the program was written for the
Philco-2000 computer which had 32,000 words of core storage (32Kwords!) and “Even
more staggering”: Bettis had a 3-D code which could treat coupled matrix equations
of order 108,000. This reflects the capability of iterative methods and indeed of linear
system solvers (direct methods could not handle such systems) at that point in time.

Up to the early 1980s, this was the state of the art in iterative methods. These
methods are still used in some applications either as the main iterative solution
method or in combination with recent techniques (e.g. as smoothers for multigrid
or as preconditioners for Krylov methods).

What I call the SOR era culminated with the production of two major books that
together give a complete view of the state of the art in iterative methods up to the
late 1960s early 1970s. The first is by Richard Varga [75] which appeared in 1962 and
the second by David Young [78] which appeared in 1971.

6. A turning point: The Forsythe article. In 1953, George Forsythe pub-
lished a great survey article [20] in the Bulleting of the American Society, with the
title: “Solving linear algebraic equations can be interesting”. The paper is rather
illuminating as much by the breadth of its content as by its vision. In it Forsythe
mentions a new method, called the Conjugate Gradient method, that appeared on
the horizon. “ It is my hope, on the other hand, to arouse the mathematician’s
interest by showing (sec. 2) the diversity of approaches to the solution of (1), and by
mentioning (secs. 3 to 6) some problems associated with selected iterative methods.
The newest process on the roster, the method of conjugate gradients, is outlined in
sec. 7. Sec. 8 touches on the difficult general subject of errors and ”condition,” while
a few words are hazarded in sec. 9 about the effect of machines on methods.” The
title is intriguing but what it is even more so when one reads the comment by the
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author that the title of the submitted manuscript was “Solving linear systems is not
trivial”. We will probably never know the reason for the change, but it seems clear
that in those days, solving linear systems of equations could be thought to be ‘trivial’
from some angle. 3

George Forsthye (1917-1972) joined Stanford in 1957 (Math) and founded the
computer science department, one of the first in the nation, in 1965. Knuth discusses
this era in [38] illustrating the fact that it was not an easy task to start a computer
science department at the time and praising Forsythe’s vision. George Forsythe is
now considered the father of modern numerical analysis.

7. In Brief: Chaotic Iterations. In the early days of electronic computing
many people started to see the potential of parallel processing. Chaotic relaxation
was viewed as a way of exploiting this avenue. It is interesting to see how early this
vision of parallelism emerged. Two papers introduced the term “free steering” for
a relaxation method in which the components to be relaxed are chosen freely one
by Ostrowski in 1955 [50] and the other by Schechter in 1959 [62]. Both studied
convergence for H-matrices. The article by Chazan and Miranker in 1969 introduced
the term “chaotic relaxation” which was adopted for a while until it was replaced later
by the term “asynchronous relaxation”.

Here is a quote from the paper by Chazan and Miranker [1969] that explains
the motivation and context of their work: “The problem of chaotic relaxation was
suggested to the authors by J. Rosenfeld who has conducted extensive numerical ex-
periments with chaotic relaxation [J. Rosenfeld (1967)]. Rosenfeld found that the use
of more processors decreased the computation time for solving the linear system. (...)
The chaotic form of the relaxation eliminated considerable programming and computer
time in coordinating the processors and the algorithm. His experiments also exhibited
a diminution in the amount of overrelaxation allowable for convergence in a chaotic
mode.”

The article [58] by Rosenfeld, mentioned above, seems to be the first to actually
implement chaotic iteration on a parallel machine and show its effectiveness and po-
tential. A group from the French school started this line of work with the doctoral
thesis of Jean-Claude Miellou in 1970. Miellou had a series of articles in the Comptes
Rendues de l’Academie des Sciences (Proceedings of the French Academy of Sciences),
see, e.g., [44, 46]. The paper [45] summarizes some of the work he did on chaotic re-
laxation methods with delay. The work by Miellou generated an important following
in France, with papers that focused on convergence as well as parallel implementa-
tions [5, 55, 16, 15, 7, 30, 4, 47]. Some of the work done in France in those days was
truly visionnary. Discussions that I attended as a student in Grenoble, could be tense
sometimes, with one camp claiming that the methods were utopian. They were not
necessarily utopian but certainly ahead of their time by a few decades. In fact this
work has staged a strong come back with the advent of very large high-performance
computers where communication is expensive, see, for example, [41, 26, 17, 2, 27, 10]
among many others.

8. Meanwhile, on the opposite camp. At this point, the reader may be led to
believe that direct methods, or direct elimination methods using Gauss’ terminology,

3When I was working for my PhD in France, I was once asked about the topic of my thesis and
when I replied that it was about sparse matrix methods I was told “..but the problem of solving
linear systems of equations is solved. Isn’t that just tinkering?” Just like Young in [79], “though
discouraged I continued to work.”
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were about to be abandoned as the success of iterative methods was spreading to more
areas of engineering and science. In fact, the opposite happened. Developers of direct
methods for sparse linear systems became very active starting in the 1960s and the
whole area witnessed an amazing progression in the few decades that followed. Here,
it is good to begin by mentioning the survey article by Iain Duff [14] which had over
600 references already in 1977. Major advances were made for general sparse matrices
– as opposed to those matrices with regular structure that came from finite difference
techniques applied to PDEs on simple regions. When a sparse linear system is solved
by Gaussian elimination, some zero entries will become nonzero and because of the
repetitive linear combination of rows the final matrix may loose sparsity completely.
A new non-zero entry created by the process is called a ‘fill-in’ and the number of
fill-ins created depends enormously on the way the equations and rows are ordered.
Then, a big part of the know-how in ‘sparse direct methods’ is to try to find orderings
that minimize fill-in.

The discovery of sparse matrix techniques began with the link made between
graph theory and sparse Gaussian elimination by Seymour Parter [51] in 1961. This
paper gave a model of the creation of fill-in that provided a better understanding of
the process. Graphs played a major role thereafter but it took some time before a
major push was made to exploit this link in the form of a theorem that guarantees
the non-creation of fill-ins by judicious reordering [56, 57]. One important feature of
sparse direct methods that distinguishes them from iterative methods, is that they are
rather complex to implement. Today, it takes man-years of effort to develop a good
working code with all the optimized features that have been gathered over years of
steady progress. In contrast, it would take a specialist a few days or weeks of work to
develop a small set of preconditioners (e.g., of ILU-type) with one or two accelerators.
This distinction has had an impact on available software. In particular, sparse direct
solvers (SPARSPAK, YSMP, ..) were all commercial packages at the beginning.

A major contribution, and boost to the field, was made in 1981 by Alan George
and Joseph Liu who published an outstanding book [29] that layed out all that has
been learned on sparse direct solution techniques for solving symmetric linear systems
up to that point. The book also included FORTRAN routines and this lead to the
first package, called SPARSPAK [11], for solving sparse symmetric positive definite
linear systems4.

The speed with which progress was made at the early stages of research on sparse
direct solvers is staggering. Table 8.1, reproduced from [28], shows the evolution of
the performance of the minimum degree algorithm, a reordering technique to reduce
fill-in in Gaussian elimination from its inception to 1989. With each discovery, or new
trick, there is a gain, often quite substantial, in performance, both in the reduction
of the number of nonzero entries and the time of the procedure. Since 1989, many
more new ingredients have been found that make sparse direct solvers hard to beat
for certain types of problems.

The merits and disadvantages of direct and iterative methods have been com-
pared since the earliest paper of Gauss, see Section 1. In his 1959 book [8, p. 173]
Bodewig states that “Compared with direct methods, iteration methods have the great
disadvantage that, nearly always, they converge too slowly and, therefore, the number
of operations is large”. Then he continues that in fact “For most systems the iteration
does not converge at all. The methods for making convergent an arbitrary system are

4 As was just mentioned SPARSPACK was a commercial package but the book included listings
of the main routines.
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Version Minimum Degree Algorithm Off-diagonal Ordering
Factor Nonz Time

Md#1 Final minimum degree 1,180,771 43.90
Md#2 Md# 1 without multiple elimination 1,374,837 57.38
Md#3 Md# 2 without element absorption 1,374,837 56.00
Md#4 Md# 3 without incomplete deg update 1,374,837 83.26
Md#5 Md# 4 without indistinguishable nodes 1,307,969 183.26
Md#6 Md# 5 without mass elimination 1,307,969 2289.44

Table 8.1

Evolution of the minimum degree algorithm up to 1989 according to [28].

circumstantial.”

The only potential advantage of iterative methods over direct methods he saw
was that “Rounding errors cannot accumulate, for they are restricted to the last op-
eration. So, without doubt, this is an advantage compared with direct methods. Yet
this advantage costs probably more than it is worth.”

Later, David M. Young [78] states in the first chapter of his book (1971): The use
of direct methods even for solving very large problems has received increased attention
recently (see for example Angel, 1970). In some cases their use is quite appropriate.
However, there is the danger that if one does not properly apply iterative methods
in some cases one will incorrectly conclude that they are not effective and that direct
methods must be used. It is hoped that this book will provide some guidance (...) A
comparison from the opposite camp (George & Liu’s book [29]) warns that: (...)
Unless the question of which class of methods should be used is posed in a quite nar-
row and well defined context, it is either very complicated or impossible to answer.
The authors then give reference to Varga and Young and say that there are no books
on direct solvers and “In addition, there are situations where it can be shown quite
convincingly that direct methods are far more desirable than any conceivable iterative
scheme.” Surprisingly, this section of the book does not mention the relative ineffec-
tiveness of direct solvers for large 3D problems (though this was clearly known by the
authors at the time, see below).

The debate has somewhat diminished recently with the consensus that iterative
methods are competitive for 3-D problems – but that for 2-D problems the benefits
may be outweighed by the lack of robustness of these methods for indefinite problems.
The common argument that is given to illustrate this fact is to compare the result of
one of the best orderings for regular grids in the 2-D and 3-D cases, as illustrated in
[29]. Consider a standard Poisson equation on an n× n regular grid in 2-D, and then
on an n × n × n regular grid in 3-D. We call N the size of the resulting system, so
N = nd where d is the space dimension, i.e., d = 2, 3. The order of the cost is given
by the following table:

2-D 3-D

space (fill) O(N logN) O(N4/3)

time (flops) O(N3/2) O(N2)

The table shows a significant difference in complexity between the 2-D and the 3-D
cases.

A widespread misconception is that 3-D problems are harder just because they are
bigger. In fact they are just intrinsically harder as is suggested in the above table.
When I teach sparse matrix techniques in a numerical linear algebra course, I often
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give a demonstration in Matlab to illustrate direct solution methods. I show a live
illustration of using the back-slash operation 5 in matlab to solve a linear system
involving a coefficient matrix that comes from a centered difference discretization of
Poisson’s equation on a 2-D or a 3-D mesh. The idea is to show that for the same
size problem, e.g., 350 × 350 grid in 2-D versus 50 × 50 × 49 grid in 3-D (leading to
a problem of size N = 122, 500 in each case), the 3-D problem takes much longer to
solve. For this example it can take 11 sec. for the 3-D problem and 0.7 sec for the
2-D problems on my laptop. What I also tell the audience is that in past years I was
gradually increasing the size of these problems as times went down. A decade ago for
example, I would have a demo with a problem of size approximately N = 20, 000 if I
wanted not to have students wait too long for the answer. Of course, this gain reflects
progress in both hardware and algorithms.

9. One-dimensional projection processes. The method of steepest descent
was introduced by Cauchy in 1829 as a means of solving a nonlinear equation related to
a problem of the approximation of an integral. A detailed account of the origin of the
steepest descent method is given in [52] where we learn that Riemann, Nekrasov, and
later Debye were also associated with the method. In 1945 Kantorovitch introduced
the method in the form we know today for linear systems for SPD matrices:

min
x

f(x) ≡
1

2
xTAx− bTx. (9.1)

The gradient of the above function is ∇f(x) = Ax − b which is the negative of the
residual b−Ax and so the steepest method will just generate an iteration of the form

xk+1 = xk + ωkrk

where rk = b − Axk and ωk is selected to minimize (9.1) at each step. Convergence
can easily shown for matrices that are symmetric positive definite. Methods of this
type are one-dimensional projection methods in the sense that they produce a new
iterate x(new) from a current iterate x by a modification of the form x(new) = x + δ

where δ belongs to a subspace of dimension 1. In the case of the steepest descent
method we can write δ = α∇f(x) = α(b−Ax) and it is easy to calculate α if we wish
to minimize (9.1).

Simple projection methods of this type for solving linear systems were proposed
earlier. For example, in a short paper [37], Kaczmarz described a method in which
at each step d is selected to be the vector ai = AT ei, the i-th row of A written as a
column vector. In this case,

x(new) = x+ αai α =
ri

‖ai‖22
(9.2)

in which ri is the i-th component of the current residual vector b − Ax. Equation is
written in a form that avoids clutter but we note that the indices i of the components
that are modified are cycled from 1 to n and this is repeated until convergence. We

can rewrite (9.2) as x(new) = x +
eT
i
r

‖AT ei‖2

2

AT ei. If x∗ is the exact solution and we

write x(new) = x+ αai then we have

‖x∗ − x(new)‖22 = ‖(x∗ − x)− αai‖
2
2

= ‖x∗ − x‖22 + α2‖ai‖
2
2 − 2α < x∗ − x, ai > . (9.3)

5In Matlab a sparse linear system Ax = b can be solved by the command x = A\b. This
back-slash operation will invoke a sparse direct solver to produce the answer.
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This is a quadratic function of α and the minimum is reached when

α =
< x∗ − x, ai >

‖ai‖2
=

< x∗ − x,AT ei >

‖ai‖2
=

< A(x∗ − x), ei >

‖ai‖2
=

< r, ei >

‖ai‖2

which is the choice made in the algorithm. In addition, Kaczmarz was able to show
convergence. Indeed, with the optimal α, equation (9.3) yields

‖x∗ − x(new)‖22 = ‖x∗ − x‖22 −
r2i

‖ai‖22
, (9.4)

showing that the error must decrease. From here there are a number of ways of
showing convergence. The simplest is to observe that the norm of the error ‖x∗−x(j)‖
must have a limit and therefore (9.4) implies that each residual component ri converges
to zero, which in turn implies that x(j) converges to the solution. The method is
motivated by a simple interpretation. The solution x is located at the intersection of
the n hyperplanes represented by the equations aix−bi = 0 and the algorithm projects
the current iterate on one of these hyperplanes in succession, bringing it closer to the
solution each time.

At almost the same time, in 1938, Cimmino [12] proposed a one-dimensional pro-
cess which has some similarity with the Kaczmarz algorithm. Instead of projecting
the solution onto the various hyperplaces, Cimmino generates n intermediate solutions
each of which is a mirror image of the current iterate with respect to the hyperplanes.
Once these are available then he takes their convex combination. Specifically, Cim-
mino defines intermediate iterates in the form

x(j) = x+ 2rjaj,. (9.5)

where rj is the j-th component of the residual r = b − Ax, and then takes as a new
iterate a convex combination of these points:

xnew =
∑

µjx
(j). (9.6)

Details on this method and on the life and contributions of Cimmino can be found in
Michele Benzi’s article [6].

10. Krylov methods take off: The CG algorithm. One-dimensional pro-
jection methods and Richardson iteration are of the form xk+1 = xk + βkdk, where
dk is a certain direction that is generated from the current iterate only.

It was Frankel who in 1950 had the idea to extend these to a ‘second-order’
iteration of the form [23]

xk+1 = xk + βkdk where dk = rk − αkdk−1. (10.1)

Frankel was inspired by the solution of time-dependent partial differential equations
such as the heat equation which allowed him to add a parameter. We can recover
the Chebyshev iteration by using constant coefficients αk and βk as we saw before.
A method of the type represented by (10.1) with constant coefficients αk, βk was
termed semi-iterative method. In his 1957 article Varga [74] uses this term for any
polynomial method and mentions earlier work by Lanczos and Stiefel. The 1961 paper
by Golub and Varga [32] explains how Chebyshev polynomials can be used effectively
and stably.
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The understanding and development of semi-iterative methods is deeply rooted
in approximation theory. The residual of the approximation xk+1 obtained from
Richardson type iteration of the form xk+1 = xk +ωkrk, can be shown to be equal to

rk+1 = (I − ωkA)(I − ωk−1A) · · · (I − ω0A)r0 ≡ pk+1(A)r0

where pk+1 is a polynomial of degree k + 1 satisfying the conditin pk+1(0) = 1. One
can therefore design effective iterative schemes by selecting polynomials of this type
that are small on a set that contains the spectrum of A. Many papers adopted this
‘approximation theory’ viewpoint. This is most apparent in Lanczos’ work. Thus,
the remarkable 3-term recurrence obtained by Lanczos to generate an orthogonal ba-
sis of the Krylov subspace is a consequence of the Stieljes procedure for generaing
orthogonal polynomials. Magnus Hestenes [UCLA] and Eduard Stiefel [ETH, Zürich]
developed the method of Conjugate Gradient independently. The article [60] describes
how the two authors discovered that they both developed the exact same method in-
dependently at the occasion of a conference held at UCLA in 1951. Lanczos developed
another method that exploited what we now call Lanczos vectors, to obtain the so-
lution from the Krylov subspace that has the smallest residual norm. His paper [39]
appeared within 6 months of the one by Hesteness and Stiefel. The method developed
by Lanczos is mathematically equivalent to what we would call the Minimal Residual
method today, but it is implemented with the Lanczos procedure.

Though not perceived this way at the time, the conjugate gradient method was
the single most important advance made in the 1950s. One of the main issues with
Chebyshev semi-iterative methods is that they require fairly accurate estimates of
extremal eigenvalues, since these define the interval in which the residual polynomial
is minimized. The conjugate gradient method bypassed this drawback – but it was
viewed as an unstable, direct method. Engeli et al. [18] were the first to view the
method as an iterative process and indicated that this process can take 2n to 3n steps
to ’converge’.

The method laid dormant until the early 1970s when a paper by John Reid [53]
showed the practical interest of this iterative viewpoint when considering large sparse
linear systems. With the advent of incomplete Cholesky preconditioners developed by
Meijerink and van der Vorst in 1977 [43], the method gained tremendous popularity
and ICCG (Incomplete Cholesky Conjugate Gradient) became de facto iterative solver
for the general Symmetric Positive Definite case.

11. Krylov methods: the ‘nonsymmetric’ period. Nonsymmetric linear
systems were given less attention right from the beginning of iteative methods. In his
1952 paper, Lanczos [39] discusses a method that is essentially equivalent to what we
now call the BiCG algorithm and then drops the method by stating: let us restrict
our attention to symmetric case ... (Normal equations.).

However, the demand for nonsymmetric solvers started to strengthen when appli-
cations in aerospace engineering for example gained in importance. Thus, the success
of the CG method lead researchers to investigate Krylov subspace methods for the
nonsymmetric case.

It was only in 1976 that Fletcher introduced the BiCG, which was based on the
Lanczos process. The BiCG uses two matrix-vector products: one with A and the
other with AT . However, the operations with AT are only needed to generate the
coefficients needed for the projection and they were therefore viewed as wasteful. A
number of methods later appeared whose goal was to avoid these products. The first
of these was the Conjugate Gradient Squared (CGS) [68] developed by Sonneveld
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in 1984. Then came the BiCGSTAB [73] in 1992, along with variants, e.g., [66],
QMR [25], TFQMR [24], QMRSTAB, [9] and several others. These contributions to
accelerators for the nonsymmetric case are described in detail in the earlier paper [60]
which covers the period of the twentieth century. In fact research on accelerators has
been less active since 2000 while preconditioners have attracted continued attention.

12. Present and future. Modern numerical linear algebra started with the in-
fluence of George Forsythe and one could view his 1953 survey paper [20] as a sort of
road-map. Since then, the field has changed directions several times, often to respond
to new demands from applications. So the natural question to ask is ‘what next?’
For iterative methods, research is still active in the area of preconditioners for some
types of problems (Helmholtz, Maxwell, Structures,...), as well in developing efficient
parallel algorithms. For example, it was noted earlier that asynchronous iterations are
back. On the other hand research on accelerators has subsided. Another observation
is that the fields of numerical analysis and numerical Linear Algebra are gradually
disapperaring from computer science graduate programs. This is unfortunate because
some research topics fit better in computer science than in mathematics. Among these
topics we can mention: sparse matrix techniques and sparse direct solvers, precondi-
tioning methods, effective parallel solvers, and graph-based methods. Some of these
topics may reappear in other areas, e.g. computational statistics, and machine learn-
ing, but it they are no longer represented in either computer science or mathematics,
there will be a lack of students trained in them.

When trying to answer the questions “What next?” we need to remember that
for the bigger part of the 20th century, solution techniques (iterative and direct)
were aimed primarily at solving certain types of PDEs, and this was driven in part
by demand in some engineering applications, most notably the aerospace, the auto-
mobile, and the semi-conductor industries. Therefore, a related question to ask is
“What new demands are showing up at the horizon?”. Currently, the answer to this
question is without a doubt related to the emergence of data mining and machine
learning. Conferences that used to bear the title ‘computational X’ in the past are
now often replacing this title, or augmenting it, by ‘machine learning X’. Linear al-
gebra is gradually addressing tasks that arise in the optimization, and computational
statistics problems of machine learning. The new linear algebra specialist encounters
such problems as evaluating matrix functions, computing and updating the SVD, fast
low-rank approximation methods, random sampling methods, etc. An important new
consideration in all of these topics is the pre-eminence of randomness and stochastic
approaches. In this context, methods such as the conjugate gradient or GMRES, that
are based on global optimality are not adapted to randomness and it may be time to
look for alternatives or to reformulate them. There are opportunities also in adapting
various techniques learned in linear algebra and more broadly in numerical analysis
to solve various problems in machine learning. One can echo the title of Forsythe’s
1953 paper [20] by saying that “Solving matrix problems in machine learning can be
interesting”.
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équations non-linéaires de point fixe, Apl. Mat., 20 (1975), pp. 1–38.
[56] D. Rose, R. Tarjan, and G. Lueker, Algorithmic aspects of vertex elimination on graphs,

SIAM Journal on Computing, 5 (1976), pp. 266–283.
[57] D. J. Rose and R. E. Tarjan, Algorithmic aspects of vertex elimination on directed graphs,

SIAM J. Appl. Math., 34 (1978), pp. 176–197.
[58] J. Rosenfeld, A case study on programming for parallel processors., Tech. Rep. Research

Report RC 64, IBM, Watson Research Center, Yorktown Heights, New-York, 1967.
[59] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, Philadelpha, PA,

2003.
[60] Y. Saad and H. A. van der Vorst, Iterative solution of linear systems in the 20th century,

J. of Comput. Appl. Math., 123 (2000), pp. 1–33.
[61] C. Schaeffer, Briefwechsel zwischen Carl Friedrich Gauss und Christian Ludwig Gerling,

Otto Eisner, Berlin, 1927. see also the review of this book by David Eugene Smith.
[62] S. Schechter, Relaxation methods for linear equations, Comm. Pure and appl. Math., 12

(1959), pp. 313–335.
[63] L. Seidel, über ein verfahren, die gleichungen, auf welche die methode der kleinsten quadrate

führt, sowie lineare gleichungen uiberhaupt, durch successive annäherung aufzulösen,
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